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We reexamine the Salecker-Wigner-Peres clock formalism and show that it can be directly applied to the
phenomenon of tunneling. Then we apply this formalism to the determination of the tunneling time of a
nonrelativistic wave packet, sharply concentrated around a tunneling energy, incident on a symmetric double-
barrier potential. In order to deepen the discussion about the generalized Hartman effect, we consider the case
in which the clock runs only when the particle can be found inside the region between the barriers and show
that, whenever the probability to find the particle in this region is non-negligible, the corresponding time
�which in this case turns out to be a dwell time� increases with barrier spacing.
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I. INTRODUCTION

An unambiguous definition of tunneling time is an impor-
tant problem in quantum mechanics, due to both its applica-
tions and its relevance to the foundations of the theory. It is,
however, a problem which has eluded physicists since the
beginnings of the quantum theory. Many attempts have been
made to define such a time scale �see �1–4� for reviews�.
However, most of these definitions �phase time, dwell time,
Larmor time, etc.�, while being valid to describe some spe-
cific characteristic of the tunneling process, also present dif-
ficulties if one tries to interpret them as traversal times in
general.

Perhaps the most striking of the above-mentioned difficul-
ties concerns the issue of superluminality, a direct conse-
quence of the Hartman effect �5�, which asserts that the
phase time saturates for opaque barriers. More recently, the
Hartman effect has been considered for the double-barrier
potential, and it was verified that in the opaque limit the
phase time does not depend on the spacing between the bar-
riers either, a phenomenon referred to as the generalized
Hartman effect �6� �also see �7–9��. Although there are no
real paradoxes associated with these phenomena, since it is
well known that the group velocity cannot be associated with
the signal velocity in such a situation �10�, the subject has
originated intense debate in the literature �see, for example,
�11� and references cited therein�. Independently of these
controversial interpretations, it is in fact a counterintuitive
result that in the opaque limit the phase time does not depend
on the spacing between the barriers, because one could ex-
pect the group velocity to have the usual physical meaning in
that free region. Subsequent investigations, both in the non-
relativistic �12� and in the relativistic �13� cases, indicate that
this lack of dependence may be an artifact of the opaque
limit, but the subject still deserves further investigation.

A fruitful avenue of investigation of tunneling times con-
siders the use of quantum clocks. A quantum clock is a sec-

ondary dynamical system weakly coupled to the system of
interest and having a degree of freedom evolving uniformly
in time. One of the most prominent works along this line
leads to Larmor time �14,15�, but other clocks are possible
�see, for example, �2� and references cited therein�. Here we
are particularly interested in the clock formalism introduced
by Salecker and Wigner �16� and later reexamined by Peres
�17�, who used it to investigate, among other problems, the
time of flight for a nonrelativistic particle �see also �18��. The
extension for a relativistic particle was later done by Davies
�19�.

In �17� Peres also introduced a “time operator” �not ca-
nonically conjugate to the clock’s Hamiltonian�, whose ex-
pectation values do not lead to sensible results for the tun-
neling time in the presence of a localized potential, as was
later shown by Leavens and McKinnon �20,21�. To over-
come such a difficulty, these authors proposed a modification
of the original Salecker-Wigner-Peres �SWP� formalism by
the introduction of a calibration procedure. However, in his
treatment of the time of flight problem Peres �17� did not use
directly such an operator, but defined the time given by the
clock �tc� as the derivative of the phase shift of the wave
function with respect to the perturbation potential. In this
work we demonstrate that Peres’ original approach, contrary
to what is usually stated, can be directly applied to the tun-
neling time problem, without the need for calibration. In Sec.
II we present a brief review of the SWP formalism and
clarify some important issues related to it. In particular, we
present a simple proof of the general result that tc �averaged
over the scattering channels� is exactly equal to the well-
known dwell time �a result obtained by Leavens and McKin-
non �21� through the expectation values of the Peres’ “time
operator” only after calibration�. In Sec. III we apply the
SWP formalism to the tunneling through a symmetric double
barrier and analyze the dependence of tc with the spacing
between the barriers. It must be noticed that although in this
case the �transmitted or reflected� time resulting from the
SWP clock is exactly the dwell time, this formalism proves
to be operationally better suited to address the question of
independence or not of the tunneling time with respect to the
barrier spacing in the limit of opaque barriers, providing a
simpler procedure for the direct calculation of the time spent
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by the wave packet only between the two barriers. Therefore,
such an approach allows us to deepen discussions about the
generalized Hartman effect. In Sec. IV we discuss the results
and their interpretation. In the Appendix we list the explicit
expressions for some terms appearing in the expressions for
the times obtained in Sec. III.

II. SWP CLOCK AND THE TUNNELING TIME PROBLEM

The free SWP clock consists of a quantum rotor, which
for a Hilbert space of dimension N has Hamiltonian given by
�17�

Hc = �J , �1�

with J=−i� �
�� , �= 2�

N� , and � is the clock’s resolution. The
energy eigenstates are um= eim�

�2�
, �� �0,2��, with eigenvalues

Vm=m�� �m=−j , . . . , j�. Another convenient orthonormal
basis for the clock’s Hilbert space is �17�

vk��� =
1

�2�N

sin�N

2
�� − �k���

sin�1

2
�� − �k��� , � � �0,2�� , �2�

with k=0, . . . ,N−1. These are the eigenstates of the Hermit-
ian operator

T = �
k=0

N−1

k�Pk, with Pkvl = �klvl, �3�

with eigenvalues k�. The above operator plays the role of a
“time” operator, despite not being canonically conjugate to
the Hamiltonian. The motivation for this identification is
that, for large N, the wave functions vk are sharply peaked
around �=�k�, with a width 2�

N , and their time evolution is
given by

exp	−
i

�
Hct
vk��� = vk�� − �t� . �4�

Thus, vk��� evolves rigidly and uniformly within the interval
�0,2��. In particular, for large N the peaks translate from
�k� to ��k�+ t� �mod 2��.

It must be noticed that it is only for times t=n�, with n an
integer, that

vk�� − �n�� = v�k+n��modN���� ,

such that the whole set of eigenfunctions vk��� can be ob-
tained from any of them �say, v0� through a sequence of
�discrete� time translations. This fact is at the origin of the
discrepancies found by Leavens �20� between the intrinsic
time t in Eq. �4� and the expectation value of Eq. �3� when-
ever t is not an integer multiple of �. To overcome such a
difficulty, Leavens introduced a calibration procedure, later
revised by Leavens and McKinnon �21�, designed in such a
way that after calibration the clock times �given as an aver-
age over an ensemble of freely running clocks� coincided
with the intrinsic ones.

On the other hand, the above properties of the wave func-
tions vk under time evolution allowed Peres to consider them
as the proper clock’s hand, with the clock’s “reading” given
by the angle �tc �the translation of the wave function’s
peak�. In applying this approach to the one-dimensional scat-
tering of a particle of mass � by a localized potential V�z�
confined within the region 0�z�L, the clock-system cou-
pling can be designed to measure the time the wave packet
spends within an arbitrary region z1�z�z2. In this case the
Hamiltonian for the coupled system is given by �17�

H = Hs + P�z�Hc, �5�

where Hs= p2

2� +V�z�, Hc is the clock Hamiltonian �1�, and
P�z� is a projection operator into the interval �z1 ,z2�. Let us
consider a particle in a stationary state of energy E incident
from the left �the results remain valid for a wave packet
strongly concentrated around E�. For the initial �free� clock
state we choose, following Peres, v0���. Then, assuming that
the highest eigenvalue of the clock, Vm, is negligible when
compared to all the relevant energy scales in the problem, the
final �asymptotic� state of the whole system is given by
�17,20�

	�z,�� =� Teikzv0�� − �tc
T� , z 
 max�z2,L
 ,

Re−ikzv0�� − �tc
R� , z � min�z1,0
 ,

�
where T and R are the transmission and reflection coeffi-
cients �which depend on the energy E� for the system in the
absence of the clock. From the above expressions and Eq.
�4�, one identifies the Peres’ transmission and reflection
times, respectively, by

tc
T�E� = �− �

��T
�m�

�Vm
�

Vm=0

and tc
R�E� = �− �

��R
�m�

�Vm
�

Vm=0

,

�6�

where �T
�m� ��R

�m�� is the phase delay of transmission �reflec-
tion� in the presence of the clock and the superscript �m�
indicates the mth clock’s eigenstate. In deriving the above
result, it is assumed that in the vanishingly weak-coupling

limit T�m���T�ei�T
�m�

and R�m���R�ei�R
�m�

�17�.
A relation between the dwell time and Eq. �6� can be

obtained by following steps similar to those Winful used to
derive a relation between the dwell time and the phase times
�22� �see also �23��. In order to do this, one must realize that
for a stationary incident particle and when the clock is in its
mth stationary state the problem is reduced to the solution of
the time-independent Schrödinger equation with a localized
potential V�m��z�=V�z�+VmP�z� �17,20�, whose solution out-
side the potential region is given by


�m��z� =�T�m�eikz, z 
 max�z2,L
 ,

eikz + R�m�e−ikz, z � min�z1,0
 ,
� �7�

where k= 1
�
�2�E. Considering the Schrödinger equation

with the potential V�m��z� and its complex conjugate, we
obtain, after taking the vanishingly weak-coupling limit
Vm→0,
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P�z�
*
 = −
�2

2�

�

�z�	�
*

�z

	 �
�m�

�Vm



Vm=0

− 
*	 �2
�m�

�Vm�z



Vm=0
� , �8�

where 
 denotes the wave function after the limit Vm→0.
Integrating the above expression over the region �z1 ,z2�, we
obtain −2�

�2 �z1

z2dz�
�2= �¯�z2
− �¯�z1

, where �¯� corresponds
to the term in brackets in the above expression, which is
constant for all z
z2 and for all z�z1, because P�z�=0 in
those regions. Taking advantage of this fact, we can use any
value of z�z2 to compute the set of brackets �¯�z2

. For
convenience we choose z in the region corresponding to the
transmitted wave. In the same way, we can choose z in the
incident-reflection region to compute the set of brackets
�¯�z1

. This procedure, together with Eq. �7�, yields

�

i�2k
�

z1

z2

dz�
�2 = T*	 �T�m�

�Vm



Vm=0

+ R*	 �R�m�

�Vm



Vm=0

,

which can be rewritten as

�

�k
�

z1

z2

dz�
�2 = �T�2�− �
��T

�m�

�Vm
�

Vm=0

+ �R�2�− �
��R

�m�

�Vm
�

Vm=0

.

Identifying the incident flux jin= �k
� , the left-hand side of the

above expression is the well-known expression for the dwell
time tD �1,2�. Finally, from Eq. �6� we obtain

tD = �T�2tc
T + �R�2tc

R. �9�

Although the above relation was also obtained by Sokolovski
et al. �24� through the use of Feynman’s path integrals, our
proof is worth mentioning due to its simplicity. Analogous
results were also obtained in the framework of weak mea-
surements or through the Larmor clock formalism, but in-
volving, in general, complex times �25–27�. Relation �9�,
however, involves only real times. Leavens and McKinnon
�21� showed that using the “time operator,” Eq. �3�, such a
relation can only be obtained after applying their calibration
procedure. As another important point concerning the above
relation we emphasize that, as long as the transmission and
reflection times are defined by Eq. �6�, no interference term
enter it �the analogous relation involving phase times neces-
sarily requires such a term �22��. The validity of such a re-
lation has been much debated in the literature �see, for in-
stance, �1,2,28� for different points of view�, and we hope
that the above derivation helps to clarify the fact that it all
depends on how the transmission and reflection times are
defined �see also �3,25� for further discussions�.

Finally, we note that when the whole potential V�z�
+VmP�z� is symmetric the reflected and the transmitted
phases differ only by a constant �15�, which leads to tD= tc

T

= tc
R �4,13�. In such a case it must also be noted that any of

the expressions in Eq. �6� constitute an operationally simpler
way to calculate the exact dwell time. We shall take advan-
tage of this fact in the next section.

III. DOUBLE-BARRIER TUNNELING

Let us now consider a particle having a given energy E
�or a wave packet sharply concentrated around this energy�
incident from the left on a symmetric double-barrier poten-
tial, given by

V�z� = V0���z���a − z� + ��z − d − a���d + 2a − z�
 .

�10�

We will consider only the case E�V0, characterizing a tun-
neling process. Even though we are chiefly concerned with
the case in which the clock runs only if the particle is inside
the region separating the two barriers �a�z�a+d�, it is
instructive to first consider the clock running when the par-
ticle is anywhere within the potential region �0,2a+d�. The
solution of the time-independent Schrödinger equation out-
side the potential region in this case is of the form �7�, with
the transmission amplitude given by

T�m� = 8ikpmqm
2 e−i�2a+d�k

„2 sin�pmd��k2 + qm
2 ��pm

2 + qm
2 �

− ��k − iqm�2�2pmqm cos�pmd�

+ �pm
2 − qm

2 �sin�pmd��e−2qma

+ �qm − ik�2�2pmqm cos�pmd�

− �pm
2 − qm

2 �sin�pmd��e2qma
…−1, �11�

where qm=�2��V0+Vm−E� /� and pm=�2��E−Vm� /�. The
corresponding phase is

�T
�m� = − �2a + d�k − tan−1	�m

�m

 , �12�

with �m and �m defined as

�m � 2kqm�2pmqm cos�pmd�cosh�2qma�

+ �qm
2 − pm

2 �sin�pmd�sinh�2qma�� ,

�m � − �k2 + qm
2 ��pm

2 + qm
2 �sin�pmd�

+ 2pmqm�qm
2 − k2�cos�pmd�sinh�2qma�

+ �qm
2 − pm

2 ��qm
2 − k2�sin�pmd�cosh�2qma� . �13�

From the symmetry of the total potential �including the term
due to the clock�, it follows that tD= tc

R= tc
T. So using Eq. �6�

we obtain

tD = tc
T = −

�

���0
2 + �0

2�
	h1

k
−

h2

q

 , �14�

where �0 and �0 are obtained from Eq. �13� by taking the
limit Vm→0 �which corresponds to pm→k and qm→q

= 1
�
�2��V0−E��. The explicit expressions for �0 and �0 as

well as for h1 and h2 are given in the Appendix.
Now, let us consider the case in which the SWP clock

runs only when the particle can be found inside the region
between the two barriers: namely, in the interval �a ,a+d�.
The �transmitted� Peres’ time tc

bet in this case can be obtained
from the above results simply by taking the limit qm→q in
Eq. �12� before taking the derivative in Eq. �6�, which gives
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tc
bet = −

�

�k

h1

�0
2 + �0

2 . �15�

Using the above expression, we can rewrite Eq. �14� as

tD = tc
bet + tc

bar, �16�

where

tc
bar =

�

�q

h2

�0
2 + �0

2 �17�

is just the �transmitted� Peres’ time obtained by allowing the
clock to run only when the particle passes within any of the
two barriers �which corresponds to take pm→k in all the
above perturbed expressions, before taking the derivative in
Eq. �6��. From the proof presented in the previous section,
together with the symmetry of the total potential, it follows
that Eqs. �15� and �17� are the dwell times spent in the re-
gions between and within the two barriers, respectively.

In order to discuss the generalized Hartman effect, we
specialize our results to the opaque limit qa→�, in which
the Peres’ time �14� for the whole potential region saturates
to the value

tD = tc
T →

qa→�

�

�q2

2kq

�k2 + q2�
. �18�

Then, in the opaque limit the behavior of the Peres’ time
�dwell time� for the whole potential region is analogous to
that of the phase time, in which it is independent of both the
barrier width a and the barrier spacing a, and we obtain a
version of the generalized Hartman effect. The above satu-
rated result could also be obtained from the nonrelativistic
limit for the dwell time obtained in �13� �in that reference the
dwell time was obtained from a relation among the phase
and the dwell times involving interference terms �23��. How-
ever, methods based on the phase time, which is an asymp-
totically extrapolated quantity, are not suitable to study the
behavior of the time the particle spends only inside the re-
gion between the barriers.

In the opaque limit qa→�, expression �15� immediately
yields tc

bet→0. A more careful analysis taking into account
the leading terms in the asymptotic situation in which qa is
large, but finite, shows that

tc
bet →

qa�1

4�q2

�

e−2qa

�k2 + q2�

�
�2kd�k2 + q2� + 4kq sin2�kd� + �k2 − q2�sin�2kd�


��k2 − q2�sin�kd� − 2kq cos�kd�
2 .

�19�

Apart from terms coming from the multiple reflections
and/or interference at the barriers, this expression clearly dis-
plays an increasing �almost linear� dependence of tc

bet with
respect to the barrier spacing d, for any finite qa. Figure 1
shows the behaviors of the three times entering expression
�16�, with increasing d. Figure 1�a� concerns a large but fi-
nite barrier width a. We can observe the almost linear in-
creasing of tbet with increasing d. In Fig. 1�b� the barrier
width is increased 3 times and we can already observe the

tendency to saturation �except by the peaks� of the three
times: tD and tc

bar tends to the saturated value �18�, while tc
bet

tends to saturate to zero. Increasing even more the barrier
width makes the peaks vanish. It can also be shown that if
the clock runs only within the first barrier, the corresponding
saturated dwell time in the opaque limit is exactly the same
as Eq. �18�. Summarizing, in the opaque limit qa→� the
transmission amplitude beyond the first barrier goes to zero
and its associated phase becomes meaningless. This fact cor-
roborates the view that the generalized Hartman effect,
which asserts the independence of the tunneling time on d, is
indeed an artifact of the opaque limit �see also �12,13��.

IV. CONCLUDING REMARKS

In this work we reexamined the SWP clock formalism,
which �despite being based on a thought experiment� is use-
ful to understand the fundamental concepts involved in the
definition of a time scale for tunneling processes. We showed
that in Peres’ version it can be directly applied to the prob-
lem of tunneling times. We demonstrated that departures
from the Peres’ approach are not necessary, even in the case
of localized potentials, if one focuses, as Peres did, on the

b
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FIG. 1. �Color online� Peres’ time dependence with respect to
the distance d between the two barriers. In both figures the three
clock times appearing in relation �16� are shown, corresponding to
the whole potential region �0,2a+d�; to the region between the
barriers, �a ,a+d�; and to the region within the two barriers,
�0,a�� �a+d ,2a+d�. Natural units are used ��=c=1�, so that mass
and energies are expressed in units of the particle mass � and
distances and times are expressed in units of �−1. In both figures,
E=0.01 and V0=0.018. �a� a=10 and �b� a=30.
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time evolution of the eigenfunctions of his “time operator,”
instead of focusing on its expectation values, as did Leavens
and McKinnon �21�.

Using Peres’ approach and through a simple extension of
a proof originally designed by Winful in the context of phase
times �22,23�, we have shown that the Peres’ time �6�, when
weighted by the transmission and reflection probabilities, av-
erages exactly to the dwell time �incidentally, for symmetric
potentials any of the two expressions �6� provides an opera-
tionally simpler way to calculate the dwell time�. On the
other hand, we did not address questions regarding the SWP
clock’s resolution in the presence of a localized potential �see
�17,20�� because this issue can be addressed in the frame-
work of the weak measurement theory �29�, as suggested in
�30,31�. Besides that, in this paper each of the time readings
associated with the clock is equivalent to a dwell time, which
is a well-established time scale �1–4�.

We then applied the SWP formalism to the symmetric
double-barrier potential, aiming to analyze the so-called gen-
eralized man effect. We calculated explicitly the dwell time
and verified that in the opaque limit it does not depend on the
barrier separation, confirming the emergence of the general-
ized man effect also in this case �see also �12��. However, we
added an insight into this debated question by allowing the
clock to run only inside the region between the barriers, and
taking into consideration the leading terms when the barrier
width is large, but finite, we unambiguously showed that the
dwell time increases “almost linearly” with the barrier spac-
ing d �apart from terms arising from the multiple reflections
and interference inside this region�. The fact that such a be-
havior is modulated by an exponential decay exp�−2qa� can
be understood by noticing that the dwell time is an average
over the probability of finding the particle in the interest
region �and since this probability decays exponentially with
qa, so will tD�. Therefore, whenever the probability to find
the particle in the region between the barriers is non-
negligible, the corresponding dwell time depends on the bar-
rier spacing.

All the above considerations reinforce the conclusions ar-
rived in �12�, in the context of a Fabry-Perot cavity, and in
�13�, for the relativistic tunneling through double barriers,
that the generalized Hartman effect is just a mathematical
artifact of the opaque limit: although in that limit the trans-
mission phase is well defined and finite, it is meaningless

since T itself goes to zero. Therefore, any time scale defined
in terms of such phase �such as phase times and, as seen in
Sec. II, dwell times� also becomes meaningless in this limit:
it corresponds to the trivial fact that the particle does not
penetrate past the first barrier, and therefore it makes no
sense to associate any time duration to its passage �or dwell-
ing� in the region between the two barriers.

APPENDIX

In this appendix we present the explicit expressions for
�0, �0, h1, and h2, which appear in the expressions for the
Peres’ times �14�, �15�, and �17�:

�0 � 2kq�2kq cos�kd�cosh�2qa�

+ �q2 − k2�sin�kd�sinh�2qa�� ,

�0 � − �k2 + q2�2 sin�kd� + 2kq�q2 − k2�cos�kd�sinh�2qa�

+ �q2 − k2�2 sin�kd�cosh�2qa� ,

while h1��0�1−�0�2 and h2��0�3−�0�4, with

�1 � − 2k�q2 + k2�sin�kd� − d�q2 + k2�2 cos�kd�

+ 2q�q2 − k2�cos�kd�sinh�2qa�

− 2qkd�q2 − k2�sin�kd�sinh�2qa�

− 2k�q2 − k2�sin�kd�cosh�2qa�

+ d�q2 − k2�2 cos�kd�cosh�2qa� , �A1�

�2 � 2kq�2q cos�kd�cosh�2qa� − 2qkd sin�kd�cosh�2qa�

− 2k sin�kd�sinh�2qa� + d�q2 − k2�cos�kd�sinh�2qa�
 ,

�A2�

�3 � − 4q�q2 + k2�sin�kd� + 2k�3q2 − k2�cos�kd�sinh�2qa�

+ 4kqa�q2 − k2�cos�kd�cosh�2qa�

+ 4q�q2 − k2�sin�kd�cosh�2qa�

+ 2a�q2 − k2�2 sin�kd�sinh�2qa� , �A3�

�4 � 2k�4kq cos�kd�cosh�2qa� + �3q2 − k2�sin�kd�sinh�2qa�

+ 4kq2a cos�kd�sinh�2qa�

+ 2qa�q2 − k2�sin�kd�cosh�2qa�
 . �A4�
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