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Mutually unbiased bases encapsulate the concept of complementarity—the impossibility of simultaneous
knowledge of certain observables—in the formalism of quantum theory. Although this concept is at the heart
of quantum mechanics, the number of these bases is unknown except for systems of dimension being a power
of a prime. We develop the relation between this physical problem and the mathematical problem of finding the
number of mutually orthogonal Latin squares. We derive in a simple way all known results about the unbiased
bases, find their lower number, and disprove the existence of certain forms of the bases in dimensions different
than power of a prime. Using the Latin squares, we construct hidden-variable models which efficiently simulate
results of complementary quantum measurements.
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I. INTRODUCTION

Complementarity is a fundamental principle of quantum
physics which forbids simultaneous knowledge of certain ob-
servables. It is manifested already for the simplest quantum
mechanical system—spin-1

2 . If the system is in a definite
state of, say, spin along x, the spin along y or z is completely
unknown, i.e., the outcomes “spin-up” and “spin-down” oc-
cur with the same probability. The eigenbases of �̂x, �̂y, and
�̂z Pauli operators form so-called mutually unbiased bases
�MUBs�: Every vector from one basis has equal overlap with
all the vectors from other bases. MUBs encapsulate the con-
cept of complementarity in the quantum formalism. Al-
though complementarity is at the heart of quantum physics,
the question about the number of MUBs remains unan-
swered. Apart from being of foundational interest, MUBs
find applications in quantum state tomography �1�, quantum-
key distribution �2�, and the mean King problem �3�.

A d-level quantum system can have at most d+1 MUBs,
and such a set is referred to as the complete set of MUBs. In
1981 Ivanović proved by construction that there are indeed
d+1 complementary measurements for d being a prime num-
ber �4�. This result was generalized by Wootters and Fields to
cover powers of primes �1�. For other dimensions the num-
ber of MUBs is unknown, the simplest case being dimension
six. A considerable amount of work was done towards un-
derstanding this problem. New proofs of previous results
were established �5–8� and the problem was linked with
other unsolved problems �9,10�. It was also noticed that it is
similar in spirit to certain problems in combinatorics �11–13�
and finite geometry �14�. Here, we build upon these rela-
tions.

We describe the problem of the number of orthogonal
Latin squares �OLSs�, which was initiated by Euler �15� and
still attracts a lot of attention in mathematics. Although this
problem is not solved yet in full generality, more is known
about it than about the number of MUBs. Using a black box
which physically encodes information contained in a Latin
square, we link every OLS of order being a power of a prime
with a MUB. For dimension six, our method gives three
MUBs, which is the maximal number found by the numeri-

cal research �10,11�. Utilizing known results for OLSs we
derive a minimal number of MUBs, and disprove the exis-
tence of certain forms of MUBs for arbitrary d. Finally, using
OLSs we construct hidden-variable models that efficiently
simulate complementary quantum measurements.

II. ORTHOGONAL LATIN SQUARES

A Latin square of order d is an array of numbers
�0, . . . ,d−1� where every row and every column contains
each number exactly once. Two Latin squares, A= �Aij� and
B= �Bij�, are orthogonal if all ordered pairs �Aij ,Bij� are dis-
tinct. There are at most d−1 OLSs and this set is called
complete. The existence of L OLSs is equivalent to the ex-
istence of a combinatorial design called a net with L+2 rows
�16�. The net design has a form of a table in which every row
contains d2 distinct numbers. They are split into d cells of d
numbers each, in such a way that the numbers of any cell in
a given row are distributed among all cells of any other row.
The additional two rows of the net correspond to orthogonal
but not Latin squares, with the entries Aij = j and Aij = i.

The following algorithm allows us to construct the net
from a set of OLSs:

�i� Write the squares in the standard form in which the
numbers of the first column are in ascending order �by per-
muting the entries, it is always possible to write the set of
OLSs in the standard form without compromising Latiness
and orthogonality�.

�ii� Augment the set of OLSs by the two orthogonal non-
Latin squares Aij = j and Aij = i.

�iii� Write the rows of the squares as cells in a single row
of the table. The number of the table’s rows is now equal to
the number of squares in the augmented set.

�iv� In the row of the table which corresponds to the
square Aij = j, referred to as the “coordinate row,” replace the
number Aij in the ith cell by Aij� = id+ j, where d is the order
of the square.
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�v� In every cell of the other rows replace number Bij on
position j by the integer associated to the number Bij of the
jth cell in the coordinate row, i.e., Bij→Bij� = jd+Bij.

We shall prove that the table generated by this procedure
is indeed a net design. We use another property defining the
design: Two numbers in one cell do not repeat in any other
cell. This already includes that any two cells of two different
rows share exactly one common number, as if there were no
common numbers shared by these cells, there would have to
be at least two common numbers shared by other cells.

Due to the definitions of Aij� and Bij� and the fact that the
columns of Bij contain all distinct numbers 0 , . . . ,d−1, every
row of the table contains d2 distinct numbers 0 , . . . ,d2−1. By
construction, the numbers of any cell of the coordinate row
are distributed among all the cells of all the other rows.
Therefore, it is sufficient to prove the property of the net for
the remaining rows. Assume to the contrary, that two num-
bers repeat in two cells of different rows, �jd+Bij , j�d
+Bij��= �ld+Ckl , l�d+Ckl��. Since j , j� , l , l� ,Bij ,Cij
� �0, . . . ,d−1� the equality can only hold if Bij =Ckj and
Bij�=Ckj�, i.e., there are rows of the squares B and C which
contain the same numbers, in the columns defined by j and
j�. This, however, cannot be because one can always permute
the entries of, say, square C such that its kth row becomes the
ith row �without compromising orthogonality� and the two
squares would not be orthogonal.

III. QUBIT

Consider the squares for d=2. We link them with the
complementary measurements of a qubit. The augmented set
of orthogonal squares reads as

0 1

0 1

0 0

1 1

0 1

1 0.
�1�

The right-hand side square is Latin, the left and middle
squares are orthogonal to each other and to the Latin square.
These three squares lead to the following net design on the
left-hand side, in which the numbers are represented by pairs
mn in modulo-two decomposition:

b = 0 b = 1

00 01 10 11 m = b?

n = b?

m + n = b?

00 10 01 11

00 11 01 10 �2�

On the right-hand side, we write the complementary ques-
tions associated with each row. They are answered by pairs
mn in the left- and right-hand columns of the net design �left
column→answer 0, right column→answer 1�. In this way,
the questions are linked to the orthogonal squares.

The complementary questions can be answered in quan-
tum experiments involving MUBs. Consider a device encod-
ing parameters m and n via application of the unitary

Û= �̂x
m�̂z

n. When it acts on �z� � states, they get a phase de-
pendent on n and are flipped m times. Thus, knowing the
initial state, a final measurement in the �̂z eigenbasis reveals
m, giving the answer to the first complementary question.
Similarly, taking �x� � and �y� � as initial states, the results
of �x and �y measurement answer the second and the third
complementary question, respectively.

IV. PRIME DIMENSIONS

For prime d the net has d+1 rows. The entries of the rows
corresponding to the OLSs are generated from the following
formula:

n = am + b , �3�

where the integer a=1, . . . ,d−1 enumerates the rows of the
table, while the integer b=0, . . . ,d−1 enumerates different
columns, and the sum is modulo d. Additional two rows
correspond to the questions about m and n, respectively. The
table for the rows corresponding to the OLSs is built in the
following way:

�i� Choose a row, a, and the column, b.
�ii� Vary m=0, . . . ,d−1 and compute n using �3�.
�iii� Write pairs mn in the cell.
For example, for d=3, one has

b = 0 b = 1 b = 2

00 01 02 10 11 12 20 21 22 m = b?

00 10 20 01 11 21 02 12 22 n = b?

00 11 22 01 12 20 02 10 21 n = m + b?

00 12 21 01 10 22 02 11 20 n = 2m + b? �4�

The complementary questions are given on the right-hand
side. Different values of b enumerate possible answers.

We shall see, again, that the complementary questions can
be answered using MUBs. Consider encoding of parameters

m and n via application of Û= X̂mẐn, where the Weyl-

Schwinger operators X̂mẐn span a unitary operator basis. In

the basis of Ẑ, denoted as ���, the two elementary operators
satisfy

Ẑ��� = �d
����, X̂��� = �� + 1� , �5�

where �d=exp�i2� /d� is a complex dth root of unity. For the
same reasons as for a qubit, the first two questions are an-

swered by applying Û on the eigenstates of Ẑ and X̂ opera-
tors, and then by measuring the emerging state in these
bases.

In all other cases the action of the device is Û= X̂mẐam+b

= X̂mẐamẐb. The elementary operators do not commute, in-

stead one has ẐX̂=�dX̂Ẑ, and it follows that X̂mẐam

=�d
�−1/2�am�m−1��X̂Ẑa�m. Finally, the action of the device is, up

to the global phase, given by Û� �X̂Ẑa�mẐb. The eigenstates

of the X̂Ẑa operator, expressed in the Ẑ basis, are given by
�j�a= �1 /	d�
�=0

d−1�d
−j�−as����, where s�=�+ ¯ + �d−1� �5�,

and the Ẑ operator shifts them, Ẑ�j�a= �j−1�a. After the de-
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vice, �j�a is shifted exactly b times and subsequent measure-
ment in this basis reveals the answer to the ath question. On

the other hand, the eigenbases of X̂Ẑa for a=1, . . . ,d−1 and

eigenbases of X̂ and Ẑ are known to form a complete set of
MUBs �5�. Not only the number of MUBs is the same as the
number of OLSs, but they are indexed by the same variable,
a. This allows to associate MUB to every OLS for prime d.

V. POWERS OF PRIMES

If d is a power of a prime, a complete set of OLSs is
obtained using operations in the finite field of d elements,
and one expects that a complete set of MUBs also follows
from the existence of the field. Indeed, explicit formulas for
MUBs in terms of the field operations were presented in
�1,7,8�. Here, we prove this result in a simple way related to
�17�, using the theorem of Bandyopadhyay et al. �5,19�: If
there is a set of orthogonal unitary matrices, which can be
partitioned into M subsets of d commuting operators, then
there are at least M MUBs. They are the joint eigenbases of
the d commuting operators.

To illustrate the idea, consider again prime d. Take the
orthogonal unitary operators Ŝmn= X̂mẐn with their powers
mn taken from the first column of the net. The cell of the first
and second row corresponds to the eigenbases of Ẑ and X̂,
respectively, whereas the other rows are defined by b=0, i.e.,
n=am. According to the commutation rule of the elementary

operators X̂ and Ẑ, Ŝmn and Ŝm�n� commute if and only if
mn�−m�n=0 mod d. Thus, for a fixed row, i.e., fixed a, the

set of d operators Ŝmn commute, because m�am��−m��am�
=0, and, due to the mentioned theorem, there is a set of d
+1 MUBs.

For d= pr being a power of a prime, the OLSs and the net
are generated by the formula

n = a�m � b , �6�

where � and � denote multiplication and addition in the
field, a ,b ,m ,n�Fd are field elements, and a�0. The first
two rows of the table are defined by m=b and n=b. In the
case of d=4, the four elements �0,1 ,� ,�+1� of the field F4
�� is the root of x2+x+1 �17��, when indexed with the num-
bers �0, 1, 2, 3�, lead to the following net design:

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 11 22 33 01 10 23 32 02 13 20 31 03 12 21 30

00 12 23 31 01 13 22 30 02 10 21 33 03 11 20 32

00 13 21 32 01 12 20 33 02 11 23 30 03 10 22 31 �7�

We use the concept of a basis in the finite field Fd. It
consists of r elements ei, with i=1, . . . ,r. Every basis has a
unique dual basis, ēj, such that tr�ei�ēj�=�ij, where the trace
in the field, tr�x�, maps elements of Fd into the elements of
the prime field Fp. We use lowercase tr for the trace in the
field in order to distinguish it from the usual trace over an
operator, which we denote by Tr. It has the following useful
properties: tr�x � y�=tr�x�+tr�y�, and tr�a�x�=a tr�x�, where
operations on the right-hand side are modulo p and a is in
the prime field. We decompose m in the basis ei, m
=m1�e1 � ¯ � mr�er, where mi=tr�m�ēi�, and n in the
dual basis, n=n1�ē1 � ¯ � nr�ēr, with ni=tr�n�ei�. Due to
the properties of the trace in the field and the dual basis

tr�m�n� = 

i=1

r

mini = m� · n� , �8�

where m� = �m1 , . . . ,mr� and n� = �n1 , . . . ,nr� have components
in the prime field, i.e., numbers �0, . . . , p−1�.

Consider operators defined by the decomposition of m

and n, Ŝm� n� = X̂p
m1Ẑp

n1 � ¯ � X̂p
mrẐp

nr, where, e.g., X̂p
mi is the uni-

tary operator acting on the ith p-dimensional subspace of the

global d-dimensional space. Operators Ŝm� n� form an orthogo-
nal basis. They commute, if and only if m� ·n��−m� � ·n�
=0 mod p. Take the operators corresponding to a fixed row
of the first column of the net, i.e., a is fixed, b=0 and there-
fore n=a�m. From Eq. �8�, all these d operators commute if
tr�m�a�m��=tr�m��a�m�, which is satisfied due to asso-
ciativity and commutativity of multiplication in the field.
Therefore, their eigenbases define MUBs. Again, each row of
the table is linked with the MUB.

To make an illustration, consider again the example of d
=4. Choose �e1 ,e2�= �� ,1� as a basis in the field, such that
the numbers m are decomposed into pairs m→m1m2 in the
usual way: 0→00, 1→01, 2→10, 3→11. The dual basis
reads as �ē1 , ē2�= �1,�+1�, which implies that the numbers n
are decomposed into pairs n→n1n2 as follows: 0→00,
1→10, 2→11, 3→01. Each pair of numbers of table �7�
is now written vertically as a combination of two pairs of
numbers:
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00 01 01 00 00 01 01 00 10 11 11 10 10 11 11 10

00 00 01 01 10 10 11 11 00 00 01 01 10 10 11 11

00 00 10 10 01 01 11 11 01 01 11 11 00 00 10 10

00 10 00 10 00 10 00 10 01 11 01 11 01 11 01 11

00 01 11 10 01 00 10 11 01 00 10 11 00 01 11 10

00 10 01 11 00 10 01 11 01 11 00 10 01 11 00 10

00 01 10 11 01 00 11 10 01 00 11 10 00 01 10 11

00 11 01 10 00 11 01 10 01 10 00 11 01 10 00 11

00 00 11 11 01 01 10 10 01 01 10 10 00 00 11 11

00 11 00 11 00 11 00 11 01 10 01 10 01 10 01 10 �9�

MUBs are formed by the eigenbases of operators �̂x
m1�̂z

n1

� �̂x
m2�̂z

n2, where the powers are taken from the first column
of this table. The result is in agreement with other methods
�5,6�. The complementary questions answered by the states
of these MUBs are formulated in terms of individual bits m1,

m2, n1, n2, which are encoded by Û= �̂x
m1�̂z

n1 � �̂x
m2�̂z

n2. For

example, the question of the last row is about the values of
m1+n1 and m2+n2.

An interesting feature strengthening the link between
MUBs and OLSs is the existence of the set of OLSs and
MUBs which cannot be completed. For example, the follow-
ing net design

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 11 22 33 01 12 23 30 02 13 20 31 03 10 21 32 �10�

cannot have more rows. The MUBs related to this table are

the eigenbases of X̂, Ẑ, and X̂Ẑ for d=4. Correspondingly,
there are no other bases which are mutually unbiased with
respect to these three �18�.

VI. GENERAL DIMENSION

Tarry was the first to prove that no two OLSs of order six
exist �20�, i.e., the net for d=6 has only three rows. The

operators X̂mẐn commute for numbers m and n from the first
cell of these rows and the corresponding MUBs are the

eigenbases of X̂, Ẑ, and X̂Ẑ. Similarly to the case of d=4 no
other MUB with respect to these three exists �19�. Of course,
the question whether different three MUBs can be aug-
mented with additional MUBs remains open.

A. MacNeish’s bound

More generally, the lower bound on the number of OLSs
was given by MacNeish �21�. If two squares of order a are
orthogonal, A�B, and two squares of order b are orthogonal,
C�D, then the squares obtained by a direct product, of order
ab, are also orthogonal, A	C�B	D. This implies that the

number of OLSs, L, of the order d= p1
r1
¯pn

rn, with pi being
prime factors of d, is at least L
mini�pi

ri −1�, where pi
ri −1 is

the number of OLSs of order pi
ri. A parallel result holds for

MUBs �7,19�. If �a� and �b� are the states of two MUBs in
dimension d1, and �c� and �d� are the states of MUBs in
dimension d2, then the tensor product bases �a� � �c� and
�b� � �d� form MUBs in dimension d1d2. Thus, for d
= p1

r1
¯pn

rn there are at least mini�pi
ri +1� MUBs.

B. Latin operator basis

In general, we know more about the number of OLSs than
about the number of MUBs �16�. We use this knowledge to
derive conditions which restrict the form of MUBs. Consider
the operators

B̂n0¯nd
= 1̂ + 


m=0

d



�=1

d−1

�d
nm�Ŝm

� , �11�

where nm=0, . . . ,d−1 and Ŝm
� =
 j=0

d−1�d
j��j�m�j� have a com-

plete set of MUBs as eigenbases, m=0, . . . ,d. We show that
existence of such a set and orthogonality of d2 operators

B̂n0,. . .,nd
implies completeness of the set of OLSs. The trace
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scalar product Tr�B̂n0,. . .,nd

† B̂n0�,. . .,nd�
� is given by d2�k−1�,

where k denotes the sum of Kronecker deltas, k��n0n0�
+ ¯

+�ndnd�
. Operators B̂n0,. . .,nd

and B̂n0�,. . .,nd�
are orthogonal if and

only if k=1, i.e., nm=nm� for exactly one m. This condition
applied to d2 orthogonal operators, defines a complete set of
orthogonal squares. To see this, take d2 orthogonal operators

B̂n0�b�,. . .,nd�b� with b=1, . . . ,d2 and consider d+1 squares de-
fined by their indices nm�b� for a fixed m. If the squares were
not orthogonal, one could find at least two identical pairs,
(nm�b� ,nm��b�)= (nm�b�� ,nm��b��), implying that operators
�11� are not orthogonal �k�1�. Therefore, e.g., for d=6,
there is no complete set of MUBs for which operators

B̂n0,. . .,nd
are orthogonal because there is no complete set of

OLSs in this case.

C. Orthogonal functions

The second condition is obtained by noting that a net
defines “orthogonal” functions, Fa�m ,n�, which give the col-
umn of the ath row where the pair mn is entered. The or-
thogonality means that for the pairs mn for which the func-
tion Fa�m ,n� has a fixed value, the function Fa��m ,n�
acquires all its values. We show that if d2 unitaries, Ûmn, shift
�up to a phase� the states of different bases in accordance
with the net

Ûmn�j�a � �j + Fa�m,n��a, �12�

then these bases are MUBs. For the proof, note that

i�=0

d−1 �a�i � i��a��
2=1. From orthogonality of the functions, this

sum can be written as 
S�a�j+Fa�m ,n� � j�+Fa��m ,n��a��
2

=1, where S is the set of pairs mn for which Fa�m ,n� has a

fixed value. By �12�, the last is 
S�a�j�Ûmn
† Ûmn�j��a��

2, which

due to unitarity, Ûmn
† Ûmn= 1̂, is the sum of d identical terms

�a�j � j��a��
2. Therefore, �a�j � j��a��

2=1 /d. Further, given d2

unitaries with property �12�, one recovers the table in the

following experiment: Prepare �0�a, act on it with Ûmn, mea-
sure in the same basis, and write the pair mn in the ath row
and the column corresponding to the result. Thus, in dimen-
sion six, there cannot be 36 unitaries satisfying �12�, with the
orthogonal functions, for more than three bases, because oth-
erwise one could construct more than three orthogonal
squares of order six, which is impossible.

VII. HIDDEN-VARIABLE SIMULATION OF MUBS

The net designs can be used to construct hidden-variable
models which simulate results of complementary measure-
ments on certain states. Recently, Spekkens showed that only
four “ontic states” �hidden variables� are sufficient to simu-
late complementary measurements of a qubit prepared in a
state of a MUB �22�. In his model, quantum states of MUBs
correspond to the “epistemic states” satisfying the knowl-
edge balance principle: The amount of knowledge one pos-
sesses about the ontic state is equal to the amount of knowl-
edge one lacks �22�. This principle lies behind the net design.
Left-hand table of �2� corresponds to the original Spekkens’

model: The numbers enumerate ontic states, cells correspond
to the epistemic states and rows to the complementary mea-
surements. All other tables generalize the model. To identify
the ontic state one needs two dits of information �there are d2

ontic states�, whereas the epistemic state is defined by a
single dit, leaving the other one unknown. The quantum
states described by these models require �a classical mixture
of� only two dits to model d outcomes of d+1 quantum
complementary measurements.

Our approach allows us to ask the question how many
epistemic states satisfying the knowledge balance principle,
i.e., having d underlying ontic states, correspond to quantum
states. For example, in the case of a two-level system there
are four ontic states, and six possible epistemic states �see
the net design of �2��. All six correspond to quantum eigen-
states of complementary observables. In general, any
epistemic state is represented by a cell of d numbers
�i1i2¯ id�. Since each number takes on one of d2 values, the
numbers cannot repeat and their order is not important, there
are Ed=
i1=1

D 
i2=i1+1
D+1

¯
id=id−1+1
D+d−1 possible epistemic states,

with D=d2−d+1.
For d being a power of a prime the quantum states corre-

sponding to the cells of the net design are basis vectors of a
complete set of MUBs. They can be used to uniquely decom-
pose arbitrary Hermitian operator

Ô = − Tr�Ô�1̂ + 

m=0

d



j=0

d−1

pj
�m��j�m�j� , �13�

where pj
�m�= m�j�Ô�j�m and �j�m is the jth state of the mth

MUB. For the proof, note that the complete set of MUBs can
be used to define the operator basis in the Hilbert-Schmidt

space Ŝm
� =
 j=0

d−1�d
j��j�m�j�. There are d2 such operators, be-

cause m=0, . . . ,d, the power �=0, . . . ,d−1 and all d opera-

tors Ŝm
0 are equal to the identity operator. Since they are

normalized as Tr��Ŝm
� �†Ŝm�

�� �=d�mm����� any operator has a

unique expansion Ô= 1
d �Tr�Ô�1̂+
m=0

d 
�=1
d−1Tr�Ô�Ŝm

� �†�Ŝm
� �.

Writing Ŝm
� in terms of projectors on MUBs one finds Eq.

�13�.
If Ô is a quantum state, Tr�Ô�=1 and pj

�m�’s are probabili-
ties to observe outcomes related to suitable states of MUBs.
We consider general epistemic states, not necessarily those
corresponding to the cells of the net design. Such epistemic
states have “partial overlap” with the cells, defined as the
number of common ontic states divided by d. For example,
the epistemic state �00 01 20� has an overlap of 2

3 and 1
3

with the first and third epistemic state of the first row of table

�4�, respectively. To construct operator Ô associated with a
general epistemic state, we take these overlaps to define the
probabilities pj

�m�. Since we would like to see how many
epistemic states correspond to quantum states we take opera-

tors Ô with a unit trace. If Tr�Ô2�=1 and Tr�Ô3��1, the

operator Ô cannot represent a quantum state, because the
first condition excludes mixed states, and both of them ex-
clude pure states �23�. We find that for d=3 only the
epistemic states of the net design correspond to the quantum
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states. There are Q3=12 such states, out of E3=84 different
epistemic states. The ratio of Rd=Qd /Ed rapidly decreases
with d: We checked R3=1 /7, R4=8 /455, and R5=1 /1771.
Thus, most of the epistemic states, constructed according to
the “knowledge balance principle,” do not represent a
quantum-physical state.

VIII. CONCLUSIONS

In conclusion, we showed a one-to-one relation between
OLSs and MUBs, if d is a power of a prime. For general
dimensions, we derive conditions which limit the structure of
the complete set of MUBs and we presented parallelism be-
tween the MacNeish’s bound on the minimal number of
OLSs and the minimal number of MUBs. Interestingly, the
MacNeish’s bound is known not to be tight. There are at least

five OLSs of order 35, where the MacNeish’s bound is four
�24�. Therefore, further insight into the relations between
MUBs and OLSs would be gained from studies of MUBs for
d=35.

Finally, using the squares, we constructed hidden-variable
models that efficiently simulate measurements of MUBs.
However, the majority of states in these models do not have
quantum-physical counterparts.
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