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We examine the connection between the dwell time of a quantum particle in a region of space and flux-flux
correlations at the boundaries. It is shown that the first and second moments of a flux-flux correlation function
which generalizes a previous proposal by Pollak and Miller �Phys. Rev. Lett. 53, 115 �1984��, agree with the
corresponding moments of the dwell-time distribution, whereas the third and higher moments do not. We also
discuss operational approaches and approximations to measure the flux-flux correlation function and thus the
second moment of the dwell time, which is shown to be characteristically quantum and larger than the
corresponding classical moment even for freely moving particles.
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I. INTRODUCTION

Time observables, i.e., times measured as random vari-
ables after a microscopic system is prepared, in particular
according to a given wave function, are very common in the
laboratories. Examples are the lifetimes of excited species, or
the arrival times of ions, atoms, or molecules at a scintilla-
tion detector, a microchannel plate, or a laser-illuminated re-
gion. Nevertheless, incorporating time observables into
quantum mechanics is a problematic task �1�, and it has even
been discouraged by many physicists influenced by Pauli’s
theorem and the extended notion that “time is only a param-
eter” within the quantum realm. Time observables are char-
acterized experimentally, for a given preparation of the initial
state, by a distribution or by their statistical moments, and
useful information may be extracted from them. The spec-
tacular progress in quantum state manipulation with laser
and magnetic cooling techniques emphasizes the need to
treat atomic motion quantally rather than classically �2,3�,
and the timeliness of a quantum approach to time quantities.
Much work has been carried out in the last two decades
trying to formulate time observables theoretically and also to
connect the abstract proposals with actual or idealized ex-
periments. Central to these investigations have been the tun-
neling time, the arrival time, and the dwell time �1�.

The dwell time of a particle in a region of space and its
close relative, the delay time �4�, are in particular rather fun-
damental quantities that characterize the duration of collision
processes, the lifetime of unstable systems �5�, the response
to perturbations �6�, ac conductance in mesoscopic conduc-
tors �7�, or the properties of chaotic scattering �8�. In addi-
tion, the importance of dwell and delay times is underlined
by their relation to the density of states, and to the virial
expansion in statistical mechanics �9�.

The theory of the quantum dwell time is quite peculiar
and subtle in several respects �10,11�. To begin with, unlike
other time quantities, there has been a broad consensus on its
operator representation �5,6�,

T̂D = �
−�

�

dt�̂R�t� , �1�

where �̂R�t� is the �Heisenberg� projector onto a region of
space, which we shall limit here to one dimension for sim-
plicity, R= �x :x1�x�x2�,

�̂R�t� = eiĤt/��
x1

x2

dx�x	
x�e−iĤt/�. �2�

We shall also assume that the Hamiltonian holds a purely
continuous spectrum with degenerate �delta-normalized�
scattering eigenfunctions ���k	 corresponding to incident
plane waves ��k	, with energy Ek=k2�2 / �2m�.

The operator T̂D is positive definite and essentially self-
adjoint. Moreover, being a “time duration” rather than a time

instant, T̂D commutes with the Hamiltonian without conflict
with Pauli’s theorem, and therefore it can be diagonalized in

the eigenspace of Ĥ. This simplifies the derivation of the
corresponding quantum dwell-time distribution which, for a
state ��	= ���t=0�	, is formally given by1

��	� = 
��
�T̂D − 	���	 . �3�

Following the same manipulation done for the S operator in
one-dimensional scattering theory �12�, it is convenient to
define an on-the-energy-shell 2�2 dwell-time matrix T, by
factoring out an energy delta,


�k�T̂D��k�	 = 
�Ek − Ek��
�k��2

m
Tkk�, �4�

where 
�k ��k�	=
�k−k�� and
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1We shall leave aside in this work other sources of fluctuations
such as mixed states or ensembles of Hamiltonians. For these two
cases one could consider distributions of average dwell times,
whereas here we shall be interested in the distribution of the dwell
time itself for pure states and a single Hamiltonian.
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Tkk� = 
�k��̂R��k�	
hm

�k��2 , Ek = Ek�. �5�

In particular, Tkk is the average dwell time for a finite space
region defined by Büttiker in the stationary regime �13�,

Tkk =
1

j�k��x1

x2

dx��k�x��2, �6�

where j�k� is the incoming flux associated with ��k	.
Diagonalization of T leads generically to an interesting

quantum peculiarity �14�: the existence of two different
dwell-time eigenvalues. For free motion t��k�
=mL�1�sin�kL� /kL� /�k, L=x2−x1, in clear contrast to the
classical time tclass=mL /�k. As a consequence, the quantum
dwell-time distribution will have a broader spread �variance�
than the one for a corresponding ensemble of classical
particles.

In spite of the nice properties of T̂D, a direct and suffi-
ciently noninvasive measurement of the dwell time of a
quantum particle in a region of space, so that the statistical
moments are produced by averaging over individual dwell-
time values, is yet to be discovered. If the particle is detected
�and thus localized� at the entrance of the region of interest,
its wave function is severely modified �“collapsed”�, so that
the times elapsed until a further detection when it leaves the
region do not reproduce the ideal dwell-time operator distri-
bution, and depend on the details of the localization method.
Proposals for operational, i.e., measurement-based ap-
proaches to traversal times based on model detectors which
study the effect of localization have been discussed by Palao
et al. �15� and by Ruschhaupt �16�. All operational ap-
proaches to the quantum dwell time known so far provide in
fact, and only indirectly, just the average, by deducing it
from its theoretical relation to some other observable with
measurable average. It is obtained, for example, by a “Lar-
mor clock,” using a weak homogeneous magnetic field in the
region R and the amount of spin rotations of an incident
spin-1

2 particle �13,17,18�. An optical analog is provided by
the “Rabi clock” �19�. It can also be deduced from average
passage times at the region boundaries �12�, as well as by
measuring the total absorption if a weak complex absorbing
potential acts in the region �20–22�. This setup could be
implemented with cold atoms and lasers as described in
�14,23�.

The expression for the average of the dwell time for time-
dependent scattering processes in terms of the probability
densities corresponds �in sharp contrast to its second mo-
ment, as shown below� to the classical expression for an
ensemble of classical particles and it reads �24,25�


��T̂D��	 = �
−�

�

dt�
x1

x2

dx���x,t��2 = �
0

�

dk�
k��in	�2Tkk,

�7�

where ��x , t�=�0
�dk
�k ��	exp�−i�k2t /2m��k�x� is the time-

dependent wave packet and we assume, here and in the rest
of the paper, incident wave packets with positive momentum
components. To write Eq. �7� use has been made of the stan-

dard scattering relation 
�k ��	= 
k ��in	, where 
x �k	
= �2��−1/2 exp�ikx�, and �in is the freely moving asymptotic
incoming state of �. Integrals of the form �7� had been used
to define time delays by comparing the free motion to that
with a scattering center and taking the limit of infinite
volume �26�.

For a sample of further theoretical studies on the quantum
dwell time see �9,14,27–35�. A recurrent topic has been its
role and decomposition in tunneling collisions. Instead, we
shall focus here on a different, so far overlooked, but rather
fundamental aspect, namely, the measurability and physical
implications of its second moment.

We shall generalize the approach by Pollak and Miller
�36�, who showed that the average stationary dwell time
agrees with the first moment of a microcanonical flux-flux
correlation function �FFCF�. We shall demonstrate that this
relation holds also for the second moment, and extend their
analysis to the time-dependent �wave packet� case. The rela-
tion fails for third and higher moments and thus the FFCF
contains only part of the information of the dwell-time dis-
tribution, although it is certainly the most relevant. We shall
also discuss a possible scheme to measure FFCFs, thus pav-
ing the road toward experimental access to quantum features
of the dwell-time distribution.

II. STATIONARY FLUX-FLUX CORRELATION
FUNCTION

A connection between the average stationary dwell time
and the first moment of a FFCF has been shown by Pollak
and Miller �36�. They define a quantum microcanonical

FFCF CPM�	 ,k�=Tr�Re ĈPM�	 ,k�� by means of the operator

ĈPM�	,k� = 2���Ĵ�x2,	�Ĵ�x1,0� + Ĵ�x1,	�Ĵ�x2,0�

− Ĵ�x1,	�Ĵ�x1,0� − Ĵ�x2,	�Ĵ�x2,0��
�Ek − Ĥ� ,

�8�

where Ĵ�x , t�=eiĤt/� 1
2m �p̂
�x̂−x�+
�x̂−x�p̂�e−iĤt/� is the

quantum-mechanical flux operator in the Heisenberg picture,
and p̂ and x̂ are the momentum and position operators.

The motivation for this definition stems from classical
mechanics and can be understood intuitively: Eq. �8� counts
flux correlations of particles entering R through x1 �x2� and
leaving it through x2 �x1� a time 	 later. Moreover, particles
may be reflected and may leave the region R through its
entrance point. This is described by the last two terms, where
the minus sign compensates for the change of sign of a back-
moving flux. Note that these negative terms lead to a self-
correlation contribution that diverges for 	→0.

We review in the following the derivation of the average
correlation time and show afterward that a similar relation
for the second moment holds. As in the rest of the paper, we
shall only consider positive incident momenta, so that we

shall actually deal with ĈPM
+ , substituting 
�Ek− Ĥ� by


+�Ek− Ĥ�ª
�Ek− Ĥ�+, where + is the projector onto the
subspace of eigenstates of H with positive momentum inci-
dence. First of all, we note that, by means of the continuity
equation,
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−
d

dx
Ĵ�x,t� =

d

dt
�̂�x,t� , �9�

where �̂�x , t�=eiĤt/�
�x̂−x�e−iĤt/� is the �Heisenberg� density

operator, ĈPM
+ �	 ,k� can be written as

ĈPM
+ �	,k� = − 2��� d

d	
�̂R�	�� d

dt
�̂R�t�

t=0

+�Ek − Ĥ� .

�10�

By a partial integration and using the Heisenberg equation of
motion the first moment of the Pollak-Miller correlation
function is given by

Tr��
0

�

d	 	ĈPM
+ �	,k��

= Tr�2���
0

�

d	�̂R�	�
1

i�
��̂R�0�,Ĥ�
+�Ek − Ĥ�� .

Boundary terms of the form lim	→� 	��̂R�	� ,�=0,1 ,2, are
omitted here and in the following. This omission can be jus-
tified by recalling that physical states must be time-
dependent and square-integrable so that the contribution of
these terms should vanish when an integration over station-
ary wave functions is performed to account for the wave-
packet dynamics. �In the next section we shall discuss ex-
plicitly a time-dependent version of the correlation function.�
For potential scattering the probability density decays generi-
cally as 	−3, which assures a finite dwell-time average, but
for free motion it decays as 	−1 �37�, making 	D infinite,
unless the momentum wave function vanishes at k=0 suffi-
ciently fast as k tends to zero �14�.

Writing the commutator explicitly and using the cyclic
property of the trace gives

Tr��
0

�

d	 	ĈPM
+ �	,k��

= Tr�2���
0

�

d	�−
d

d	
�̂R�	��̂R�0�
+�Ek − Ĥ�� ,

and integration over 	 yields the final result of Pollak and
Miller,

Tr��
0

�

d	 	ĈPM
+ �	,k�� = 2�� Tr��̂R�0�
+�Ek − Ĥ�� = Tkk.

�11�

Expressing the trace in the basis ��k	 gives back the station-
ary dwell time of Eq. �6�, i.e., the diagonal element of the
on-the-energy-shell dwell-time operator, Tkk.

The calculation of the average in �36� is different in some
respects. �a� The coordinates x1 and x2 are taken to minus
and plus infinity, but it can be carried out for finite values
modifying Eq. �8� of �36� accordingly. �b� Formally there are
no explicit boundary terms at infinity but a regularization is
required in Eq. �16� of �36�, which is justified for wave pack-

ets. �c� 
�Ek− Ĥ� is used instead of 
+�Ek− Ĥ�. That simply
provides an additional contribution for negative momenta

parallel to the one obtained here for positive momenta. �d� In
our derivation the average correlation time is found to be real

directly, in spite of the fact that ĈPM
+ �	 ,k� is not self-adjoint,

whereas in �36� the real part is taken. �The discussion of the
imaginary time average in �36� is based on a modified ver-
sion of Eq. �8�.�

Next, we will show that the second moment of the Pollak-
Miller FFCF equals the second moment of T. This was not
observed in Ref. �36�. Proceeding in a similar way as above,
see the Appendix,

Tr�Re �
0

�

d		2ĈPM
+ �	,k��

=
4�2m2

�2k2 ���
x1

x2

dx��k�x��22

+ ��
x1

x2

dx�
k
*�x��−k�x��2�

= �T2�kk. �12�

This shows that the relation between dwell times and flux-
flux correlation functions goes beyond average values and
that CPM

+ �	 ,k� includes quantum features of the dwell time:
note that the first summand in �¯�, Eq. �12�, is nothing but
�Tkk�2, whereas the second summand is positive, which al-
lows for a nonzero on-the-energy-shell dwell-time variance
�T2�kk− �Tkk�2. We insist that the stationary state considered
has positive momentum, �k�x�, k�0, but this second term
implies the degenerate partner �−k�x� as well, and is generi-
cally nonzero.

The question arises if these connections hold for the other
moments of CPM

+ �	 ,k�. The answer is no, as we will show in
the next section with a more general approach.

III. TIME-DEPENDENT FLUX-FLUX CORRELATION
FUNCTION

In the following we present a time-dependent version of
the above flux-flux correlation function and show its relation
to dwell times. So far, FFCFs have been mostly considered
in chemical physics to define reaction rates for microcanoni-
cal or canonical ensembles �38�. However, a physically in-
tuitive time-dependent version can be defined in terms of the
operator

Ĉ�	� = �
−�

�

dt�Ĵ�x2,t + 	�Ĵ�x1,t� + Ĵ�x1,t + 	�Ĵ�x2,t�

− Ĵ�x1,t + 	�Ĵ�x1,t� − Ĵ�x2,t + 	�Ĵ�x2,t�� , �13�

which leads to the flux-flux correlation function

C�	� = 
Re Ĉ�	�	�, �14�

where the real part is taken to symmetrize the non-self-

adjoint operator Ĉ�	� as before.
As in the stationary case, Eq. �14� counts flux correlations

of particles entering R through x1 or x2 at a time t and
leaving it either through x1 or x2 a time 	 later. Moreover,
one has to integrate over the entrance time t. It is easy to
show that the first moment of the classical version of Eq.
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�13�, where Ĵ is replaced by the classical dynamical variable
of the flux, gives the average of the classical dwell time.

As in Eq. �10�, we may rewrite Ĉ�	� in the form

Ĉ�	� = − �
−�

�

dt
d

d	
�̂R�x̂,t + 	�

d

dt
�̂R�x̂,t� . �15�

First of all we note that the FFCF C�	� is not normalized; in
fact its negative contributions exactly cancel the positive
ones,

�
0

�

d	Ĉ�	� = �
−�

�

dt�̂R�t�
d

dt
�̂R�t� = 0. �16�

Next we derive the average of the time-dependent corre-
lation function. With a partial integration one finds

�
0

�

d	 	Ĉ�	� = �
−�

�

dt�
0

�

d	�̂R�x̂,t + 	�
d

dt
�̂R�x̂,t� .

A second partial integration with respect to t, replacing d /dt
by d /d	 and integrating over 	 gives

�
0

�

d	 	Ĉ�	� = �
−�

�

dt�̂R
2 �x̂,t� = �

−�

�

dt�̂R�x̂,t� = T̂D,

�17�

where the projector property of �̂R has been used. Equation
�17� generalizes the result of Pollak and Miller to time-
dependent dwell times.

A similar calculation can be performed for the second
moment of C�	�. After three partial integrations with vanish-
ing boundary contributions to get rid of the factor 	2 one
obtains

�
0

�

d	 	2Ĉ�	� = 2�
−�

�

dt�
0

�

d	�̂R�x̂,t + 	��̂R�x̂,t� .

We evaluate the real part of this expression. Making the sub-
stitutions t+	→ t and 	→−	 in the complex conjugated
term, we find

Re �
0

�

d	 	2Ĉ�	� = T̂D
2 . �18�

IV. EXAMPLE: FREE MOTION

In this section we study the simple case of free motion to
show the relations between dwell times and FFCF. For a
stationary flux of particles with energy Ek, k�0, described
by �k�x�= 
x �k	= �2��−1/2eikx, the first three moments of the
ideal dwell-time distribution on the energy shell are given by

Tkk =
mL

�k
, �19�

�T2�kk =
m2L2

�2k2 �1 +
sin2�kL�

k2L2  , �20�

�T3�kk =
m3L3

�3k3 �1 + 3
sin2�kL�

k2L2  . �21�

As proved above, the first two moments agree with the cor-
responding moments of the Pollak-Miller FFCF, but for the
third moment we obtain

Tr�Re �
0

�

d	 	3ĈPM
+ �	,k��

=
m3L3

�3k3 �1 −
3�1 + cos2�kL��

k2L2 +
3 sin�2kL�

L3k3 � . �22�

In Fig. 1 the first three moments are compared. The agree-
ment between �T3�kk and Eq. �22� is very good for large
values of k, but they clearly differ for small k.

However, the agreement of the first two moments sug-
gests a similar behavior of ��	� and C�	�. To calculate ��	�
for a wave function �̃�k�ª 
k ��	 with only positive momen-
tum components we use the wave-number representation tak-
ing into account the bimodality of the dwell time, t��k�
=mL�1�sin�kL� /kL� /�k,2

��	� =
1

2�
j

�
�=�

��̃„kj
��	�…�2

�F��„kj
��	�…�

, �23�

where the j sum is over the solutions kj
��	� of the equation

F��k�� t��k�−	=0 and the derivative is with respect to k. In
particular, we use the following wave function for the calcu-
lation �12�:

2The corresponding eigenstates are �t��k�	= ��k	�exp�ik�x1

+x2���−k	� /�2.

FIG. 1. �Color online� Comparison of the first three moments:
Tkk, �T2�kk, and �T3�kk �dotted-dashed line� with the corresponding
moments of the flux-flux correlation function, for a free-motion
stationary state with fixed k. �Tkk�2 is also shown �dotted line�. �
=m=1 and L=3.
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�̃�k� = N�1 − e−�k2
�e−�k − k0�2/�4��k�2�e−ikx0��k� , �24�

where N is the normalization constant and ��k� the step
function. For the free flux-flux correlation function we write

C�	� = Re �
0

�

dk�
0

�

dk��̃*�k��̃�k��
k�Ĉ�	��k�	 , �25�

and Ckk��	�= 
k�Ĉ�	��k�	 in the free case is given by

Ckk��	� =
m

2��k

�k − k��

d2

d	2 �2f��k	/m�

− f��k	/m − L� − f��k	/m + L�� , �26�

where

f�x� = − 2eimx2/�2�	�� i��	

2m
1/2

+ i�x erfi�� im

2�	
x .

�27�

The result is shown in Fig. 2. The FFCF shows a hump
around the mean dwell time, as expected �the area under this
hump is 0.9993�, but it strongly oscillates for small 	 and
diverges for 	→0. As discussed above, this is due to the
self-correlation contribution of wave packets which are at x1
or x2 at the times t and t+	 without changing the direction of
motion in between. A similar feature has been observed in a
traversal-time distribution derived by means of a path inte-
gral approach �39�.

In contrast, ��	� behaves regularly for 	→0, but shows
peaks in the region of the hump. This is because the denomi-
nator of Eq. �23� becomes zero if the slope of the eigenvalues
t��k� is zero, which occurs at every crossing point of t+�k�
and t−�k�.

Another dwell-time distribution for free motion can be
defined based on the operator t̂D=mL / �p̂�, obtained heuristi-
cally from quantization of the classical dwell time. The
eigenfunctions of this operator are momentum eigenfunc-
tions, ��k	, k�0, and the corresponding eigenvalues are
twofold degenerate and equal to the classical time, mL /��k�.

The distribution of dwell times for this operator, as always
for positive-momentum states, is given by

��	� =
mL

�	2��̃�mL

�	
�2

. �28�

The distribution ��	� agrees with C�	� in the region near the
average dwell time and tends to zero for 	→0. However, it
does not show the resonance peaks of ��	�. The on-the-
energy-shell version of t̂D, t, is also worth examining. By
factoring out an energy delta function as in Eq. �4� we get for
a plane wave �k	 the average tkk=mL / ��k�, which is equal to
Tkk, but the second moment differs, �t2�kk= �tkk�2= �Tkk�2

� �T2�kk, see Fig. 1; in other words, the variance on the en-
ergy shell is zero since only one eigenvalue is possible for t.
Contrast this with the extra term in Eq. �20�, which again

emphasizes the nonclassicality of the dwell-time operator T̂D
and its quantum fluctuation.

Could both T̂D and t̂D be physically significant? In the
absence of a direct dwell-time measurement, this depends on
their relation to other observables. The present results indi-
cate that the second moment of the flux-flux correlation func-
tion is related to the former and not to the latter, providing
indirect support for the physical relevance of the dwell-time
resonance peaks, but other observables could behave
differently.

V. DISCUSSION

We have demonstrated that the relationship found by Pol-
lak and Miller �36� between the first moment of a distribu-
tion FFCF and the average stationary dwell time is also valid
for the second moment and for flux-flux correlations of wave
packets. On the other hand, this relationship is not valid for
the third moment. While this brings dwell-time information
closer to experimental realization, the difficulty is translated
onto the measurement of the FFCF, which is not necessarily
an easy task. The simplest approximation is to substitute in C
the expectation of the product of two flux operators by the
product of their expectation values �the product of the cur-
rent densities�. Using the wave packet of Eq. �24�, we have
compared the second moment calculated with the full ex-

pression �14�, 
T̂D
2 	C, and with this approximation, 
T̂D

2 	C0
, in

Fig. 3. The two results approach as �k→0. Other factors that
make the approximation better are the increase of L and/or of
k0.

The exact result can in fact be approached systematically,
still making use of ordinary current densities, as follows:

First we decompose Ĵ�xi , t+	�Ĵ�xj , t� by means of the reso-
lution of the identity

1̂ = P̂ + Q̂ , �29�

P̂ = ��	
�� , �30�

so that

0 10 20 30 40
τ
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Π(τ)
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0.4 |ψ∼(k)|
2
/3

t
+
(k)/100

t
-
(k)/100

FIG. 2. Comparison of dwell-time distribution ��	� �dashed
line� and flux-flux correlation function C�	� �solid line� for the
freely moving wave packet �24�. Furthermore, the alternative free-
motion dwell-time distribution ��	�, Eq. �28�, is plotted �circles�.
The inset shows the momentum distribution and the eigenvalues
t��k�. We set �=m=1 and �x0� large enough to avoid overlap of the
initial state with the space region R= �0,50�. k0=2, �k=0.4, and
�=0.5.
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Ĵ�xi,t + 	�Ĵ�xj,t� = Ĵ�xi,t + 	����	
�� + Q̂�Ĵ�xj,t� . �31�

It is useful to decompose Q̂ further in terms of a basis of
states orthogonal to ��	 and to each other, ��� j

Q	�,

Q̂ = �
j

�� j
Q	
� j

Q� , �32�

that could be generated systematically, e.g., by means of a
Gram-Schmidt orthogonalization. Now we can split Eq. �13�,

Ĉ�	� = Ĉ0�	� + Ĉ1�	� , �33�

where

Ĉ0�	� = �
−�

�

dt�Ĵ�x2,t + 	���	
��Ĵ�x1,t� + Ĵ�x1,t + 	���	

�
��Ĵ�x2,t� − Ĵ�x1,t + 	���	
��Ĵ�x1,t�

− Ĵ�x2,t + 	���	
��Ĵ�x2,t�� , �34�

Ĉ1�	� = �
j
�

−�

�

dt�Ĵ�x2,t + 	��� j
Q	
� j

Q�Ĵ�x1,t� + Ĵ�x1,t + 	��� j
Q	

�
� j
Q�Ĵ�x2,t� − Ĵ�x1,t + 	��� j

Q	
� j
Q�Ĵ�x1,t�

− Ĵ�x2,t + 	��� j
Q	
� j

Q�Ĵ�x2,t�� . �35�

Similarly, we define C�	�=C0�	�+C1�	� by taking the real

part of 
��Ĉ0�	�+ Ĉ1�	���	. C0 is the zeroth order approxima-
tion discussed before and only involves ordinary, measurable
current densities �3�. The nondiagonal terms from C1,


��Ĵ�xi , t��� j
Q	
� j

Q�Ĵ�xj , t+	���	 can also be related to ordi-

nary fluxes �diagonal elements of Ĵ� by means of the auxil-
iary states

��1	 = ��	 + �� j
Q	 ,

��2	 = ��	 + i�� j
Q	 ,

��3	 = ��	 − i�� j
Q	 , �36�

since one easily finds that


��Ĵ�x,t��� j
Q	 =

1

2

�1�Ĵ�x,t���1	 −

1

4

�2�Ĵ�x,t���2	

−
1

4

�3�Ĵ�x,t���3	 +

i

4

�3�Ĵ�x,t���3	

−
i

4

�2�Ĵ�x,t���2	 . �37�

To summarize, the present paper provides a route of ac-
cess to the second moment of the quantum dwell time
through flux-flux correlation functions. This is interesting be-
cause the second moment is characteristically quantum and,
unlike the first moment, it differs structurally from �and is
larger than� the corresponding classical quantity: On the en-
ergy shell the dwell time shows a quantum fluctuation �non-
zero variance� which vanishes classically. While the analysis
of the quantum dwell time has been mostly limited to its
average in the existing studies, the present results motivate
further research on the role played by the �pure-state, single
Hamiltonian� second moment of the dwell time in fields such
as lifetime fluctuations, chaotic systems, conductivity,3 or
time-frequency metrology. Many fundamental and applied
questions can be posed from here. For example, is the second
moment affecting the quality factor of ultracold atomic
clocks? The time spent by the atom in a spatial region deter-
mines their stability, which increases in principle for slower
atoms, but quantum motion effects have been shown to be-
come more and more relevant as the atomic velocity de-
creases �40,41�. This and other intriguing questions on the
quantum dwell time are left for separate studies.
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APPENDIX: DERIVATION OF EQ. (12)

The starting point is

I = Tr��
0

�

d	 	2ĈPM
+ �	,k�� . �A1�

Integrating by parts, neglecting the term at infinity, and using
Heisenberg’s equation of motion, it takes the form

3The second moment of the dwell time determines in particular
the charge relaxation resistance and thus the ac conductivity in
nanostructured mesoscopic capacitors �7�.
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FIG. 3. �Color online� Comparison of the relative error of the
second moment using the approximation C0�	� instead of C�	� for
the freely moving wave packet of Eq. �24�, �=0.5, �=m=1, and
L=100.
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I =
4�m

i�2k
�

0

�

d	 	
�k��̂R�	���̂R�0�,Ĥ���k	 . �A2�

Making use of the fact that �k is an eigenstate of Ĥ, and
reordering,

I =
4�m

i�2k
�

0

�

d	 	
�k��Ĥ,�̂R�	���̂R�0���k	 . �A3�

Integrating by parts again and using Heisenberg’s equation
once more,

I =
4�m

�k
�

0

�

d	
�k��̂R�	��̂R�0���k	 . �A4�

Now the real part is taken,

Re�I� =
I + I*

2
=

2�m

�k
�

0

�

d	
�k���̂R�	��̂R�0� + �̂R�0��̂R�	��

���k	 , �A5�

and resolutions of the identity are introduced,

Re�I� = � 2�m

�k
�

0

�

d	�
−�

�

dk��
x1

x2

dx�
x1

x2

dx�ei�Ek−Ek��	/�

� �
k
*�x��k��x��

k�
* �x���k�x��� + c.c., �A6�

where c.c. means complex conjugate. Making the changes
	→−	 and x, x�→x�, x in the c.c. term, it takes the same
form as the first one, but with the time integral from −� to 0.
Adding the two terms, the 	 integral provides an energy delta
function that can be separated into two deltas which select
k�= �k to arrive at Eq. �12�.
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