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We explore a few advantages of studying the change in information entropy of a bound quantum state with
energy. It is known that the property generally increases with the quantum number for stationary states, in spite
of the concomitant gradual increase in the number of constraints for higher levels. A simple semiclassical proof
of this observation is presented via the Wilson-Sommerfeld quantization scheme. In the small quantum number
regime, we numerically demonstrate how far the semiclassical predictions are valid for a few systems, some of
which are exactly solvable and some not so. Our findings appear to be significant in a number of ways. We
observe that, for most problems, information entropy tends to a maximum as the quantum number tends to
infinity. This sheds some light on the Bohr limit as a classical limit. Noting that the dependence of energy on
the quantum number governs the rate of increase of information entropy with the degree of excitation, we
extend our analysis to include the role of the kinetic energy. The endeavor yields a relation that possesses a
universal character for any one-dimensional problem. Relevance of information entropy in studying the good-
ness of approximate stationary states obtained from finite-basis linear variational calculations is also delin-
eated. Finally, we expound how this property behaves in situations where shape resonances show up. A typical
variation is indeed observed in such cases when we proceed to detect Siegert states via the stabilization
method.
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I. INTRODUCTION

The maximum entropy principle �MEP� �1,2� continues to
be a subject of topical interest since inception. In simple
terms, it states that the most likely distribution under a given
set of constraints is the one that maximizes the information
entropy. The MEP has provided initially a major impetus in
the domain of statistical mechanics. However, it was soon
felt that its numerical implementation demands careful con-
sideration �3�. Later, practical applications have been made
in such diverse fields as handling of divergent perturbation
series �4,5�, image reconstruction and spectral interpretation
�6�, polymer science �7�, thermodynamics �8–10�, etc.

Usually, in the MEP approach, one constructs a position
probability density �PD� P�x� with the assumption that the
various power moments are available as input. The MEP
prescription is to maximize the Boltzmann-Shannon infor-
mation entropy �IE� I, defined by

I = −� P�x�ln P�x�dx , �1�

subject to these moment constraints. The resultant P�x� is
believed to provide the least biased PD. Among other areas,
extensive applications of the IE defined by Eq. �1� have been
made in studies on orthogonal polynomials �11�. Its use in
defining a thermodynamic length �12� seems also worth
mentioning. In a purely quantum-mechanical context, atten-
tion has been focused on IE from several angles �13–19�.

Primarily, the curiosity behind Eq. �1� grew out of the no-
tions of IE in position and momentum spaces that led to
entropic uncertainty relations �13�. The interest in this con-
text still continues �14�. On the other hand, maximization of
the IE in Eq. �1� with known values of the first few moments
was pursued rather exhaustively by Plastino et al. �15� for a
number of problems to find the ground quantum stationary
states. We have later �16,17� found that, instead of supplying
values for individual moments, one can profitably employ
the principle with moment recursion relations as constraints.
These recursion relations are obtainable by analyzing a given
problem. Implementation of such a route yields nice results
for both stationary ground quantum states �16,17� and clas-
sical chaotic states �16�. Dehesa et al. �18� pursued a neat
WKB analysis to find the variation of IE with a quantum
number for stationary states in x2M potentials. Their study
reveals an increase of In with n, except for confined systems.
Later, the spectroscopic relevance of IE in the detection of
avoided crossings has been highlighted �19�, taking the ex-
plicit example of a H atom in the presence of an external
perturbation.

The PD for a general excited quantum state �n is, how-
ever, difficult to construct via the MEP. One major trouble is
to incorporate proper restrictions corresponding to the or-
thogonal and uncoupled nature of such a state with respect to
all lower states. For a quantum system with the Hamiltonian
H having exact eigenstates �m, this means one should satisfy
��m ��n�=�mn and ��m�H��n�=�mn for all m�n. Addition-
ally, one may recall that these constraints are to be used in
conjunction with constraints imparted by moments, or mo-
ment recursion relations, in the course of maximizing In in
Eq. �1� that refers now to the PD ��n�2. Undoubtedly, things
become quite messy then. On the contrary, a plain linear
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variational scheme �20� works very straightforwardly for ex-
cited states. So, this latter strategy provides a much better
and sensible alternative. Therefore the relevance of the MEP
to excited stationary quantum states should be sought else-
where.

An alternative idea �18� in the present context is to study
the dependence of IE on the quantum number n, instead of
maximizing the MEP functional with an appropriate number
of constraints. Apparently, one expects In to decrease with n
because of the increasing number of nodes in states �n that
raises the number of constraints. The uncoupling mentioned
above adds to these restraints. But, this decrease is never
observed �18�. Indeed, there exists a competing factor for
systems that are not confined. As n increases, �n becomes
more delocalized, leading to an enhancement of the IE, and
this dominates the overall behavior. Such an observation
seems to possess an immediate implication. The limit
n→� is the Bohr �classical� limit. Therefore the variation of
In as n→� may offer us a clue to appreciate this classical
limit too, thus expanding the horizon of applicability of the
MEP. Another domain where the variation of In vs n could be
important is concerned with approximate stationary states.
However, no such study is available. The primary motivation
behind these studies is that most quantum-mechanical prob-
lems are not exactly solvable and therefore one has to deal
with approximate states only. Besides, it is of interest to test
the adequacy of semiclassical predictions for In in cases of
near-exact stationary quantum states, and particularly in the
small-n regime. Further, since the IE is a measure of the
delocalization of the PD, and we know that localization in-
creases the kinetic energy of a state, it is tempting to seek a
relation between the IE and the average kinetic energy. We
may emphasize at this point that, while the relation between
kinetic energy and Boltzmann-Shannon IE that will emerge
from our analysis is indirect, such a relation exists very di-
rectly in the Fisher information �FI� measure �21–24�. There-
fore a link between the two information measures may be
found. Noting further that a variety of routes are available to
construct an approximate stationary state, we may also ex-
plore whether IE plays any role in estimating the goodness of
such a state. Finally, certain Hamiltonians do not support
bound states. But, in the presence of small tunneling terms,
one can get long-lived quasibound states. The real energy
parts of these states are obtainable from real square-
integrable functions. There are various ways of achieving
this end �25–27�. It seems worthwhile to inspect whether the
IE plays any role during studies on such bound states.

In view of the above discussion, the present communica-
tion is aimed at the following studies. First, we arrive at a
few semiclassical results on the basis of the Wilson-
Sommerfeld �WS� rule �28�. This route is easier and leads to
certain simple relations between the IE and the quantum
number. Second, we test the adequacy of all the results in the
small-n regime with exact or near-exact PD. Our approach
yields certain useful bounds to the IE as well. Third, the WS
route yields nicely a link between IE and the average kinetic
energy. We notice that the relationship finds very satisfactory
calculational support. It also reveals a link between IE and
the FI. Fourth, we concentrate on linear variations and em-
ploy the IE to assess the goodness of states. This endeavor,

as we shall see, is rewarding too. It is quite comparable with
standard measures, but is otherwise simple. Our final objec-
tive is to analyze how the IE behaves during the detection of
resonant states via the stabilization method. It will be seen
that the IE offers a few definitive indications about the exis-
tence of such states.

To proceed, we concentrate on square-integrable, time-
independent quantum states, and take �=1 and m= 1

2
throughout the study. Demonstrative pilot calculations in-
volve problems in one dimension. These include the particle
in a box, the harmonic and various anharmonic oscillators
for which exact or near-exact PD are obtainable. Both sta-
tionary and Siegert states are considered in the present study.
For the latter, bound wave functions are taken to extract the
real energy parts only. Needless to mention, the calculations
presented here should apply to problems in higher dimen-
sions without much trouble. Thus our conclusions are quite
general in character. All the chosen potentials are real, and so
we employ real �n wherever necessary.

II. A SEMICLASSICAL ANALYSIS

Most quantum systems are not exactly solvable. So, one
can hope to extract some general results in the current con-
text only by having recourse to some semiclassical �SC�
scheme �18�. We choose here the WS formalism for conve-
nience.

The WS scheme starts with the quantization formula

	 pdx = 2n� , �2�

where p
 p�x� is the momentum given by

p = �E − V�x��1/2. �3�

If the classical turning points at the left and right sides are
denoted respectively, by XL and XR, we can express Eq. �2�
as

�
XL

XR

pdx = n� . �4�

Now, we stick to the traditional wisdom of viewing probabil-
ity as inversely proportional to speed and write

P�x� = N/p , �5�

where N is the normalization constant and the PD so defined
in Eq. �5� extends over the range XL�x�XR. We thus have

�
XL

XR

P�x�dx = 1 �6�

and

�
XL

XR

�E − V�x��1/2dx = n� �7�

that follows from Eq. �4�. Differentiating Eq. �7� with respect
to n via the Liebniz rule �29�, we find that
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dE

dn
�

XL

XR

�E − V�x��−1/2dx = 2� . �8�

Making use of Eqs. �5� and �6�, this result may be recast to
obtain the following expression for N:

N =
1

2�
�dE/dn� . �9�

On the other hand, one may rewrite Eq. �7� in the form

N�P−2� = n� , �10�

where the averaging in Eq. �10� involves the PD P�x� itself.
We need to now make one further approximation, viz. �ym�
= �y�m, �y��0, that is prevalent in the semiclassical domain.
The basis behind the choice is that quantum fluctuations are
expected to vanish in the semiclassical limit. Specifically for
stationary quantum states, semiclassical results are known to
agree with near-exact ones in the large quantum number
limit, i.e., when n→�. So, such an approximation is often
used �30� to advantage in the domain concerned. Then, of
course, from Eq. �10�, we recover that

�P� = �N/n��1/2. �11�

With this approximation, we now proceed to Eq. �1� that may
be rewritten as

In = − �ln Pn� . �12�

The standard arithmetic-geometric mean inequality �29� may
here be invoked profitably to obtain further

In � − ln�Pn� = Jn. �13�

Using Eq. �11� at the right side of Eq. �13� in conjunction
with Eq. �9�, we next find that

Jn�SC� = − ln�N/n��1/2 = − ln�dE

dn � 2n�2
1/2
, �14�

where we have explicitly taken care of the fact that Eq. �14�
is a SC result for Jn. We now realize that the n dependence of
Jn �SC� is crucially governed by the �dE /dn� term. Let us
choose

dE/dn = 	n
. �15�

The following form for Jn is then obtained:

Jn�SC� = ln���2� −
1

2
ln�	
� −

1

2
�
 − 2�ln n . �16�

Finally, Eqs. �12� and �13� are exact relations. But, Eq. �16�
involves a number of approximations and therefore it is not
clear whether an inequality of the form In�Jn �SC� will also
be satisfied. However, one can safely write for the IE, in the
absence of more rigorous results, that

In � ln���2� −
1

2
ln�	
� −

1

2
�
 − 2�ln n . �17�

Certainly Eq. �17� is an approximate result. Yet, we shall see
that the chief conclusions based on it remain true even in the
proper quantum domain. The only exception is the n=0 state

for which Eq. �17� does not work. This is a reflection of the
notion that the ground state is the most nonclassical state.
Otherwise, Eq. �17� is a useful result. In particular, the fol-
lowing observations are worth noting in the context con-
cerned:

�i� For the particle-in-a-box and related confined systems,
e.g., its SUSY partner potential �31�, we have the maximum
possible value of 
=2. Therefore In does not change with n
at all. Specifically for the box, we have En= �� /L�2n2. Em-
ploying this expression in Eq. �17�, one gets

In � ln L . �18�

This logarithmic length dependence changes over to the vol-
ume dependence in three dimensions and reminds us of a
similar kind of dependence of thermodynamic entropy on the
volume of an ideal gas.

�ii� The n independence of In for confined systems signi-
fies that the decrease in In due to increasing nodal constraints
�in �n� with n is exactly balanced by the concomitant ten-
dency of Pn= ��n�2 to gradually occupy the whole of the
available space L. The implication is clear. One should then
expect In to increase with n for any problem where the dis-
tance between the classical turning points widens with exci-
tation.

�iii� For any other one-dimensional system, 
�2. There-
fore Eq. �17� tells us that In would increase with n. This at
once strengthens our inference made just above. The slow
but sure enhancement of IE towards infinity has also a direct
bearing on the “classicality” of a state, because the n→�
limit is the Bohr classical limit.

�iv� Particularly for the harmonic oscillator problem with
force constant K=2, we have En=2n. Thus from Eq. �17� we
obtain in this case

In � ln � +
1

2
ln n . �19�

The slope in Eq. �19� matches exactly with the WKB predic-
tion �18�. Its usefulness will concern us later.

�v� As a final point, we note from Eq. �17� that the slope
of In vs ln n curve depends on a simple function of 
 �see Eq.
�29� later�. In practical situations, we shall demonstrate the
worth of this relation too.

III. SOME RESULTS

In this section, we shall systematically proceed to check
how far the IE obeys the SC predictions in cases where exact
or near-exact results can be obtained. Therefore we first fo-
cus attention on the particle-in-a-box problem and next con-
sider the harmonic oscillator case. In the latter situation, we
also explore the possibility of a bound to IE and the exact SC
limit. Finally, we deal with quite a few nontrivial anharmonic
oscillators.

A. Exact result for the box problem

As an example of a confined system, we choose the
particle-in-a-box problem. For such a system in �0,L�, we
have the PD
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Pn =
2

L
�sin n�x/L�2. �20�

Using this, we find

In = − �ln Pn�

= − ln 2 + ln L −
2

�
�

0

�

sin2 x ln�sin2 x�dx

= − 0.3069 + ln L �21�

that shows a close correspondence with the approximate re-
sult Eq. �18� except for the extra constant term in Eq. �21�.
However, the comment below Eq. �18� applies here too. If
we compute the entropy change, the constant term will van-
ish, leaving behind only the logarithmic dependence on vol-
ume in three dimensions. It is also transparent from Eq. �21�
that no n dependence of IE exists for this problem. Therefore
our SC conclusion �ii� of Sec. II is retained.

B. Exact and approximate estimates for the harmonic
oscillator case

It is tempting to check whether a few other WS predic-
tions essentially hold in other bound-state problems as well.
To this end, we first consider the harmonic oscillator case.
The oscillator is defined by the Hamiltonian

H = − d2/dx2 + x2. �22�

The PD is known exactly for this problem and is given by

�n
2�x� = Pn�x� =

1

2nn!��
H2�n,x�exp�− x2� . �23�

The IE for some nth state is then computed via the relation
In=−�ln Pn� and the values for a number of states are given
in Table I. Unlike the SC case, we also have here an exact
bound to In as

In � − ln�Pn� . �24�

These estimates are presented in Table I as well. As a third
measure, one can approximate the Hermite polynomials
H�n ,x� for large n, average out small oscillations, and obtain
for Pn�x� the SC form

Pn�x� =
1

��2n + 1 − x2
�25�

to calculate In=−�ln Pn� over the interval −�2n+1�1/2�x
� �2n+1�1/2. These values are expected to furnish lesser per-
centage errors as n increases and can easily be computed
even for quite large n. The table also contains such SC esti-
mates at the last entry. Notably, in each case, we simulta-
neously estimated �x2� that has an exact value of n+ 1

2 . This
provides a good check for the accuracy of the numerical
integrations involved.

In Fig. 1, we plot the various estimates of IE against n to
substantiate the worth of the endeavor. The bounding nature
of curve 2 is satisfying. One also sees that the SC results
�curve 3� correspond to exact ones �curve 1� more closely as

n increases. Moreover, some sort of a logarithmic depen-
dence of In on n is apparent. An approximate SC analysis led
us to Eq. �19�. So, we next proceed to explore how far Eq.
�19� is obeyed with exact quantum-mechanical and SC re-
sults. A least square fit of the last six SC data of Table I
yields

In = 0.808 73 + 0.498 25 ln n . �26�

This compares nicely with Eq. �19�, keeping in mind the
rather rough character of Eq. �19�. The slope is nearly ex-

TABLE I. Exact and approximate values of In for various states
of the harmonic oscillator. The second column shows exact results,
the fourth one gives lower bounds �see Eq. �24��. The last column
displays SC estimates on the basis of Eq. �25�.

n In n In n In

0 1.072 0 0.919 0 0.452

1 1.343 1 1.207 5 1.651

2 1.499 2 1.364 6 1.734

3 1.610 3 1.474 8 1.868

4 1.697 4 1.558 10 1.974

5 1.768 5 1.626 12 2.061

6 1.829 6 1.684 15 2.169

7 1.882 7 1.734 16 2.200

8 1.929 8 1.778 20 2.308

9 1.972 9 1.818 25 2.417

10 2.010 10 1.854 30 2.507

12 2.078 12 1.916 40 2.649

14 2.137 14 1.970 50 2.759

16 2.189 16 2.018 60 2.849

18 2.235 18 2.060 70 2.926

20 2.277 20 2.098 80 2.992

22 2.315 22 2.132 90 3.051

24 2.350 24 2.164 100 3.103

26 2.383 26 2.194 110 3.151

28 2.413 28 2.221 120 3.194

30 2.442 30 2.246 130 3.234

0 10 20 30
0

1

2

3

3

2
1

I n

n

FIG. 1. Variation of In vs n is shown for the harmonic oscillator
case. Curves 1, 2, and 3 refer, respectively, to the exact, lower
bound, and SC results.
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actly reproduced. Only, the constant factor is somewhat off
from the earlier estimate. Interestingly, the exact estimates
show a nice trend of approaching Eq. �26�. A similar fitting
with six exact data taken from Table I for n ranging from 10
to 20 and from 20 to 30 leads, respectively, to the following
equations:

In = 1.121 16 + 0.385 39 ln n ,

In = 1.057 88 + 0.406 76 ln n . �27�

For still larger n, one expects that a variation like Eq. �26�
will be gradually approached. It is reasonable to guess at this
stage that, whatever may be the constant factor, the slope of
the In vs ln n curve should finally settle at 0.5 �18�. And, this
should be true for both exact and the SC estimates. We shall
later see the adequacy of this presumption.

C. Behavior of anharmonic oscillators

Turning attention to a few nontrivial cases where exact
PD is unknown for any state, let us choose the oscillators

H = − d2/dx2 + x2M, M = 2,3,4. �28�

In such cases, we calculate the IE for specific states by first
finding near-exact solutions for the PD with the help of a
coupled linear-nonlinear variational strategy �32� that has
earlier been found useful to tackle a variety of problems.
Table II summarizes our results for the even parity states up
to n=30. This would suffice for our present purpose. A plot
of these results in Fig. 2 is again suggestive of a logarithmic
rise with n of In. This is in conformity with our SC prediction
in Eq. �17�. One thus finds how useful it is to follow a WS
type SC scheme.

Figure 3 shows the variation of In with ln n for all the
oscillators under study in Eq. �28� including the M =1 case.
Two important observations here are the following: As M
increases, the rise of In becomes gradually less pronounced.
One additionally observes that, although a strict linearity is
not maintained, the slope of each such curve gently rises
with rise of n. The message is transparent. If we concentrate
on Eq. �17�, the implication is the gradual rise of 
 with M.
Coupled with our second observation, the expectation is that
the slope of the curve of In vs ln n would approach the value
�2−
� /2 as n→�. It is easy to work out the value of 
 for
various x2M oscillators. This reads as


 = 2��1 +
1

M

 . �29�

From Eq. �29�, one can get the correct slopes predicted by
Eq. �17� in each case of M �1–4�. This agrees with the WKB
estimate �see Eq. �21� of Ref. �18��. Writing now

In = c + d ln n , �30�

one can estimate d via the relation

TABLE II. Near-exact values of In for various states of the
quartic, sextic, and octic anharmonic oscillators, corresponding to
M =2, 3, and 4 in Eq. �28�.

n In �M =2� In �M =3� In �M =4�

0 0.908 0.824 0.769

2 1.140 0.970 0.869

4 1.264 1.058 0.935

6 1.348 1.118 0.982

8 1.411 1.165 1.018

10 1.463 1.202 1.047

12 1.507 1.234 1.072

14 1.544 1.261 1.093

16 1.578 1.285 1.112

18 1.607 1.307 1.129

20 1.634 1.327 1.145

22 1.659 1.345 1.159

24 1.682 1.361 1.172

26 1.703 1.377 1.184

28 1.722 1.391 1.195

30 1.741 1.405 1.206

0 5 10 15 20 25 30

0.8

1.0

1.2

1.4

1.6

1.8

3

2

1

I n

n

FIG. 2. Plots of In vs n for the systems defined by Eq. �28� with
near-exact estimates. A slower rate of increase is evident for larger
M.

1 2 3
0.8

1.2

1.6

2.0

2.4

4

3

2

1

I n

ln n

FIG. 3. Curves showing the dependence of In vs ln n with exact
or near-exact estimates. Lines 1–4 correspond to the same values of
M in Eq. �28�.
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d 
 dn+2 =
In+2 − In

ln�1 + 2/n�
. �31�

Using near-exact results presented in Tables I and II, we
compute Eq. �31� and display the data for various cases in
Table III. A steady, monotonic approach to some limiting
value in each case is seen clearly. We subsequently construct
a �1 /1� Padé approximant to accelerate the convergence.
These values are shown in the penultimate row. The last row
shows exact results in parentheses. By these exact results, we
mean that d= �2−
� /2 in accordance with Eq. �17� where 

is fixed by Eq. �29�. We happily note the approach of d in Eq.
�31�, using exact estimates of IE, towards the values pre-
dicted by the SC route, though we have gone up to a maxi-
mum of n=30. Once more, the moral is that one can confide
on the major parts of the SC analysis.

IV. FURTHER OBSERVATIONS

We now present four more important aspects of the pre-
ceding analysis. One is an extension of the SC result �14�
that avoids the use of Eq. �15�. This is particularly vital for
practical problems where the potential does not have a
simple power-law form, and hence either 
 is not easy to
obtain, or the energy is not a simple function of n. Addition-
ally, our approach will directly link the average kinetic en-
ergy of a state with its IE. Since it is known that the FI is
straightforwardly related with the average kinetic energy
�21,24�, we next seek the kinship of the two information
measures. Another point of interest lies in linear variational
calculations that are routinely done in most quantum chem-
istry applications. Here, it is a standard wisdom that diago-
nalization of a K�K Hamiltonian matrix generates best the
ground state. For excited states, eigenvectors and eigenval-
ues are always obtained with gradually rising errors. Still,
one expects that a reasonable quality is maintained for
roughly the first K /2 states. Normally, this is experienced by

increasing the number K of the given basis set and compar-
ing the energies against the earlier ones. An alternative is to
check the computed data against known accurate estimates.
Another option is to verify certain consistency requirements
involving properties like, e.g., the virial theorem. Otherwise,
one is forced to increase K to proceed towards a tedious job
of estimating energies. We shall see the advantage of using
IE in such cases. Indeed, In offers a simple kind of self-check
that needs neither better available data set nor any routine
increase of K. Finally, we explore the character of IE in
calculations of Siegert states via the stabilization method,
where a coupled linear-nonlinear variational scheme is em-
ployed and from the variations of energies as functions of the
nonlinear parameter a quasibound state is detected �see, e.g.,
Ref. �27� for details�.

A. Role of the kinetic energy

An increase of the IE is associated with spatial delocal-
ization. On the other hand, the average kinetic energy of a
state increases with confinement. Therefore it is natural to
expect a link between In and �T�n for a state n. The SC
development on the basis of the WS scheme sketched in Sec.
II yields nicely such a relation. To this end, we rewrite Eq.
�7� as

1

N
�p2� = n� , �32�

with the help of Eqs. �5� and �6�. Let us note that Eq. �10� is
another useful way of writing Eq. �7� that has already been
used. Symbolizing the kinetic energy by T, we now rearrange
Eq. �32� as

�T�n = n�N . �33�

In conjunction with Eq. �9�, this leads to

dE/dn = 2�T�n/n . �34�

Thus we can reframe Eq. �14� in the form

Jn�SC� = − ln��T�n/n2�2�1/2 �35�

that bypasses the �dE /dn� term. Consequently, Eq. �17� may
now be replaced by

In � ln � +
1

2
ln� n2

�T�n

 . �36�

In view of such a relation, it is expected that a plot of the IE
vs ln�n2 / �T�n� would give a straight line with a fixed slope of
1
2 for any problem, as opposed to the 
-dependent slope in
Eq. �17�. However, the catch is that Eq. �36� is strictly valid
only in the n→� limit. But, as we saw earlier, such SC
relations are approximately obeyed even in the small-n re-
gime. For Eq. �36� to work, we only require to start from
some n value that satisfies the inequality n2� �T�n. Then, one
would notice particularly that the predicted linearity is not
lost, though calculated slopes and intercepts do not match
closely with Eq. �36�. Figure 4 displays two sample cases of
pure sextic and octic oscillators. The plots are quite linear, as
is evident from observed correlation coefficient values

TABLE III. Variation in values for the slope d in Eq. �30� in
accordance with Eq. �31� for the set of oscillators given by Eq. �28�
starting from M =1 up to N=4.

n+2 Quadratic Quartic Sextic Octic

12 0.3731 0.2388 0.1737 0.1354

14 0.3811 0.2443 0.1779 0.1390

16 0.3874 0.2490 0.1815 0.1418

18 0.3927 0.2522 0.1844 0.1443

20 0.3970 0.2561 0.1868 0.1464

22 0.4009 0.2586 0.1890 0.1479

24 0.4042 0.2609 0.1908 0.1495

26 0.4072 0.2626 0.1927 0.1509

28 0.4097 0.2641 0.1932 0.1525

30 0.4122 0.2683 0.1964 0.1534

… … … … …
�1 /1� 0.4510 0.3000 0.2210 0.1729

Exact �1 /2� �1 /3� �1 /4� �1 /5�
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�0.999. A least squares fit with ln�n2 / �T�n� as x and In as y
yields, respectively, for M =4 and 3

y = 0.954 85 + 0.347 78x ,

y = 0.989 42 + 0.362 19x . �37�

The kinship with Eq. �36� is very apparent from results �37�.
The slopes are expected to gradually rise to the theoretical
value of 0.5 as we go for larger n values. Also, here we see
straight from Eq. �36� that the box-type confined systems
cannot show any variation of In with n because �T�n itself
increases as n2.

B. Link with the Fisher measure for bound stationary states

We indicated earlier that the FI essentially uses the aver-
age kinetic energy as its measure. It is given by �21�

If =� 1

P�x�
�dP�x�

dx

2

dx �38�

that is to be minimized. This definition should be contrasted
with Eq. �1�. Let us note that Eq. �38� has been employed in
a wide variety of contexts too. For example, it worked as a
part of a penalty function in arriving at the Schrödinger
equation �21�. Its use as an entropy function yields the usual
structure of thermodynamics �22�. Applied to central poten-
tials, the measure leads to interesting inequalities between
position and momentum space properties reflecting the un-
certainty principle �23�. A recent, detailed exposition by
Nalewajski �24� revealed the role of FI in various quantum-
chemical problems, including certain aspects of the density-
functional theory. In the present context, we take real Hamil-
tonians for which the eigenfunctions can always be chosen as
real. Hence putting P�x�
 Pn�x�=�n

2, we obtain from Eq.
�38�

If�n� = 4� �d�n

dx

2

dx =
4

�2 �p2�n =
8m

�2 �T�n. �39�

The proportionality of If with kinetic energy follows for
complex functions as well �24�. However, we may now uti-
lize Eq. �39� to rewrite Eq. �36� as

In � A + ln n −
1

2
ln If�n� �40�

that shows a clear link between Shannon and Fisher informa-
tion measures for energy eigenstates. Needless to mention,
we have put all the constant terms �and m� in A in Eq. �40�.
This result has a nice physical appeal. An increase in FI is
seen to reduce IE. Keeping it in mind that FI is minimized
while IE is maximized, one can immediately seek an expla-
nation of this fact. For real wave functions as chosen above,
one obtains �p�n=0. Thus from Eq. �39�, we notice that mini-
mization of FI is equivalent to minimizing the momentum
uncertainty for a given state. This naturally maximizes the
positional uncertainty, which means maximizing the delocal-
ization in space and hence maximization of IE. We therefore
recognize transparently that the two information measures
basically work in complementary spaces. This is precisely
the reason why one of them is maximized while the other is
minimized.

C. Finite-basis linear variational calculations for bound states

In a finite-basis linear variational calculation, if we simul-
taneously compute the value of In for each state, we observe
a general feature. While a true plot of In vs n shows the trend
depicted in Figs. 1 and 2, the upper states in finite-basis
calculations will be more in errors and hence the presumed
logarithmic rise of In with n will not be found. Instead, the
values will suddenly drop down after rising gradually for the
first few excited states. This feature is nicely seen in two
pilot calculations with mixed oscillators of the type x2+x2M.
Accurate energies are available for such systems �33�. For
M =3, we take K=10 and for M =4, we employ just six basis
functions. Still, the general feature is not lost. Relevant com-
puted data are plotted in Fig. 5. The expected variation, had
all the states been correctly constructed, is shown by analytic
continuation �dashed lines�. Clearly, the departure from the
assumed rise signals some error in calculations. We notice
here that two states are bad in six-basis calculations and three
are so when K=10. It is natural to believe that the number of

0.6 0.8 1.0 1.2

1.2

1.3

1.4
I n

ln (n2/<T>
n
)

FIG. 4. Verification of the linearity predicted by Eq. �36� is
displayed. The lower and upper lines refer, respectively, to M =4
and 3 in Eq. �28�. In each case, we consider even n values ranging
from 20 to 30.

0 4 8 12 16 20
0.0

0.4

0.8

1.2

2

1

I n

n

FIG. 5. Checking the adequacy of finite-basis calculations from
plots of In vs n. Curves 1 and 2 show, respectively, a ten-basis
calculation for the x2+x6 oscillator and a six-basis calculation for
the x2+x8 oscillator, indicating certain states that are grossly in
error.
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such states out of a given total K bases will depend both on
the problem in hand and the quality of basis. But, a plot like
Fig. 5 will follow in each case and it will transparently indi-
cate the states to reject. This provides a kind of internal
check. Its main appeal lies in the simplicity. For a more
convincing demonstration, one may compare the energies
obtained via the diagonalization procedure with the true val-
ues that are known. This stands as one of the standard mea-
sures of the goodness of the resulting states. We show in Fig.
6 the variation of percentage error with n for both the six-
basis �even parity� calculation for the mixed octic oscillator
�curve 2� and the ten-basis calculation for the mixed sextic
one �curve 1�. In the former case, the third even excited state
�n=6� is in error by about 0.45% that rises for the next two
states to 4.8% and 76%, respectively. Similarly, curve 1
shows errors of 0.09%, 0.79%, 14%, and 52%, respectively,
for n values of 12, 14, 16, and 18. Thus a close look at Fig.
6 reveals that conclusions based on Fig. 5 are quite justified,
though the latter does not involve any knowledge about exact
energies or other properties of near-exact eigenstates. This
surely counts as an advantage of the IE in practical situa-
tions. A different kind of plot in Fig. 7 involves estimates of
deviation from the virial theorem, which holds for bound
stationary states. We define the virial ratio �
r� as


r = �x
dV

dx
�� 2�T� �41�

and check how far it departs from the ideal value of unity for
the various states. A clear correspondence with Fig. 5 is
again apparent. In case of curve 1, 
r�n� shows a sudden rise
from the value of 1.000 66 for n=12 to 1.3348 �n=14�,
4.0023 �n=16�, and 7.1665 �n=18�. A very similar kind of
sudden departure is observed for the last two even states of
curve 2, as shown in the same figure. For more complicated
problems with potentials expressed as rational functions,
however, it is easier to opt for plots of the form of Fig. 5

rather than those of Fig. 7. Therefore IE offers a simpler and
better alternative in checking internal consistency in such
computations.

D. Stabilization method and resonances

We now turn attention to the role of IE during detection of
Siegert states and estimates of real energy parts of such states
by following the stabilization method with square-integrable
functions. The basic idea of the method is that, unlike sta-
tionary states that are exact energy extrema, the long-lived
metastable states constructed by bound functions satisfy the
virtual energy extrema condition. Taking linear combinations
of the even box states in �−L ,L�, we prepare states by diago-
nalizing the Hamiltonian matrix at fixed L values and look
for their stability in energies with respect to variations in L
�27�. In practical terms, we select that state as a resonant one
which minimizes �dE /dL�. Stationary states, on the contrary,
satisfy �dE /dL�=0. Figure 8 shows a typical plot from where
one can get such a state. A careful analysis of the figure
shows that �dE0 /dL� is minimum at about L=3.501, and the
value of energy at this point is 0.902 399 50. But, one may
also notice that �dI0 /dL� attains a minimum here as well at a
somewhat lower L=3.35 where the energy is 0.904 695,
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FIG. 6. Graphs showing the variations of percentage errors in
energies obtained via finite-basis calculations as functions of the
quantum number. Curves 1 and 2 refer to those in Fig. 5.
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FIG. 7. Errors in virial ratios �see Eq. �41��, estimated by
�1−
r�n��, as functions of the quantum number for finite-basis cal-
culations. Curves 1 and 2 refer to those in Fig. 5.
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FIG. 8. Profiles of energy and information entropy during de-
tection of a Siegert state of the anharmonic oscillator with the po-
tential x2−0.1x4. The typical variation is against a nonlinear param-
eter L that forms the basis of the stabilization method.
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somewhat higher than what the stabilization method offers.
Further, while the energy remains virtually stationary over a
larger region of L, the IE covers a smaller one. This region,
in both cases, reduces considerably as the lifetime shortens.
Figure 9 reveals it quite clearly. Here, we observe that
�dE0 /dL� is minimum at about L=2.6295 with energy
0.820 025. But, �dI0 /dL� is minimum here again at a lower L
value of 2.35 at which the energy is 0.876 24. We may com-
pare such situations with a true bound stationary-state calcu-
lation shown in Fig. 10. For the ground state, energy has a
real minimum, though quite broad in our chosen scale. The
IE, on the contrary, increases initially, remains virtually sta-
tionary over a considerable range, but increases again slowly.
This is because of the gradual decrease of the average kinetic
energy with increasing delocalization. When contrasted with
the behavior in the case of Siegert states, we notice two very
remarkable features of the IE. It attains a maximum at some
point beyond the minimum of �dE0 /dL�. Then, however, it
suddenly drops to a very small value. To understand these
two characteristics of the IE, we show plots of the PD vs x at
four L values in Fig. 11. The first two plots show the natural
single-hump PD, implying stability of the particle near the
origin of the potential that is a local minimum. The subse-
quent rise of the IE is a result of an increased delocalization
involving three regions of low potentials—two at the two
extremities ��L� and one at the origin. Thus we here obtain

a triple-hump PD. A further increase of L considers only the
extremities as the two primary low-potential regions. There-
fore the PD gets concentrated only near the boundaries. This
yields a double-hump PD, each hump with a narrow width,
reducing the IE considerably. Any additional stretching of L
only sharpens this double-hump PD and the IE goes on de-
creasing more.

Having understood the reasons behind the nature of varia-
tion of the IE with L, we notice that the stabilization method
shows three important signatures of a Siegert state in terms
of IE. First, the IE shows “stabilization” as well, like the
average energy. Second, beyond a resonant state, the IE
gradually rises to a maximum. Third, the IE rapidly de-
creases just after attaining its maximum.

V. CONCLUDING REMARKS

A direct application of the MEP to pure states of quantum
systems has so far remained limited to the ground state ow-
ing to the need of simultaneously satisfying quite a few extra
constraints arising out of the orthogonality and uncoupled
nature of the concerned excited stationary state with respect
to all the lower-energy states. A bypass to the problem is to
investigate the variation of IE as a function of the quantum
number �18�. We have here extended the analysis in various
ways. It has been found that there are two competing factors.
There is an increasing tendency of the PD to encompass the
whole available space with increasing excitation. This raised
the IE. But, an opposing aspect is provided by the additional
constraints mentioned above that an excited stationary state
has to satisfy. An exact balance of these two factors is found
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FIG. 9. The same profiles as in Fig. 8, but now for a state with
a shorter lifetime, defined by the potential x2−0.2x4.
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FIG. 10. Profiles of energy and information entropy for a bound
state of the anharmonic oscillator with potential x2+0.1x4.
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FIG. 11. Plots of the probability densities vs x during detection
of a Siegert state at various values of the overall confining length L
for the potential x2−0.1x4. �a� The L value around which the IE
becomes almost stationary. �b� The L value around which the en-
ergy becomes almost stationary. �c� The L value around which the
IE attains its maximum. �d� The behavior of the PD at some point
beyond the maximum of the IE, and far beyond the point of qua-
sistationarity of energy.
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for confined systems, i.e., those that are kept within fixed
boundaries. In all the other cases, a monotonic rise of IE with
excitation is observed. The reason is simple. With excitation,
the effective confining region increases as well, resulting in
an extra rise of the IE. Keeping it in mind that a box-type
potential is only a model and that practical potentials never
grow abruptly to infinity at a point, the situation is quite
assuring. We can say that in all practical cases, IE tends to a
maximum as n→� in spite of infinitude of constraints. In
other words, the MEP is satisfied in the Bohr limit. There
exist a variety of approaches to justify this latter limit, which
is a classical limit. Here, such a regime has been connected
to some PD that maximizes the IE.

We observed initially a logarithmic rise of the IE with n.
Later, we have found a more precise variation of the IE with
the average kinetic energy of a state. The IE of a stationary
state increases logarithmically with n2 / �T�n. The calcula-
tional support is encouraging too. It provides a route to
couple Shannon and Fisher measures as well. Such a link
possesses a nice physical appeal. It will be interesting to seek
a similar relationship for nonstationary quantum states. Fur-
ther, we demonstrated how a study of the variation of IE with
quantum number can distinctly distinguish good states from

bad ones in approximate calculations for bound energy
eigenstates. The relevance of studying the IE in detection of
Siegert states has also been noted. Three important signa-
tures have been obtained when the stabilization method is
adopted. We additionally indicated how the nature of varia-
tion would differ in stationary-state calculations. In view of
the importance of the IE in atomic and molecular calcula-
tions �24,34�, our observations can profitably guide in detec-
tion of atomic resonances. Finally, most of the derivations
followed an SC route via the WS rule. In the absence of a
more rigorous course, this is probably the best that one can
choose. However, it is comforting to note that the SC out-
comes are also supported later by exact or near-exact quan-
tum mechanical results, and that too even for the low-lying
energy states. Thus the chosen strategy finds an a posteriori
justification. Here lies the final success of the present
endeavor.
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