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Operator fidelity susceptibility: An indicator of quantum criticality
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We introduce an operator fidelity and propose to use its susceptibility for characterizing the sensitivity of
quantum systems to perturbations. Two typical models are addressed: One is the transverse Ising model
exhibiting a quantum phase transition, and the other is the one-dimensional Heisenberg spin chain with
next-nearest-neighbor interactions, which has the degeneracy. It is revealed that the operator fidelity suscepti-
bility is a good indicator of quantum criticality regardless of the system degeneracy.
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INTRODUCTION

There are two important concepts, entanglement and fi-
delity in quantum-information theory [1]. These two con-
cepts are closely related to each other. For instance, fidelity,
which was first proposed as a tool for describing the stability
of a quantum system to perturbations [2], may be used to
characterize quantum entanglement [3]. Notably, fidelity has
recently been used to characterize quantum phase transitions
(QPTs) [4-7] as well as thermal phase transition [8]. On the
other hand, entanglement has also been employed to be an
indicator of QPTs in many correlated quantum systems
[9-12].

How to characterize the stability of a quantum system to
perturbations is an important issue as there is no quantum
counterpart of the classical Lyapunov exponent. The Losh-
midt echo [13] has been adopted as a measure of the system
stability against perturbations, which is introduced as fol-
lows. Let operators U, and U; denote the time evolutions of
Hamiltonians H, and H;, where H, is slightly different from
Hamiltonian H,, with H;—H,=¢€V as a small perturbation. In
this case, the operator Ue:U(’;U | is referred to as the echo
operator, and the absolute value of its expectation over a
specific state i) is defined as the Loshmidt echo

Ly = (UsU ). (1)
This is just the fidelity amplitude. Obviously, it is state de-
pendent, i.e., one must choose an initial state (artificially in

many cases) to evaluate its response to perturbations. This
scenario to characterize QPT has a serious limitation, e.g., it
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can hardly be applied to a degenerated ground state, which
has been a great challenge for a long time.

In this paper, mainly motivated by the above challenge,
we introduce a kind of fidelity measure, called operator fi-
delity, and propose to use its susceptibility for characterizing
the stability of quantum systems to perturbations. A distinct
and significant merit lies in that it is state-independent and,
in particular, is able to characterize the quantum criticality
regardless of degeneracy. To illustrate the feasibility and re-
liability as well as the merit of the introduced operator fidel-
ity susceptibility, here we employ it to investigate two typical
QPT systems: The quantum Ising model and the Heisenberg
model with next-nearest-neighbor interactions. Indeed, this
fidelity susceptibility is able to serve as an indicator of QPT.
In addition, for comparison, we also consider the mixed state
fidelity susceptibility to address the quantum criticality with
the ground-state degeneracy.

We begin with the definition of operator fidelity. Let H be
a d-dimensional Hilbert space. All linear operators on H are
represented by dXd matrices and thus their own may be
considered to be vectors in an expanded d>-dimensional Hil-
bert space Hyg. The inner product Hyg is defined as the
Hilbert-Schmidt product, i.e., for operators A and B, (A|B)
=Tr(A'B). In this sense, any linear operators on H can be
considered as a state on Hyg. Thus, the fidelity of two states
can naturally be generalized to the operator level. For two
unitary evolution operators U, and U; on H, the fidelity
between them is defined as

g 2)

1 .
F?= ?|Tr(ugul)|2 = [Tr(UU,)

where the averaged tracing operation is defined as

Tr(--+)=Tr(---)/d. It is notable that one may obtain the av-
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eraged Loshmidt echo [14-17] after averaging L, over all
states on H with a Haar measure, and the averaged
Loschmidt echo and the operator fidelity are essentially
equivalent. The averaged Loschmidt echo has been applied
to study quantum chaotic models such as kicked Ising model
[18]. Remarkably, the operator fidelity involves not only the
ground state, but also all eigenstates of the system. It quan-
tifies the difference between two unitary operators, and is a
conserved quantity under local operation in Hilbert space
HHS.
We can rewrite the echo operator U, as [19]

t tre
Ue =1- léJ Vl(tl)dtl - €2J J Vl(tl)vl(tz)dtldtZ + 0(63),
0 0J0

(3)

where V(r)=exp(iHyt) V(t)exp(—iH,t) is the perturbation op-
erator in the interaction picture. After tracing, we have

Te(U,) = 1 - ie T W(1)] - gT_r[W(t)ZJ +0(€), (4

where W(t)=[(V,(t')dt'. Then from Eq. (2), we obtain
F2=1- T W)} - T WD)} + O(Y). (5)

To evaluate the above operator fidelity, one must choose a
small parameter artificially, which is e dependent. To avoid
this artifact, we can also introduce a so-called fidelity sus-
ceptibility [4,20], which is given by

xr=lim 5 = WO -TEWO.
e—0 62 2
Remarkably, the above simple formula possesses a distinct
computational advantage that enables one to calculate
straightforwardly the fidelity susceptibility from W(z), which
can also be evaluated readily or at least numerically for more
complicated systems. On the other hand, generally speaking,
a quantity-measure susceptibility responds to the relevant
perturbations more sensitively than the quantity-measure it-
self does, so we believe that it could capture a drastic change
feature of the quantum evolution (versus the relevant param-
eter) around a critical point. We below explore the intriguing
relationship between the operator fidelity susceptibility and
the QPT in two typical systems, with one having degeneracy.

QUANTUM PHASE TRANSITION

The first system we consider is an Ising spin chain subject
to a transverse magnetic field, whose Hamiltonian reads as

z o
Hy= 2 (070?(+1+le>’ (7)
=M

where N\ characterizes the strength of the transverse field,
o/ (a=x,y,z) are the Pauli operators defined on the /th site,
and the total number of spins in the Ising chain is N=2M
+1. The perturbation operator is given by eV= eEfZ_Mo',Z/ 2.
There are two competing terms in the Hamiltonian, i.e., the
Ising interaction and the transverse field term.
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The Hamiltonian can be diagonalized by combining
Jordan-Wigner transformation and Fourier transformation to
the momentum space, i.e.,

. . A
Hy= 2 ez(Hklz)okx(Qko_kz)e—t(ﬂk/z)(rkx + ( 1- E)GOZ’ (8)
k>0

where we have used the following pseudospin operators oy,
(a=x,y,2): op=did +d dy (k=1,2,.... M), o, =—idd",
+id_dy, op=dd+d d_—1, 0o,=2d}d,~1. Operators dj,
dy {k=1,2,...,M} denote the fermionic creation and annihi-
lation operators in the momentum space. Here,

27k |? 27k
O = \/{—7\+2€05<i>] +4sin2<i>,
N N

. (277]()
—2sin| —
6, = arcsin N7 )
k= o, .

Then the time evolution operator is derived as (with %
=1)

Uy(1) = e—i[—(x/2)+1]a(,zzH e (O oy =ity ,=i(O/2) oy
k>0

(10)

The unitary operator U,(¢) for Hamiltonian H,=Hy+ €V can
be obtained by just replacing N with N+ € in the above equa-
tion.

At this stage, from U,y(r) and U,(z) given above, we are
able to obtain W(¢) as

SiIl2 0/(

W) =2, {o'kz<t cos® 6, + sin 2sz)

k>0 k

. |
+ Oy COS O sin Gk(t - Z_Qk sin 2t9k>

. 1 t
+ 0y, Sin 0,(2—01((cos 210, — 1)] + 500 (11)

the fidelity susceptibility is derived exactly as

1
XF= _tz(

1 1
205 + >, cos? Gk) + 52 sin?(Q2)sin’® 6,/Q;.

2 k>0 k>0
(12)

Note that the first term in Eq. (12), which is proportional to
the square of time ¢, plays a dominant role when ¢ is large.
In the transverse Ising model, two phases are separated by
the quantum phase transition point A=2. The singular behav-
ior of QPT at the transition point reflects the sensitivity of
ground state to perturbations. At this stage, we numerically
look into the behaviors of the operator fidelity susceptibility
and its partial derivative with respect to \ at a finite time 7
=100 (the natural units are used here). As shown in Fig. 1 for
different system sizes, the transition point is unambiguously
signatured: It is clearly seen that the fidelity susceptibility
and its partial derivative are nearly unchanged when increas-
ing N from O to 2; the derivative increases sharply at the
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FIG. 1. Partial derivative of the fidelity susceptibility versus the
parameter \ for different system sizes N=2',2!1 212, The inset
plots the fidelity susceptibility yy versus the parameter N. The time
t=100.

transition point and the derivative peak is higher when the
system size becomes larger.

The behavior of the operator fidelity susceptibility at the
QPT point is different from that of the ground-state fidelity
[4]. The ground-state fidelity susceptibility displays a sudden
increase at the QPT point, reflecting the drastic change of
ground state of the system when the QPT occurs, while the
operator fidelity susceptibility drops to a certain value con-
tinuously at the QPT point (and is unchanged below the
point) since it involves all eigenstates and characterizes the
sensitivity of the whole system to perturbations in the time
evolution. However, on the other hand, its partial derivative
changes discontinuously at the QPT point and is much more
sensitive to perturbations, being able to single out the QPT
point unambiguously [21].

HEISENBERG MODEL WITH NEXT-NEAREST-
NEIGHBOR INTERACTIONS

For the fidelity scenario developed previously for QPTs,
only pure ground states can be addressed, without taking into
account the degeneracy; while it is the case for some quan-
tum systems. As seen above, the operator fidelity approach
has an advantage that the degeneracy is not necessary to be
considered explicitly. To contrast our approach with the state
fidelity approach, we below address a model with the
ground-state  degeneracy. The Hamiltonian of one-
dimensional Heisenberg system with next-nearest-neighbor
interaction reads as

N
Ho= 2 (J18;* Sis1 + 58 Siz2) (13)

where the s; denotes the spin-1/2 operator at the ith site, N is
the total number of sites, J; and J, are the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) exchange couplings.
As usual, we choose the periodic boundary condition and set
J1=1 for convenience. The perturbation operator is given by
€V=€2s;s;,,. Note that no exact analytical results are avail-
able for this model (13) except the special case of J,=0 and
J 2= 1 / 2

It is well known that the point J,=1/2 corresponds to the
Majumdar-Ghosh model where the ground state is the prod-
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FIG. 2. (a) The operator fidelity susceptibility versus J, for dif-
ferent system sizes N=7,9,11. (b) The mixed state fidelity suscep-
tibility versus J,.

ucts of dimers, leading to a gapped phase [22]. Chen et al.
[23] studied the ground-state fidelity and first-excited-state
fidelity of this system with even number of sites. Here we
focus on the odd number of sites as the fourfold degenerate
energy level structure is present in this case.

We first diagonalize the Hamiltonians numerically, and
then calculate the operator fidelity susceptibility versus the
NNN coupling J, for N=7,9,11, as plotted in Fig. 2(a). At a
finite time #=100, the susceptibility y; decays to a minimum
value near the critical point J,=0.5. With the size increasing,
the minimum point is closer to the critical point. It is ex-
pected that the curve around the minimum point would be-
come sharper and sharper when the size increases, leading to
a discontinuity in its partial derivative with respect to J, at
the critical point in the thermodynamic limit, as in the case
of the transverse Ising system. We indeed note from the en-
ergy spectrum that the ground energy level and the excited
energy level crosses near the point J,=0.5. In this sense, the
operator-fidelity susceptibility (or its partial derivative) is
also able to capture the level crossing feature in the system
and thus to indicate the critical point, overcoming the subtle
problem induced by the degeneracy. Notice that there exist
two critical points J,=0.2411 and J,=0.5. Our results show
that the operator fidelity is able to characterize the quantum
phase transition point J,=0.5.

On the other hand, at least for comparison, it is also in-
teresting to consider an alternative approach to address de-
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generate cases by making use of the mixed state fidelity
given by [24]

-
Flpo.p1) = Tr(\Vpipop1 ). (14)

Without loss of generality, it is not unreasonable to assume
the mixed ground state as an equal mixture of the degenerate
ground states,

R
R r=1

with r=1,2,...,R denote the degeneracy and the state |¢j,>

denotes the jth degenerate eigenstate of the system. In the

fidelity F(pg,p;) of this Heisenberg spin chain with the NNN

interactions, p, comes from the mixture of the ground states

of Hy, and p, corresponds to H;=H,+€V.

When the degeneracy of the system is explicitly obtained,
we evaluate the mixed state fidelity susceptibility versus the
coupling strength J, by combining Eq. (6) with Eq. (14), as
shown in Fig. 2(b). Clearly, the susceptibility xr passes the
critical point J,=0.5 discontinuously. For larger sizes such as
N=9,11, there exist two peaks since the ground energy level
crossing occurs 2 times. With increasing the system size, the
position of the first peak approaches to the critical point, and
the second one is closer to the first one. Although, it seems
that the suggested mixed state fidelity approach may also
indicate the critical point, it should be pointed out that it is
feasible only when the degeneracy of the ground states is
explicitly known and the equal mixture of the degenerated
states is assumed. In addition, due to the energy level cross-
ing, the degeneracy may change at the critical point and thus
the mixed state fidelity approach may not be workable for all
the values of the considered parameter.

RELATIONSHIP TO ENTANGLING POWER

Finally, we would like to disclose an intrinsic connection
between the present operator fidelity and the entangling
power [25] that was adopted to characterize the entangling
capability of a quantum evolution. The entangling power is
essentially the mean state linear entropy at time ¢ after aver-
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aging over all initial states. We consider a general Hamil-
tonian in the form

H=1® Hy+|1)1| ® V=|0)(0| ® Hy+ [1){1| ® H,,
(16)

where [ is the identity operator and H;=H,+V. The time
evolution operator is readily obtained as U(r)=|0)0]
@ Ug()+[1){1|®@ U,(t), where U,(t)=exp(~iH){k=0,1}.
This is a kind of the controlled-U operator, for which the
entangling power e, is proportional to the operator entangle-
ment E[U(1)] [26], i.e., e,[U(D)]=[d/(d+1)E[U(r)]. The
operator entanglement E[U(¢)] can be straightforwardly ob-
tained from the expression of U(¢). Finally, we obtain

d2
-—
= 2@ 17

This establishes a direct connection between the entangling
power and operator fidelity.

- F?). (17)

SUMMARY

We have proposed an operator fidelity approach to char-
acterize the stability of quantum system to perturbations,
which possesses a remarkable advantage that it is state inde-
pendent and is able to characterize the quantum criticality
regardless of degeneracy. We have employed the approach to
reveal successfully the QPT points in two typical systems:
The quantum Ising model and the Heisenberg chain with
next-nearest-neighbor interactions, with the latter having the
degeneracy. Our approach is quite promising for the explo-
ration of quantum instability including QPT and quantum
chaos.
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