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We study the properties of the fidelity of one-qubit operations in a noisy channel and reveal its properties in
dependence on coupling to the outer environment. We show that for an asymmetric qubit-environment cou-
pling, the fidelity can be improved by a tuning of the external parameters acting on the qubit energy splitting.
In particular, for the case of a spin qubit, the fidelity can be improved by an appropriate tuning of the external
magnetic field. We observe that within tailored parameter regimes, the fidelity �typically being oscillatory�
evolves monotonically and remains significant in the long-time regime, for both an environment prepared in
vacuum and coherent states. This result holds true also for the entanglement fidelity of the two-qubit system.
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I. INTRODUCTION

Quantum information science is a rapidly developing re-
search area which has the potential to directly impact future
technologies. The main challenge consists in designing and
building of quantum computers. One of the principal issues
of quantum information engineering is to develop methods
of controlling the quantum operations, in particular quantum
computing gates, teleportation, coding, quantum state stor-
age, transmission of information, etc. These operations are
analyzed in terms of well-defined quantifiers and measures.
There exist various quantities measuring the imperfection of
a quantum communication �1,2�. The input-output fidelity is
one of such quantifiers characterizing the quality of informa-
tion transmission through quantum channels, T, which is de-
fined as a linear, completely positive, trace-preserving map T
of a quantum state represented by a density operator �. If the
state � is the input state, then T��� is the output state and we
say that the state � is transmitted through the channel T. If T
is known then the input-output fidelity is defined as �3�

F„T���,�… = �Tr��T�����T����1/2�2. �1�

It measures the stability of quantum evolution, estimates how
close are two states and their separation can be measured by,
e.g., the Bures metric ��1−�2�2=2�1−�F��1 ,�2�� �1�.

For an ideal, undisturbed, transmission, we expect F=1.
Practically, almost all channels are noisy; i.e., the system is
in contact with its �infinite� environment. The influence of
the environment results in decoherence, an uncontrollable
and irreversible process. Noisy quantum channels have been
studied in very different contexts—e.g., for systems in the
presence of stochastic decoherence �4�, for infinite Gaussian
channels �5�, or in the problem of holonomic quantum gates
in semiconductor quantum dots �6�. The natural question—to
what extent is such a channel able faithfully to transmit
qubits—can be answered if its reduced, with respect to the
environment, dynamics is known. In other words, the re-
duced density operator ��t� has to be determined. Then the
transmission process is evaluated by the input-output fidelity
F(��t� ,��0�), where now the noisy channel T is defined by
the evolution map T :��0�→��t�. Because of the decoher-
ence process, the fidelity is smaller than 1 and frequently
decays to zero in the long-time regime �7�. The problem is to

minimize the influence of the environment and to optimize
the fidelity. However, in a general case, it is impossible to
obtain an exact form of ��t�. Approximate methods, espe-
cially when are mathematically uncontrollable, can lead to
unjustified conclusions. The method of quantum dynamical
semigroups is particularly convenient in the widely used
Markovian domain which works well in the weak-coupling
regime or in the singular coupling limit �8�. It has been used
for studying, e.g., entanglement dynamics �9� and fidelity of
quantum teleportation through noisy channels �10�. How-
ever, the results obtained in the weak-coupling limit cannot
be extrapolated to the low-temperature regime. Therefore its
applicability for solid-state devices operating at extremely
low temperatures is not straightforward �11�. Systems oper-
ating beyond the Markovian regime are difficult to handle
and require special methods. Yet there are models which are
exactly solvable. One of them is a model of pure decoher-
ence �called dephasing�. It has been exploited to study gen-
eral aspects of open quantum systems �12�, maintenance of
coherence in quantum computers �13�, entanglement dynam-
ics �14–16�, and geometric phases �17�. We formulate an
extension of this model by admitting asymmetric coupling to
the outer environment. We demonstrate that for such an
asymmetric interaction, high-fidelity quantum operations can
be improved by means of a control field that determines the
qubit energy splitting. The interaction symmetry breaking
gives the possibility to slow down the fidelity decay and to
work out its control and optimization. Within the analyzed
model, it is impossible for the standard symmetric coupling.

The paper is organized as follows. In Sec. II we define the
model of the asymmetric dephasing channel and present cor-
responding exact reduced dynamics of a qubit. In Sec. III we
calculate the fidelity of the asymmetric channel. Here, we
assume that the environment is initially in vacuum or coher-
ent states. In Sec. IV we extend our discussion to the prob-
lem of the entanglement preservation under asymmetric
dephasing channel qualified by the entanglement fidelity.
Section V contains summary and conclusions.

II. ASYMMETRIC DEPHASING CHANNEL

The system we study is a qubit Q, formed by an arbitrary
two-level system coupled to its outer environment. We con-
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sider the case when the process of energy dissipation is neg-
ligible and only pure decoherence takes place. It leads to an
irreversible process of information loss �18�. We model such
a system by the Hamiltonian ��=1�

H = HQ � IB + IQ � HB + HI, �2�

where IQ and IB are identity operators �matrices� in corre-
sponding Hilbert spaces of the qubit Q and the environment
B, respectively. Let the qubit canonical basis be �	1
 , 	−1
�.
The qubit Hamiltonian HQ reads

HQ = �+	1
�1	 + �−	− 1
�− 1	 , �3�

where �� are the qubit energy levels. If �+=−�−=�, then
HQ=�Sz is the spin Hamiltonian, where Sz= 	1
�1	− 	−1
�−1	
and � is proportional to amplitude of the magnetic field. The
environment is modeled as a collection of bosons and is
described by the Hamiltonian HB of the form

HB = �
0

�

d�h���a†���a��� , �4�

where the real-valued spectrum function h��� depends on the
kind of environment. The operators a†��� and a��� are the
creation and annihilation boson operators, respectively. The
qubit-environment interaction in general is assumed to be
asymmetric:

HI = 	1
�1	 � H+ + 	− 1
�− 1	 � H−,

H� = � �
0

�

d��g
�
* ���a��� + g����a†���� . �5�

The van Hove operators H� are expressed in terms of the
coupling functions g����, and g

�
* ��� are the complex con-

jugate functions to g����. The Hamiltonian �2� can be recast
as

H = 	1
�1	 � H1 + 	− 1
�− 1	 � H−1, �6�

H1/−1 = HB + H� + ��. �7�

Hamiltonians of the similar structure like �6� have been stud-
ied in the context of a quantum kicked rotator �19�, chaotic
dynamics of a periodically driven superconducting single-
electron transistor �20�, the Josephson flux qubit �21�, and
quantum dots �22�. The model may also serve as a compo-
nent of a simple quantum register �18�. Moreover, it con-
tains, as particular cases, the widely used van Hove model
�23� �for g+���=g−���� and the Friedrichs model �24� �for
either g+���=0 or g−���=0�. The generalized spin-boson
model �6� has been applied to analyze the electron-transfer
reactions �25� and the interconversion of electronic and vi-
brational energy �26�.

The model �2�–�5� is exactly solvable in the sense that the
exact density matrix of the qubit can be obtained provided
the initial state of the total system is separable. In the case of
symmetric coupling, it has been solved in Refs.
�12,13,27,28�. For this paper to be self-contained, below we
briefly present a derivation of the reduced dynamics for the
case of asymmetric coupling. To this aim, let us notice that in

the canonical basis, the Hamiltonian �6� is a diagonal 2�2
matrix reading

H = diag�H1,H−1� . �8�

This form is convenient because we can directly apply re-
sults of Ref. �14� and solve the Schrödinger equation with
the Hamiltonian �2�. To do it, let us specify an initial state of
the system assuming a product state: namely,

		�0�
 = �b1	1
 + b−1	− 1
� � 	R
 , �9�

where b1 and b−1 determine the qubit initial state and 	R
 is
the initial state of the environment.

Time evolution of the state �9� is governed by �14�

		�t�
 = b1e−i
1�t�	1
 � D�gt
+ − g+�e−iHBt	R
 + b−1e−i
−1�t�	− 1


� D�g− − gt
−�e−iHBt	R
 , �10�

where the phases 
1�t� and 
2�t� have the form


1�t� = �+t − �
0

�

d�	g+���	2�h���t − sin�h���t�� ,


−1�t� = �−t − �
0

�

d�	g−���	2�h���t − sin�h���t�� �11�

and the abbreviations

g+��� =
g+���
h���

, g−��� =
g−���
h���

�12�

have been introduced. For any function f , the notation f t
means

f t��� = e−ih���t f��� . �13�

The displacement operator D�f� reads �29�

D�f� = exp�
0

�

d��f���a†��� − f*���a����� �14�

for an arbitrary square-integrable function f .
We do not need to know full information on the total

system: qubit+environment. Rather the dynamics of the qu-
bit and the influence of the environment on its behavior are
crucial. The qubit dynamics can be obtained for the initial
states given by Eq. �9� or, more generally, for a larger class
of states defined by the initial statistical operator ��0� of the
total system:

��0� = �
i,j=1,−1

pij	i
�j	 � 	R
�R	 , �15�

where pij are non-negative parameters. The reduced statisti-
cal operator ��t� for the qubit only can be expressed in the
form

��t� = TrB���t�� = �
i,j=1,−1

pij	i
�j	 � TrB�e−iHit	R
�R	eiHjt�

= �
i,j=1,−1

pijcji�t�	i
�j	 , �16�

where TrB denotes partial tracing over the environment,
Hi�i=1,−1� is given by Eq. �7�, and
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cji�t� = �e−iHjtR	e−iHitR
 = �� j�t�	�i�t�
 �17�

is a scalar product of the functions 	� j�t�
 and 	�i�t�
 in the
environment Hilbert space. It follows from Eq. �16� that the
qubit reduced dynamics can exactly be constructed, provided
one is able to evaluate the above scalar product. It is possible
at least for two classes of initial states of the environment:
for the vacuum state 	R
= 	�
 and the coherent states 	R

= 	
=D��	�
. A coherent state is determined by a complex
function =��� �analogically as in a one mode case by a
complex number�. Since 	�
=D�0�	�
, we consider both the
cases simultaneously assuming the initial state to be the co-
herent one:

	R
 = 	
 = D��	�
 . �18�

For this choice of the initial states of the environment, Eq.
�10� takes the form

		�t�
 = b1	1
 � 	�1�t�
 + b−1	− 1
 � 	�−1�t�
 , �19�

where

	�1�t�
 = e−i
2�t�D�gt
+ − g+ + t�	�


	�−1�t�
 = e−i
−2�t�D�g− − gt
− + t�	�
 , �20�

and the relation

D�g�D�f� = ei Im�g	f
D�g + f� �21�

has been utilized; Im�g 	 f
 is the imaginary part of the scalar
product of two functions g and f defined as

�g	f
 = �
0

�

d� g���f*��� . �22�

The phases 
2�t� and 
−2�t� read


2�t� = 
1�t� − Im�gt
+ − g+	t
 ,


−2�t� = 
−1�t� − Im�g− − gt
−	t
 . �23�

It is convenient to present an initial state of the qubit 	� ,�

as a vector on the Bloch sphere:

	�,�
 = cos��/2�	1
 + ei� sin��/2�	− 1
 , �24�

where � and � are the polar and azimuthal angles, respec-
tively. This parametrization corresponds to b1=cos�� /2� and
b−1=ei� sin�� /2� in Eq. �9�. The initial statistical operator
��0� for the reduced qubit dynamics takes the form

��0� = �cos2��/2� 1
2 sin �e−i�

1
2 sin �ei� sin2��/2�

� . �25�

From Eq. �16� one gets the statistical operator ��t� for time
t�0. It has the form

��t� = � cos2��/2� 1
2A�t�sin �e−i�

1
2A*�t�sin �ei� sin2��/2�

� . �26�

This formula defines the asymmetric dephasing channel

T:��0� → ��t� , �27�

where the influence of the infinite bosonic environment is
represented by the function

A�t� = w�t�e−i��t�, A�0� = 1. �28�

The damping part reads

w�t� = ��	D�gt
+ − g+ + gt

− − g−�	�
 = e−r�t�, �29�

where the decoherence function

r�t� = �
0

�

d�	g+��� + g−���	2�1 − cos�h���t�� . �30�

The phase part

��t� = 
1�t� − 
−1�t� − Im��gt
+ − g+	t
 + �gt

− − g−	t


+ �gt
− − g− − t	gt

+ − g+ + t
� . �31�

One can observe that a coherent initial state does not influ-
ence the damping part. However, it modifies a phase part of
the reduced statistical operator.

In a general case, the functions g+, g−, and  are complex
functions of a real variable. For the sake of simplicity, we
assume from now on that they are real functions. In this case,
the total phase reads

��t� = ��+ − �−�t + �I�t� + ��t� , �32�

where

�I�t� = �
0

�

d��g−���2 − g+���2��h���t − sin�h���t��

�33�

is the phase induced by the asymmetric interaction. For the
symmetric interaction g+���=g−���, this term vanishes. The
last part

��t� = 2�
0

�

d��g+��� + g−�������sin�h���t� �34�

is the phase related to the initial coherent state. For the initial
vacuum state ���=0, this contribution vanishes.

III. FIDELITY

From Eq. �26�, we can calculate the fidelity �1� which, for
the considered class of pure initial states �24�, reduces to the
form

F�t� � F„��t�,��0�… = Tr���t���0�� �35�

and measures the deviation of the evolving state ��t� from
the initial one ��0�. Its explicit form reads

F�t� = 1 −
1

2
�1 − e−r�t� cos ��t��sin2 � . �36�

Now, we discuss general properties of the fidelity F�t�. The
first observation is the independence of F�t� on the azimuthal
angle �. Under some nonrestricted and commonly accepted
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assumptions on the spectral properties of the environment,
one can infer from Eq. �30� that the function r�t� is a non-
negative function of time, bounded by r�0�=0 and r����0.
So in some cases this function can tend to infinity, r�t�→�
as t→�. In this case, F���=1− �1 /2�sin2 ��1 /2 and it does
not depend on the phase �. The maximal fidelity F���=1 is
for two classes of initial states: 	� ,�
= 	1
 ��=0 and arbitrary
�� and 	� ,�
= 	−1
 ��=� and arbitrary ��. The averaged
fidelity �on Bloch sphere�

�F�t�
 =
1

4�
�

0

2�

d��
0

�

d� sin � F�t� �37�

yields the best possible value �F���
=2 /3 obtained by the
classical communication �10�. From the formal point of view,
the case r���=� is subtle: A ground state of the Hamiltonian
�2� has an infinite number of bosons and therefore does not
lie in the Hilbert space C2 � F with F the symmetric Fock
space of bosons �30�. We recall that it takes place for the
Ohmic environment �30�. However, we will not discuss this
case and the reason is not just the above formal drawback.
Much more interesting is the case r���=r��. The time de-
cay of the fidelity can be reduced depending on the phase
��t� in the long-time regime. From Eq. �36� we deduce that
the phase ��t� should be as close as possible to a multiple of
2�.

A. Vacuum initial environment state

Let an initial environment state be the vacuum state

	R
 = 	�
 . �38�

Then the phase takes the form

��t� = ��+ − �−�t + �
0

�

d��g−���2 − g+���2�

��h���t − sin�h���t�� . �39�

To maximize the fidelity, the phase ��t� should be as close
as possible to a multiple of 2�. Let us consider two cases: �i�
the system has the degenerate energy levels and �ii� the en-
ergy levels are nondegenerate.

�i� Let �+=�−. The best value of the phase is ��t�=0. It
can be attained for the symmetric coupling, g+���=g−���. In
the long-time regime, the averaged fidelity is

�F���
 = 1 −
1

3
�1 − e−r� , �40�

r = �
0

�

d�	g+��� + g−���	2. �41�

There are no external control parameters and the fidelity can-
not be varied.

�ii� Let �+=−�−=� as for the spin qubit. In the long-time
regime,

��t� � �t , �42�

� = 2� + �
0

�

d��g−���2 − g+���2�h��� . �43�

Obviously, the choice �=0 optimizes the quantum channel
in a sense that the fidelity is maximal and its oscillations are
extinguished. For qubits of the spin type, the parameter � is
proportional to the magnetic field B—i.e., ��B��B. There-
fore the phase can be changed by the magnetic field. The best
tuning is for B determined by the relation

��B� =
1

2
�

0

�

d��g+���2 − g−���2�h��� . �44�

Under this condition �=0, the phase �=0 and the averaged
fidelity is given by relations �40� and �41�. As the magnetic
field can be controlled with a very high precision, oscilla-
tions can be suppressed and the fidelity can be tuned to the
maximal value determined, via the quantity r, by the cou-
pling with the environment. Of course, as is seen from Eq.
�41�, a weaker coupling results in a better fidelity. However,
for the fixed coupling strength, the reduction parameter r
depends on spectral properties of couplings and environment
as shown in the example below.

In order to illustrate the above general considerations, we
present explicit results for a qubit with nondegenerate energy
levels �+=−�−=�, ��0. We assume that the environment
has a linear energy spectrum—i.e., h���=�. The coupling to
the environment is usually described in terms of the spectral
density. In order to introduce the spectral density in our ap-
proach, let us first consider the symmetric case g+���
=g−���. One can redefine the coupling function defining a
new function J��� according to the relation

�g�����2 =
J���
�2 . �45�

Then the decoherence function �30� takes the form

r�t� = 4�
0

�

d�
J���
�2 �1 − cos��t�� . �46�

Comparing this equation with the standard expression for the
decoherence function �see, e.g., Eq. �4.51� in Ref. �28��, one
can identify J��� as the spectral density. One can also justify
the above statement in the following way. In the case of a
qubit that is coupled to a discrete set of oscillators, one usu-
ally defines the spectral density as �31�

J��� = �
k

	gk	2��� − �k� . �47�

Analogically, for a continuous set of oscillators, one can de-
fine

J��� = �
0

�

d��	g�����	2��� − ��� , �48�

which is exactly the same as the spectral density defined by
Eq. �45�. We choose the spectral density which has fre-
quently been used in the literature �12,31�: namely,
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J��� = J�,���� = ��1+� exp�− �/�c� , �49�

with ��−1. The physical meaning of parameters �, �c, and
� can be explained in the following way. � determines the
coupling strength, whereas the cutoff frequency �c is the
largest energy scale of the environment. The spectral expo-
nent � characterizes the low-frequency properties of the en-
vironment and defines its various types. According to the
classification proposed in Ref. �31�, the environment is
called sub-Ohmic, Ohmic, and super-Ohmic for �� �−1,0�,
�=0, and �� �0,��, respectively. For g+����g−��� we in-
troduce independent sets of parameters �1, �1 and �−1, �−1
for the states 	1
 and 	−1
, respectively. We investigate the
effects which follow from the tuning of the energy splitting.
Therefore, some other quantity should be taken as the energy
unit. Since the cutoff frequency is the largest energy scale,
we take ��c /100 as the energy unit. Then the time unit is
100 /�c.

In the long-time regime, the sub-Ohmic and Ohmic cases
lead to the reduction parameter r=�. For the super-Ohmic
environment, by substituting Eq. �49� into the integrals �30�
and �33�, we obtain an explicit expression for the fidelity
damping:

r�t� = L��1,�1;t� + L��−1,�−1;t� + 2L���1�−1,
�1 + �−1

2
;t� ,

L��,�;t� = �
0

�

d�
J�,�

���

�2 �1 − cos��t��

= ������c
��1 +

cos�� arctan��ct��
�1 + �c

2t2��/2 � , �50�

where ��z� is the Euler gamma function. The phase part of
the fidelity can also be calculated. One gets

��t� = 2�t + M��1,�1;t� + N��1,�1;t� − M��−1,�−1;t�

− N��−1,�−1;t� ,

M��,�;t� = t�
0

�

d�
J�,�

���

�
= ��c

1+���1 + ��t ,

N��,�;t� = �
0

�

d�
J�,�

���

�2 sin��t�

=
������c

� sin�� arctan��ct��
�1 + �c

2t2��/2 . �51�

The above two equations �50� and �51� determine the ex-
act reduced dynamics �26� and the noisy channel T. In the
long-time regime the above equations can be simplified sig-
nificantly according to L�� ,� ;��=������c

�, M�� ,� ;��
=���1+���c

1+�, and N�� ,� ;��=0. Then, the optimal case
occurs when the fidelity is weakly damped and nonoscillat-
ing; i.e., ����=0 and r��� is small with the additional con-
straints ��1�0 and ��1�0. To show how the fidelity de-
pends on the low-frequency properties of the environment,
let us consider the simplest case ��1=�, when the asymme-

try results from different values of �1 and �−1. Then the
minimal value of r��� is when 	���+ln��c /��=0, where 	
is the Euler psi function. For, e.g., �c=100, one gets a mini-
mum at ��0.23, whereas for �c /�→� the optimal environ-
ment approaches the Ohmic limit �→0. For a given degree
of the asymmetry, a suitable tuning of � extinguishes the
oscillations and the fidelity becomes monotonic in the long-
time regime, as can be inferred from Fig. 1. On the other
hand, for a given ��0 one can perform a tuning of fidelity
by a proper choice of an asymmetry of dephasing as indi-
cated in Fig. 2. Despite this tuning, the fidelity may still be
nonmonotonic in the short-time regime, provided the asym-
metry is sufficiently strong �see Fig. 3�.

B. Coherent initial preparation of environment

Now, we consider the qubit-environment system the
bosonic part of which is initially in a coherent state

	R
 = D��	�
 . �52�

Contrary to the case of finite bosonic system, coherent states
of bosonic field are rather a theoretical construction. There is
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FIG. 1. �Color online� Time evolution of the averaged fidelity of
asymmetric dephasing channel T: the influence of qubit level sepa-
ration � for fixed �1=0.05, ��1=0.1, and �−1�0.04 �within this
choice the monotonic fidelity with �=0 occurs for �1=0.05 and
�=0.5�. The time unit is 100 /�c.
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FIG. 2. �Color online� Time evolution of the averaged fidelity of
asymmetric dephasing channel T: the effect of asymmetry �1

��−1 resulting in controllable fidelity oscillations. Values of other
parameters are the same as in Fig. 1.
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no obvious choice of the function ��� in Eq. �18� which
could be used for general considerations. The only require-
ment concerns the square integrability of ��� �29�. How-
ever, in order to illustrate the role of the initial state of envi-
ronment, we consider the class of initial preparations
parametrized by

2��� = J�,�
���/�2, �53�

where the function J�,�
��� is defined by Eq. �49�. Then, the

phase ��t� acquires the contribution

��t� = 2N���1�,
�1 + �

2
;t� + 2N���−1�,

�−1 + �

2
;t� .

�54�

The long-time dynamics of fidelity is not affected by the
initial state since

lim
t→�

��t� = 0. �55�

The short-time dynamics of fidelity is presented in Fig. 4.
The deep minimum occurring in this regime indicates that
the quality of the asymmetric dephasing channel quantified
by the fidelity becomes better when the transmitted qubit is
affected by the environment a bit longer.

The impact of the initial preparation beyond the assumed
class �53� remains an open problem in the regime of short
times. However, for long times, the property �55� holds true
for any square-integrable function ���—i.e., for an arbi-
trary coherent initial state. This statement follows from the
properties of the Fourier transforms.

IV. ENTANGLEMENT FIDELITY

There is a certain class of problems in quantum informa-
tion processing when Bob and Alice share a bipartite en-
tangled state �3�. The parties are often separated and are
prepared, at least for one of the parties, in a noisy environ-
ment. In this section we investigate to what extent the asym-
metric dephasing channel preserves entanglement of a two-
qubit state.

We consider two noninteracting qubits: one does not
evolve whereas the second is coupled to asymmetric dephas-
ing environment. We assume that initially the bosonic envi-
ronment is in its vacuum state—i.e., 	R
= 	�
 One of possible
measures of a “stiffness” of entanglement against noisy
channel T is the entanglement fidelity �3,32�. This choice
enables a direct comparison with results presented in the pro-
ceeding sections for the one-qubit fidelity. We assume that
one of the qubits prepared initially in a maximally entangled
state is sent through the asymmetric dephasing channel.
Again, as the initial state is pure, the entanglement fidelity
has a simple computable form �3�

Fe = ���i�	��IQ � T�	��i�
���i�	�	��i�
 , �56�

where T is a asymmetric dephasing channel. We limit our
attention to the maximally entangled initial states

	��1��0�
 =
1
�2

�	− 1,1
 + 	1,− 1
� ,

	��2��0�
 =
1
�2

�	− 1,− 1
 + 	1,1
� . �57�

for which entanglement fidelity Fe can be calculated in a
compact form:

Fe =
1

2
�1 + e−r�t� cos ��t�� , �58�

which does not depend on the choice of particular state
	��i��0�
, i=1,2 in Eq. �57�. The properties of the entangle-
ment fidelity �58� are, for the assumed initial preparations,
qualitatively the same as those of the one-qubit fidelity of the
asymmetric dephasing channel �36�. As a result, the en-
tanglement fidelity can be controlled in a similar manner.

V. CONCLUSIONS

We have shown that an asymmetric dephasing quantum
channel can transmit quantum information in a nontrivial
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FIG. 3. �Color online� Time evolution of the averaged fidelity of
asymmetric dephasing channel T: Initial oscillations of the averaged
fidelity for sufficiently large asymmetry. Values of other parameters
are the same as in Fig. 1.
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FIG. 4. �Color online� Time evolution of the averaged fidelity of
asymmetry dephasing channel T: the effect of the initial coherent
state, Eq. �52�, for �=0.1. Values of other parameters are the same
as in Fig. 1.
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way. Namely, it allows for an effective controlling of the
information loss, quantified by the fidelity calculated for the
initial state and the state at a given instant of time. The time
evolution of the fidelity strongly depends on the symmetry
breaking of the coupling with the outer environment. By ad-
justing the degree of asymmetry, the time evolution of the
fidelity becomes monotonic and approaches asymptotically a
steady-state value. This is due to both the time-independent
phase of the oscillations and the properties of the super-
Ohmic environment studied previously in the context of per-
sistent entanglement �14,16�. The asymmetry-induced
asymptotic vanishing of oscillations of the fidelity is an ex-
ample of nonperturbative phenomena in a sense that it does
not occur in asymmetric channels weakly coupled to the
dephasing environment.

Qualitatively similar results for the fidelity have been
shown to occur also for some specific class of coherent initial
states of the bosonic environment. However, coherent prepa-
ration of the dephasing environment affects only the short-
time properties of the fidelity. The presented analysis of the

entanglement fidelity, limited to a narrow class of initial
states of the bipartite system, leads to similar conclusions.

Optimization of quantum channels with respect to the am-
plitude of fidelity does not need to be justified. However, the
asymptotically monotonic time dependence of the fidelity
can also be of crucial importance for the information pro-
cessing. In a generic case of oscillating fidelity, the informa-
tion loss strongly depends on time, when the final state is
measured. Therefore, the time of measurement should pre-
cisely be adjusted to match the desired phase of oscillations.
We have demonstrated that for the asymmetric coupling this
time dependence can completely be tuned out.
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