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We present an analytic perturbation theory which extends the paraxial approximation for a common cylin-
drically symmetric stable optical resonator and incorporates the differential, polarization-dependent reflectivity
of a Bragg mirror. The degeneracy of Laguerre-Gauss modes with distinct orbital angular momentum �OAM�
and polarization, but identical transverse order N, will become observably lifted at sufficiently small size and
high finesse. The resulting paraxial eigenmodes possess two distinct OAM components, the fractional compo-
sition subtly depending on mirror structure.
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Polarization-dependent effects in three-dimensional opti-
cal systems have in recent years received attention under the
aspect of orbital angular momentum �OAM� �1�. It has be-
come important to understand the OAM interactions with
interfaces �2,3�, waveguides �4�, and resonators. One particu-
lar mechanism that warrants investigation is that of small
corrections to the paraxial theory of resonators giving rise to
what may be regarded as optical spin-orbit coupling �5,6�.

In this Rapid Communication, we extend electromagnetic
resonator theory �7� to provide a complete perturbation
analysis and numerical computations for an optical cavity
which has an axis of rotational symmetry �ẑ�, but neverthe-
less does not conserve the component � of OAM along that
axis. This phenomenon itself is remarkable because the
model system, shown in Fig. 1�a�, approaches the paraxial
limit in which OAM conservation might be taken for
granted. Standard paraxial modes may be chosen to have
well-defined � because the polarization is transverse to ẑ and
factors out of the wave problem, leaving a scalar Helmholtz
equation which maps to a quantum harmonic oscillator �8�.
Labeling the resulting transverse spectrum by ��Z and a
radial node number p�N0, all modes with the same trans-
verse order N=2p+ ��� are degenerate in this set of approxi-
mations. Therefore, going beyond this theory entails a degen-
erate perturbation theory for which we construct a coupling
Hamiltonian V with the nominal Gaussian divergence angle
�D�kw0 /2 as its small parameter. Here k is the wave num-
ber and w0 is the waist radius. Since V is typically not diag-
onal in �, the solutions may be far from � eigenstates. This
holds even for arbitrarily small �D. Both polarization and �
mix in a paraxial spin-orbit coupling �5,6�. Our work, in part,
yields a way of generating OAM and other nonuniformly
polarized light. Furthermore, in work involving cavity quan-
tum electrodynamics, paraxial theory at the level developed
here may be needed to distinguish spectral anticrossings aris-
ing from passive cavity physics from those of strong photon-
electron coupling.

The main result of our work is an analytical, quantitative
expression for the degree of OAM mixing in a dome-shaped

cavity with a Bragg mirror. The latter is crucial to achieving
high finesse in optical microcavities. Our results also shed
light on the recently observed coupling between spatial and
polarization degrees of freedom in broad-area vertical-cavity
surface emitting lasers �9�: polarization mixing was found to
cause surprising spectral complexity even with simple
�square� boundaries, accompanied by intricate polarization
patterns in the far-field emission. The essential physics is
provided by the interaction of differently polarized plane-
wave components with the planar, high-reflectivity distrib-
uted Bragg reflector �DBR� on which both Ref. �9� and our
system in Fig. 1�a� are based.

Typical DBRs comprise dielectric multilayers and have a
“form birefringence”: the reflectivities for TE �s-polarized�
and TM �p-polarized� plane waves, rs�p�= �rs�p��exp�i�s�p��,
are unequal in phase at nonzero angles of incidence, �. Pre-
viously �5,10�, we had found numerically that the reflection
phase difference �s��D�−�p��D��0 is responsible for the
polarization mixing. A consequence of great practical impor-
tance is that by tuning cavity or mirror parameters, the cou-
pling of OAM imposed by Maxwell’s equations can be rig-
orously turned off for selected modes, giving them well-
defined �. Aside from the consideration of OAM, our
perturbation theory is fundamental to paraxial theory itself:
we perform a significant extension to and completion of pre-
vious work by Yu and Luk �7� which derived the lowest-
order corrections to the paraxial modes of two-mirror cavi-
ties having perfect electrically conducting mirrors, rs=rp
=−1. Our approach, which allows a more general, dielectric
planar mirror, requires the construction of a 2�2 perturba-
tion matrix V and predicts very different results when rs and
rp are different functions.

The work of Ref. �7� and its precursors �e.g., Ref. �11��
appears to be forgotten in the current literature. This can be
attributed to the difficulty of experimentally observing the
small spectral splittings caused by slightly nonparaxial per-
turbations. Agreement with a degenerate perturbation theory
for rs�p�=−1 was experimentally demonstrated using micro-
waves �11� where, due to comparable resonator size and
wavelength, the mode spacing is large enough to resolve the
lifting of the �N+1�-fold degeneracies labeled by N. How-
ever, with recent progress in miniaturization �12�, compa-*davidhfoster@gmail.com
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rable size parameters are becoming accessible to optical
cavities similar to Fig. 1�a�.

To write the splittings described in Ref. �7� in a form we
can use for the following discussion, let us first review the
unperturbed vector-field basis spanning the Nth transverse
multiplet. These are the Laguerre-Gauss �LG� modes, writ-
ten in polar coordinates as a product MN

� �� ,� ,z��̂s of a sca-
lar part MN

� , having orbital angular momentum �, and a cir-
cular polarization vector �̂s��x̂+siŷ� /�2, where s= �1 is
the spin degree of freedom. Expressions for the LG modes
and their Bessel wave decompositions are given in Ref. �13�.
Perturbations that preserve rotational symmetry around ẑ will
only couple those MN

� �� ,� ,z��̂s for which the total angular
momentum m=�+s around this axis is the same �13�. We
henceforth consider N and m to be fixed, non-negative pa-
rameters; we will briefly discuss later the allowance of m
�0. The nonconservation of OAM emerges here because s
can generally1 take two values, corresponding to the basis
states MN

m−1�̂1 and MN
m+1�̂−1. No symmetry prevents these

states from coupling, unless m=0, in which case time-
reversal invariance applies.

Nevertheless, no such OAM coupling is found in Ref. �7�,
where perturbations merely split the wave numbers of the
pair �MN

m�1�̂�1	 by an amount

�kLG � k�MN
m+1�̂−1� − k�MN

m−1�̂1� =
m

4kLR
. �1�

The calculation assumes a dome of vertical length L, top
mirror radius of curvature R, and rs�p�=−1. We will now
show that a more realistic model for rs�p� leads to actual
resonator modes �N,m,1 and �N,m,2 having a given m but
forming a rotation of the LG basis pair by a mixing angle
	� �−
 /4,
 /4�:


�N,m,1�	�
�N,m,2�	�

� = 
cos 	 − sin 	

sin 	 cos 	
�
 MN

m−1�̂1

MN
m+1�̂−1

� . �2�

The states at 	= �
 /4 are hybrid modes, one of which is
predominantly �though not completely� composed of TM
plane waves, the other being predominantly TE �13,14�. This
approximate polarization separation of the hybrid modes
yields an intuitive picture of mode mixing; the separation
acts as a lever arm by which the Bragg mirror, having �s
��p, rotates the eigenmode basis away from the LG modes
and toward the hybrid modes.

The OAM nonconservation described above is exhibited
by the paraxial modes of two-mirror axisymmetric cavity
resonators which �a� are of sufficiently small size with re-
spect to wavelength, �b� have sufficiently narrow resonance
widths �low loss�, and �c� have at least one mirror for which
�s��p �commercial dielectric mirrors meet this require-
ment�. The first two requirements are essential in splitting the
degeneracies of high order Gaussian modes, and Eq. �1� al-
lows us to estimate whether this is possible. To perform the
degenerate perturbation theory in the presence of property
�c�, we first develop the perturbation Hamiltonian V in the
two-mode basis �MN

m�1�̂�1	. V must be symmetric �V21
=V12� and, for our purposes, may be taken to be traceless
�V22=−V11�. V then has eigenvectors v�1= � cos 	

−sin 	 � and v�2

= � sin 	
cos 	 �, with

	 = �1/2�arctan�V12/V22� , �3�

and eigenvalues �k1�2�= � �V12
2 +V22

2 �1/2. As system param-
eters are varied, the elements of V change and an anticross-
ing of the hybrid modes emerges; cf. Fig. 1�b�.

All deviations from the paraxial limit must be considered
to lowest order in �D

2 , which for our cavity is �D
2

=2 / �k�L�R−L��. The physical derivation of V is facilitated
by noting that in the anticrossing scenario, 	=0 is equivalent
to V12=0 and hence corresponds to the assumptions underly-

1Specifically, when N�2 and 0� �m��N+1, there are two mix-
able basis states and Eq. �2� applies.

FIG. 1. �Color online� �a� Pl-
anoconcave model geometry. The
top mirror radius of curvature R is
100 m in the examples. �b�
Wave number splitting �k�k2

−k1=�k2−�k1 from numerical
data at L=25 m, ��400 nm, in-
dicating the avoided crossing be-
tween a mixable pair of modes.
�c� Numerical results �symbols�
for the mode mixing angle 	
closely fit the �solid� curve 	
=arctan���p−�s� /��−b� /2. Dif-
ferent symbols �colors� represent
data series at L=2.5–25 m �in
steps of 2.5 m� with kR�780 to
1631. �� and b are fit here for
each series.
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ing the known result Eq. �1�. Thus, Eq. �1� should be repro-
duced by our model at 	=0. In wave-number units, we
therefore set

V22 = − V11 =
1

2
�kLG =

m

16
�L

R

1 −

L

R
��D

2

L
. �4�

Although Eq. �1� was derived for ideal-metal cavities, our
more general DBR boundary conditions do not affect Eq. �4�,
because they shift all LG modes with the same N equally. To
explain this, consider the penetration depths �Ls�p� of each of
MN

m�1�̂�1 into the mirror layers. For a plane wave of s or p
polarization with incident angle � at a DBR, �Ls�p�
=�s�p��k ,�� / �2k�. In order to capture the relevant material
properties of the DBR, we neglect transmission and expand
its reflection phase in the plane wave angle of incidence, �,
as �s�p��k ,����0�k�+�s�p��k��2.

Any vectorial mode � can be decomposed into azimuth-
ally symmetrized plane waves �Bessel waves� by defining a

“tilde” operator such that �̃s�p���� essentially denotes the
amplitudes of the TE �TM� plane waves of polar angle �. The

paraxial �̃s�p���� is nonzero only near ��0, with the aver-
aged reflection phase of � being

��� �� ���̃s����2�s��� + ��̃p����2�p�����d� , �5�

with the normalization ����̃s�2+ ��̃p�2��d�=1. Specializing
to the LG modes with the abbreviation ��1�MN

m�1�̂�1, cir-

cular polarization leads to ��̃�1
s ����2= ��̃�1

p ����2. The
harmonic-oscillator nature of the transverse field �8� entails
that Eq. �5�, with the above expansion for �s�p�, depends only
on the mode order N, but not on �. This carries over to the
average penetration depth �L���1

= ����1
/ �2k�, and hence

the effective cavity length L+ �L���1
is identical for both

modes ��1; this then implies equal spectral shifts, as
claimed above.

To obtain the off-diagonal element V12, we apply the same
penetration-depth argument to the special case 	=
 /4 where
Eq. �2� yields the hybrid modes. Their plane-wave ampli-

tudes �̃N,m,1
s�p� ��� and �̃N,m,2

s�p� ��� can be written purely in terms

of the LG amplitudes �̃�1
p ��� using Eq. �2�, and their split-

ting �khybrid�kN,m,2−kN,m,1 is given by

�khybrid = − �k/L���LN,m,2 − �LN,m,1� �6�

=
�p − �s

L
� �3�̃+1

p ����̃−1
p ���d� , �7�

where k is the unperturbed wave number. Therefore, we
reach ��khybrid�� ��kLG� if the form birefringence quantity
��p−�s� is made large. On the other hand, 	→
 /4 implies
�V12�� �V22�, so that the eigenvalues of V in this limit are
�k1�2�� �V12. Setting 2�k2 equal to Eq. �7� and performing
the � integral, one obtains

V12 = V21 =
�p�k� − �s�k�

8
��N + 1�2 − m2�D

2

L
. �8�

For some simple dielectric mirrors, �p−�s may be swept

across zero by varying the cavity length across the nominal L
at which the mode pair of interest has unperturbed k equal to
the design �center� wave number of the mirror, kd. The mix-
ing angle 	 can be written as

	 = �1/2�arctan���p�k� − �s�k��/��	 , �9�

where the width of the crossover interval is given by

���L/R,N,m� =
m

2
��L/R��1 − L/R�

�N + 1�2 − m2 . �10�

The formulas above complete the lowest-order degenerate
perturbation theory for paraxial-mode mixing. Interestingly,
�� is independent of wavelength: for fixed cavity geometry
and mode labels N and m, modes of different longitudinal
node number �along ẑ� will have different k but identical
anticrossing behavior when 	 is plotted versus �p−�s. This
universal functional form provides a robust way of tailoring
any desired mixing angle 	. Most importantly, under the
aspect of OAM nonconservation, we can tune Eq. �2� to 	
=0.

Once the cavity linewidth for the relevant paraxial modes
becomes less than the mode separation, �k�2�k2
�m / �4kLR�, the two modes �N,m,j given by Eqs. �2�, �9�,
and �10� are resolved at slightly different k �or L�. Any ex-
citation of the cavity would generally have nonzero overlap
with these modes, and thus complicated mode patterns �5,13�
can be generated by simple excitation. The magnitude of 	 is
zeroth order in �D

2 , and excursions near the asymptotic values
can be seen in Fig. 1�c�. The magnitude of the relative fre-
quency splitting, however, is O��D

4 � as �D→0. We note that
observed modes will not be restricted to m�0. Axial sym-
metry creates an exact twofold degeneracy of the vectorial
LG basis modes under the transformation in which m, �, and
s switch sign �10�. The presence of the exact degeneracy2

does not “wash out” the generation of complicated mode
patterns and is more fully discussed in Refs. �10,13,15�.

We have numerically calculated modes for R=100 m
and L=2.5–25 m with a DBR comprising 36 pairs of
quarter-wave dielectric layers A and B with refractive indices
nA=3.52 and nB=3.00, with layer B at the top surface. Typi-
cal values of �s�p� were around −3, with d��p−�s� /d�k−kd�
�−2.8 m. Data were analyzed for modes close to �d
�2
 /kd�400 and 800 nm. We considered mode pairs with
N=2 and m=1, the lowest values for which OAM mixing
can occur.

The numerical data for the mixing angle are fit extremely
well by Eq. �9� if we allow for an offset b in the argument of
the arctan, as done in Fig. 1�c�. The comparison between the
numerical fit and Eq. �10� is shown in Fig. 2. The offset b has
median −0.32 for our data and empirically behaves as
C / �kL�1−L /R��, where C is a slowly varying function of k

2This results in a degenerate �superimposable� SU�2� sector which
externally multiplies the nondegenerate �mixable� SU�2� sector we
have considered in Eq. �2�. The location, or “generalized polariza-
tion,” of each observed mode within the exactly degenerate sector is
excitation dependent, while the cavity fixes the location �	� within
the mixable sector.
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and kd. Taking the limit �D→0 such that L /R is bounded
away from 0 and 1 implies that �b�=O��D

2 �. This next-
highest-order correction to our perturbation theory will be
discussed in a subsequent publication �15�.

To spectrally resolve the transverse mode splitting along
the entire mixing curve, the cavity must obey 2kR�1
− �R1R2�1/2��m, where R1�2� are the power reflectivities of
the two mirrors. Microwave experiments may be the most
direct approach. Alternatively, paraxial spin-orbit coupling
may be realized in microcavity resonators for quantum-
information applications �cf. Ref. �12��, where small size and
high finesse are required. Such cavities could generate OAM
or hybrid beams at light levels from single-photon-on-
demand to that of a macroscopic laser. In particular, one

could utilize the fine structure and varied spatial patterns of
the split modes. This has particular potential for quantum-
information applications: the order-N family provides N+1
nearly degenerate energy levels corresponding to modes hav-
ing different vectorial spatial patterns of the electric field.
This spectral and spatial structure combined with quantum
dots at the planar mirror may possess quantum logic capabil-
ity.

In conclusion, both the mixing angle and the frequency
splitting for OAM–mixed paraxial resonator modes in an
axisymmetric cavity have been analytically derived here in a
degenerate perturbation theory which includes the form bire-
fringence of a practical mirror. The phenomenon is similar in
principle to the polarization coupling observed in Refs.
�9,16�: differences in the penetration depths for TE and TM
plane waves modify the vectorial resonator modes. For our
case, however, eigenmode coupling persists from the non-
paraxial regime to the deeply paraxial regime. By examining
the latter, we have shown here that the coupling can in fact
be turned on and off via the material parameters �s�p�. The
underlying inadequacy of a scalar paraxial treatment is
washed out in macroscopic cavities, but must be regarded as
a fundamental limitation in high-finesse microcavities, where
the correct starting point for any paraxial formulation must
be the mode basis of Eq. �2�, which is heterogeneous in
orbital angular momentum.
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FIG. 2. �Color online� Mode-coupling width �� from fit �sym-
bols� compared to perturbative prediction �solid line�, plotted as a
function of the cavity length L at fixed R=100 m. Error bars were
obtained from the fits of Fig. 1�c�. Because the analytic equation
�10� is wavelength independent, all data for ��400 nm and �
�800 nm fall onto the same curve.
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