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We consider the propagation of a light pulse in a medium with a single resonance. If the frequency of the
pulse is tuned far from resonance and the pulse duration is much shorter than the lifetime of the excited state
of the resonant particles in the medium �atoms in a gas, impurity ions in a solid, etc.�, the group velocity of the
pulse is appreciably reduced. It is shown that the slowing down of the group velocity of the pulse is accom-
panied with a pulse chirp, which produces a pulse broadening in time. It is proposed to use two samples in
sequence with opposite chirps �up chirp and down chirp or vice versa� compensating the pulse broadening.
Then the pulse can be delayed with almost no losses, distortion, and broadening. However, there is a maximum
distance, beyond which the pulse experiences corruption. Pumping with an auxiliary laser beam can control the
delay time of the light pulse in the medium. Conditions to eliminate the contribution of the dephasing processes
in the pulse propagation are considered.
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I. INTRODUCTION

The tremendous progress in telecommunication and com-
puting demands the development of new principles and de-
vices, which employ laser pulses to transmit and process
information with high bit rate. In this context all-optical sig-
nal processing is of great importance. A tunable all-optical
delay line with wide bandwidth and a small size is one of the
basic elements in optical information processing, e.g., buff-
ering of optical data packets. The size of the delay line can
be appreciably reduced with the help of the “slow light”
phenomenon. For example, electromagnetically induced
transparency �EIT�, see a recent review on the topic in Ref.
�1�, can slow down the group velocity of the pulse to
17 m /sec �2�. It differs from the speed of light in vacuum, c,
by a factor of 107, which allows one to reduce significantly
the size of the delay line based on EIT. However, in most
cases the width of the EIT window usually does not exceed
15 MHz �see, for example, Ref. �3� and references therein�.
Therefore, pulses shorter than 10 ns cannot be delayed with
EIT, if the coupling laser, creating the transparency window,
is not extremely strong. There are other obstacles limiting the
maximum fractional delay of the pulse, i.e., the ratio of the
delay to the pulse duration, with EIT �4,5�. To date, accord-
ing to Ref. �5�, delays of only four pulse widths were ob-
served in EIT �6�. This is, of course, without the use of the
light-pulse storage technique �7,8�, which can delay the pulse
as long as 1 ms. A problem to obtain a large fractional delay
in EIT is caused by the pulse broadening accompanied by an
intensity drop of the pulse �9�. To increase the bandwidth of
the “slow light” device, it was proposed to use spectral hole
burning �3�. This idea was successfully tested in a hot ru-
bidium vapor, where 5.8 ns pulses were delayed up to 43 ns
�10�. Recently, slow light propagation was observed in ru-
bidium �11–13� and cesium �14� vapors without their special
preparation by coupling or pumping laser fields. 2 ns pulses
were delayed up to 106 ns in four 10 cm long cells with
rubidium vapor �12� and 275 ps �740 ps� pulses were de-
layed up to 6.8 ns �59 ns� in a 10 cm long cell with cesium

vapor �14�. The delay is produced by tuning the frequency of
the signal pulse between two strongly absorbing and widely
spaced resonances �in the middle of the spectral doublet�.
This delay can be controlled by changing the temperature of
the cell or by depletion of the atomic ground states by optical
pumping. Control of the delay by optical pumping is made
tunable with a fast reconfiguration time of hundreds of ns.
This method is proved to be powerful and even allowed an
all-optical delay of two-dimensional images �15�. In Ref.
�16� we considered the physical processes involved in the
slowing down of a laser pulse and analyzed the basic limita-
tions for the pulse delay in a medium with two resonances.
We also proposed to use solids with a doublet structure in the
absorption spectrum to slow down pulses of picosecond du-
ration or even shorter. Meanwhile, appropriate doublet struc-
tures in an absorption spectrum are not frequently available.
Therefore, it could be a problem to find such a doublet if an
operating device is restricted by a certain wavelength, e.g.,
1350 nm or 1550 nm used practically in optical communica-
tion systems. In this paper we propose a way to avoid the use
of a doublet structure and obtain the same excellent perfor-
mance as the doublet structure provides. We verify and give
further development of an old idea to slow down light pulses
whose frequency is detuned from the resonant frequency of a
medium. This idea was proposed and experimentally tested
in rubidium vapor by Grischkowsky �17�. We found limita-
tions of this method and propose a method to increase the
maximum pulse delay in the off-resonant medium. We dis-
cuss the effect of dephasing mechanisms on the pulse propa-
gation and we propose a way to minimize their effect.

The paper is organized as follows. In Sec. II we recall the
adiabatic following condition and the adiabatic solution for
the atomic coherence, and we find the exact and approximate
solutions for the pulse propagation. In Sec. III we find the
conditions when relaxation processes do not affect the pulse
propagation. In Sec. IV the method of compensation of the
pulse chirp is considered.
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II. PULSE PROPAGATION IN AN
OFF-RESONANT MEDIUM

In this section we consider the off-resonant pulse propa-
gation in a medium if its excitation is adiabatic. The adia-
batic excitation means that the medium is left in the ground
state after the pulse is gone and the contribution of the irre-
versible processes, such as incoherent scattering in all direc-
tions, is minimized.

A. Adiabatic following concept

Following Grischkowsky �17� we introduce a pseudospin
to describe the evolution of an atom, excited by a near reso-
nant field E�z , t�=Es�z , t�exp�−i�st+ iks ·z�, where �s and ks
are the frequency and the wave vector of the field, Es�z , t� is
a slowly varying amplitude. We assume that the field is a
transform-limited bell-shaped pulse, i.e., its spectral phase is
frequency independent. Feynman, Vernon, and Hellwarth
�18� proposed the use of a pseudospin S �S=1 /2� to describe
the evolution of two atomic states interacting with a resonant

field. In terms of conventional operators of spin 1 /2, Ŝx, Ŝy,

and Ŝz, the Hamiltonian, which includes only two states, is

H = ��0Ŝz − 2���Ŝx cos �st + Ŝy sin �st� , �1�

where �0 is the resonant frequency, �=degEs�z , t� /2�, and
deg is the dipole matrix element for the transition from the
ground state g to the excited state e. For simplicity of nota-
tions we do not show the phase factors ks ·z in Eq. �1�. By a
canonical transformation by means of the unitary operator

U=exp�i�stŜz�, the Hamiltonian �1� is transformed to H̃
=UHU−1+ iU̇U−1. The new Hamiltonian

H̃ = ��Ŝz − 2��Ŝx �2�

is time independent if � is constant, where �=�0−�s is the
detuning of the field frequency �s from the resonant fre-
quency �0. Such an operation with the atomic-basis states is
equivalent in nuclear magnetic resonance to the transforma-
tion to the rotating reference frame, where the rf field be-
comes constant �19�.

If the detuning � would be zero, the spin would precess
around the rf field amplitude, which is parallel to the x axis
in the rotating reference frame. As a result the spin moves up
and down between the states g and e, which means absorp-
tion and reemission of an RF quantum. Here, coordinates x,
y, and z are defined in a pseudospace, which is different from
the real space where the pulse propagates �along z direction�.
If ����� the spin precesses around the effective field Hef f

=��2+4�2, which makes a small angle �=tan−1�2� /��
with the quantization axis z. For a pulsed field with a bell-
shape envelope, whose coupling parameter ��t� smoothly
rises to a maximum value and then smoothly decreases to
zero, the direction of the effective field Hef f undergoes a
small excursion from the z axis, making a maximum angle
�max=tan−1�2� /��max at the pulse maximum, and then com-
ing back to the z axis.

One can assume that, if the change rate of the pulse, �s, is
much smaller than the absolute value of the detuning �, the

spin will adiabatically follow the changing effective field,
satisfying the relation

�Sx�t�� 	
��t�

��2 + 4�2�t�
, �3�

while the other components are �Sz�t��
	−� / �2��2+4�2�t�� and �Sy�t��	0. According to these re-
lations, the atom is excited reversibly and no excitation is left
when the pulse is gone. Only the dispersive �in-phase� com-
ponent of the atomic response 
�Sx�t�� is present, when the
pulse is on, and the absorptive �out-of-phase� component

�Sy�t�� is negligible. In this case one can expect only a
refractive index change with no dissipation of energy of the
pulse. This is the first order of the adiabatic approximation.

B. Analytical solution of the master equations

To find the higher-order adiabatic corrections along with
the nonadiabatic contribution from the dissipative processes
such as the spontaneous decay of the excited state and the
dephasing of the atomic coherence, we derive the master
equations for the spin components. They are

u̇ = − �v − �du , �4�

v̇ = �u − � − �dv , �5�

where u= �Sx�t��, v= �Sy�t��, and the change of �Sz�t�� is ne-
glected since we apply the linear response approximation
��Sz�t��	−1 /2�. �d=�+�m is the decay rate of the atomic
coherence, where � is produced by the spontaneous decay of
the excited state and �m is the contribution from the random
local fields experienced by the atom from the environment.
We use here the notations u and v for the atomic coherence,
which are conventional in coherent spectroscopy, see, for
example, Ref. �20�.

These equations originate from the master equation for
the slowly varying component �eg=	eg exp�i�st− iksz� of the
atomic density matrix 	,

�̇eg = − ��d + i���eg + i��z,t� . �6�

By means of the Fourier transform

F�
� = �
−�

+�

f�t�ei
tdt , �7�

Eq. �6� for the bell-shaped pulse �Es�z , ���=0� is reduced
to an algebraic equation that can be solved easily. The solu-
tion is

�eg�
� =
i��z,
�

�d − i
 + i�
. �8�

If the pulse changes much more slowly than the precession
rate � ��s��, the adiabatic expansion �3,9,16� is appli-
cable,

�eg�
� =
i��z,
�
�d + i�

�
k=0

�
�i
�k

��d + i��k . �9�

The inverse transform of Eq. �9� is
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�eg�z,t� =
i

�d + i�
�
k=0

�
�− 1�k�k��z,t�/�tk

��d + i��k . �10�

If the pulse duration is short compared with the dephasing
time T2=1 /�d but long compared with the precession period
Tp=2� /� �i.e., ���s��d�, only a few terms of expansion
�10� have to be considered. Taking only the first three terms
gives

�eg�z,t� =
�

�
+ i

1

�2

��

�t
−

1

�3

�2�

�t2 + ¯ . �11�

Then the u and v components of the atomic coherence are

u 	
�

�
−

1

�3

�2�

�t2 , �12�

v 	 −
1

�2

��

�t
. �13�

Comparing this result with Eq. �3�, we see that the next order
adiabatic corrections give an additional small term
−�2� /�3�t2 to the u component and a nonzero contribution
to the v component. For the leading edge of the pulse up to
its maximum we have �� /�t�0, and hence the v component
is negative, which results in the pulse absorption. In this
stage the energy of the pulse is stored in the excited state �e�
atoms. For the trailing edge of the pulse, starting from its
maximum, we have �� /�t�0, and hence the v component is
positive. This results in the pulse amplification by the atoms
that stored the energy of the pulse during its rising stage.
Both processes are balanced such that the pulse is not dis-
torted but only delayed.

In the next section we show analytically that the v com-
ponent, Eq. �13�, gives a reduction of the group velocity of
the pulse. The u component, Eq. �12�, gives a phase shift of
the pulse, due to the first term of the right-hand side �RHS�
of Eq. �12�, and a pulse chirp, due to the second term of the
RHS of Eq. �12�. Grischkowsky �17� derived Eq. �13� from
Eq. �4� since it can be read as v=−�u̇+�du� /�, and if u is
known from Eq. �3�, obtained from qualitative speculations,
then v is easily found. The chirp-inducing term −�2� /�3�t2

in the u component was not found in Ref. �17�. In the next
section we show that this term is crucial in achieving maxi-
mum pulse delay in an off-resonant medium.

C. General solution of the wave equations

If the duration of the pulse is much longer than the oscil-
lation period T�=2� /�s of its carrier frequency, then the
propagation of the pulse in a resonant medium is described
by the wave equation for the slowly varying amplitude
Es�z , t�,

L̂Es�z,t� = i�
��eg�z,t�

deg
, �14�

where L̂ is the differential operator L̂=�z+c−1�t, �
=4��sN�deg�2 /�c, and N is the concentration of resonant
particles in the medium. To combine it with the matter equa-

tion �6�, we use the wave equation for the coupling param-
eter ��z , t�,

L̂��z,t� = i
�

2
�eg. �15�

With the Fourier transform and the solution �8�, this equation
is reduced to

 �

�z
−

i

c

 + A�
����z,
� = 0, �16�

where

A�
� =
�/2

�d − i
 + i�
. �17�

Its solution is

��z,
� = ��0,
�exp��i
z/c� − A�
�z� , �18�

where ��0,
� is the spectrum of the coupling parameter of
the pulse �or of the pulse amplitude since ��0,
�
Es�0,
��
at the input of the sample z=0. The inverse Fourier transform
of Eq. �18� gives the pulse envelope at a distance z in the
medium, if the Fourier components of the pulse at the input
of the sample are known. This envelope is

Es�z,t� =
1

2�
�

−�

+�

Es�0,
�exp�− i
�t − z/c� − A�
�z�d
 .

�19�

This is the exact solution of the matter �6� and wave �14�
equations, obtained without the adiabatic following approxi-
mation. We have to point out that, since Eq. �6� is derived in
the linear response approximation, the solution �19� is appli-
cable only for weak pulses.

D. Gaussian pulse propagation in adiabatic conditions

We consider a pulse with a Gaussian envelope at the in-
put: Es�0, t�=E0 exp�−��st /2�2�. Its Fourier transform is
Es�0,
�= �E02�� /�s�exp�−�
 /�s�2�. If �����s��d, we can
apply the adiabatic following approximation and take only
the first terms of expansion Eq. �9� up to 
2. Then

A�
� 	 − i
�

2
 1

�
+




�2 +

2

�3� . �20�

As already discussed in the previous section, the second term
of this expansion is defined by the contribution of the v
component, and the third term is defined by the adiabatic
correction −�2� /�3�t2 to the u component. We introduce the
following parameters: �=�z /2�, td=�z /2�2, and �ch

=�2���3 /�z. In terms of these parameters, A�
�z in the inte-
gral �19� is

A�
�z = − i� − i
td � i

2

�ch
2 , �21�

where the minus sign before the last term is for ��0, and
the plus sign is for ��0. With this approximation, the inte-
gral in Eq. �19� is calculated by means of the saddle-point
method, Ref. �21�. The result is
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Es�z,t� =

E0 exp�i� − �out
2

4
� ib��t − td�2�

�1 � iR
, �22�

where

�out =
�s

�1 + R2
�23�

is the spectral half-width of the output pulse, R= ��s /�ch�2,
and

b =
�s

4

4�ch
2 �1 + R2�

�24�

is the pulse-chirp parameter. The output pulse acquires a lin-
ear chirp b, which is quantified in units of Hertz per second.
This chirp is due to the group velocity �delay� dispersion,
i.e., to the fact that different spectral components of the pulse
acquire different phases in the medium not according to the
linear law 

td. It is also possible to specify the amount of
group delay dispersion �in units of sec2/length� referred to a
medium with unit length. Then the group delay dispersion
D2= ��2A�
� /�
2�
=0 is the second derivative of the change in
spectral phase of the output pulse with respect to the angular
frequency in a medium of 1 cm or 1 mm length. According
to Eq. �20� this value is D2= �� /�3.

From the approximation equation �21� it follows that the
phase distribution has a parabolic dependence �
2 /�ch

2 with
the parabola looking up for ��0, and looking down for �
�0. As a result we have a chirp up �the instantaneous fre-
quency rises with time� if ��0 and a chirp down �the in-
stantaneous frequency decreases with time� if ��0. The am-
plitudes of the spectral components of the Gaussian pulse are
distributed according to the exponent whose argument is the
parabola −
2 /�s

2. If �ch
2 �s

2, which means that the parabola
�
2 /�ch

2 varies much faster than −
2 /�s
2, then R�1 and the

duration of the output pulse is appreciably increased �the
pulse is stretched� and its amplitude is decreased. According
to Eq. �23�, for R→� the spectral half-width of the output
pulse �out tends to �ch

2 /�s, which is much smaller than the
spectral half-width of the input pulse, �s. In this case the
chirp parameter b tends to �ch

2 /4.
The intensity of the output pulse, Is�z , t�= �Es�z , t��2, is

Is�z,t� = I0

exp�−
1

2
�out

2 �t − td�2�
�1 + R2

, �25�

where I0= �E0�2. According to this equation, the intensity of
the pulse drops as ��ch /�s�2, if �ch

2 �s
2.

We conclude that the first term of the adiabatic expansion
�20� gives the phase shift � of the pulse �due to the main part
of the u component�, the second term produces the pulse
delay td �due the v component�, and the third term results in
the pulse chirp with the rate 2b �due to the small correction
to the u component�.

III. ELIMINATION OF THE DEPHASING MECHANISMS

In the previous section we considered the pulse propaga-
tion if �����s��d. On this condition the contribution of the
dephasing processes can be neglected and the evolution of
the atomic coherence becomes almost dynamical, which is
well described by the solution given by Eqs. �12� and �13�. In
real absorptive media there are many dephasing processes
whose contribution exceeds many times the dephasing in-
duced by the natural broadening of the absorption line, see,
for example, Ref. �22�. Therefore, to satisfy the inequality
�s��d, one has to work with very short pulses. In this sec-
tion we consider conditions when the contribution of extra
broadening mechanisms on top of the natural broadening can
be eliminated and the limitation imposed upon the pulse du-
ration is moderated.

A. Inhomogeneous broadening

In atomic vapors absorption lines are inhomogeneously
broadened due to the Maxwell distribution of velocities of
the atoms. This results in Doppler broadening due to the
Gaussian distribution of resonant frequencies �0,

f inh��0 − �c� =
exp�− ��0 − �c�2/�inh

2 �
���inh

, �26�

with typical values of �inh=500 MHz for hot alkaline vapors,
which is two orders of magnitude larger than the half-width
�d of the homogeneous line �see, for example, Ref. �12��.
The Fourier transform of the response of a unit volume of the
vapor to the field excitation, i.e., of the RHS of Eq. �14�, is
the average

N��eg�
�� =
iN��
�
���inh

�
−�

+� e−�x/�inh�2

�d + i�x + � − 
�
dx , �27�

over all spectral packets with resonant frequencies �0 distrib-
uted according to Eq. �26� around the central frequency �c,
where x=�0−�c and �=�c−�s is the detuning of the field
frequency with respect to �c.

If �=0, the frequency dependence of the absorptive,
N Im��eg�
��, and dispersive, N Re��eg�
��, components of
the average response are typical for an inhomogeneously
broadened Gaussian absorption line in the domain ��c
−�inh ,�c+�inh� near the central frequency of the line. This is
because close to the central frequency the homogeneous
component 1 / ��d+ i�x−
�� varies much faster than the inho-
mogeneous component exp�−�x /�inh�2� in the convolution
integral, Eq. �27�, and hence exp�−�x /�inh�2� can be removed
from the integral as a constant factor with argument x=
.
Therefore, for example, the imaginary part of Eq. �27� repro-
duces the frequency dependence of the inhomogeneous com-
ponent, i.e., N Im��eg�
��	��N��
�exp�−�
 /�inh�2� /�inh.
As a result the maximum of the inhomogeneously broadened
absorption line is reduced as 	���d /�inh with respect to the
maximum of the homogeneous line.

If the detuning � is much larger than �inh, the homoge-
neous component 1 / ��d+ i�x+�−
�� varies much more
slowly than the inhomogeneous component exp�−�x /�inh�2�
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in the convolution integral, Eq. �27�. As a result the homo-
geneous component can be removed from the integral in Eq.
�27� as a constant factor with x=0, and then the atomic re-
sponse coincides with the response of a homogeneous en-
semble. Figure 1 shows the frequency dependence of the
absorptive �a� and dispersive �b� components of the atomic
response. It is clearly seen that if ����3�inh the frequency
dependence of these components coincides with the homo-
geneous one and the inhomogeneous broadening becomes
ineffective.

B. Homogeneous broadening

In solids with impurity ions the absorption line at room
temperature is mostly broadened by phonons. If elastic scat-
tering of phonons by an impurity is the dominant contribu-
tion to the line broadening, the line is narrow �it is the so-
called zero phonon line�. For example, in ruby the linewidth
of the R1 line is 11 cm−1 at 300 K �23�. Therefore, to obtain
slow-light propagation one has to use pulses shorter than a
picosecond, detuned at least by 100 cm−1 from resonance. At
the temperature of liquid nitrogen �77 K�, the linewidth nar-
rows to 
0.1 cm−1 �24� because the phonon contribution
drops with the temperature decrease. With further tempera-

ture decrease, the linewidth almost does not change anymore
since it is inhomogeneously broadened due to crystal imper-
fections, while the phonon contribution becomes insignifi-
cant �24�. At liquid helium temperature �4 K�, the linewidth
of the homogeneous components of the absorption line is
mostly defined by the magnetic interactions of the electron
and the nuclear spins of the impurity with the environment
and with nearby impurities, but not by phonons.

These interactions produce a fast fluctuation of the reso-
nant frequency �0+��t� with ���t��=0, where �¯� means the
time average. If the correlation time, �c, of this random pro-
cess is short with respect to 1 /���2�t��, then the decay rate of
the optical coherence due to this random process is �m

= ��2�t���c. If �c is comparable or longer than 1 /���2�t��, the
decay rate is defined by ���2�t��, see, for example, Ref. �25�
and references therein.

For a homogeneous spectral packet of the inhomoge-
neously broadened line whose resonant detuning � is zero,
the atom-field interaction Hamiltonian in the “rotating refer-
ence frame,” Eq. �2�, is

H̃ = − 2��Ŝx. �28�

Then the atomic pseudospin is quantized along the x direc-

tion. Actually, there is also a term ���t�Ŝz in this Hamiltonian
due to the magnetic interactions. If the resonant field is
strong and the precession frequency � of the pseudospin
around the x direction is much faster than the fluctuation rate
1 /�c of the random field ��t�, its contribution is averaged out
and �m tends to zero �26–28�.

For a homogeneous spectral packet whose detuning is
large �����c�1, �������2�t���, one could expect that the ex-
citation by a weak laser field �� ��� and ��c1� also ex-
periences a negligible contribution of the magnetic interac-
tions to the coherence dephasing. The argument to support
this hypothesis is that the fast precession of the pseudospin
with frequency ��� should average to zero the contribution of
a small amplitude ����2�t�� ���� jitter of the resonant fre-
quency whose rate 1 /�c is also small with respect to �. To
prove this, in the next section we consider the simplest
model of the dephasing process, described by the random-
telegraph-signal model �29,30�.

C. Master equations

Assume that a spin 1 /2 �nuclear or electron�, which is in
the close vicinity of an impurity ion, undergoes random flips
with a rate 1 /2�c. When this spin is up, it induces a shift of
the resonant frequency of the ion to �0+�. When it flips
down, the frequency of the ion is �0−�. The correlation
function of the random frequency shift ��t�, which takes two
values +� and −�, is ���t���0��=�2 exp�−t /�c� �29,30�. For
this process one can introduce the partial density matrix with
elements �eg

�+� and �eg
�−�, which correspond to the +� and −�

frequency-shift events, respectively �see, for example, Refs.
�25,31� and references therein�. According to Eq. �6� and the
general formalism of the telegraph-noise model, they are de-
scribed by two equations,

10 5 0 5 10
1×10

5

1×10
4

1×10
3

0.01

0.1

1

10

100
(a)

∆/Γinh

χ"(∆)

10 5 0 5 10
4

2

0

2

4
(b)

∆/Γinh

χ'(∆)

FIG. 1. Detuning �=�c−�s dependence of the absorptive �a�
and dispersive �b� components of the atomic response. The dots are
for the homogeneous line, i.e., for �����=�d /���2+�d

2� in �a� and
for �����=−� /���2+�d

2� in �b�. The solid line is for the inhomo-
geneous line, i.e., for ������� in �a� and for ������� in �b�. Here for
simplicity of notations we drop the common factor �N�deg�2 in
����� and �����, used in the conventional definition of the atomic
susceptibility. The ratio of the homogeneous to the inhomogeneous
half-width is �d /�inh=10−2. The vertical scale for �a� is logarithmic.
In both plots the vertical scales are in units of 1 /�d.
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�̇eg
��� = − M��eg

��� +
�eg

���

2�c
+

i�

2
, �29�

where M�=�+ �1 /2�c�+ i�����, � is the spontaneous decay
rate of the coherence �eg, and the factor 1 /2 in the last term
of the equation appears because the probability of each state,
plus or minus, is 1 /2. The “in” and “out” terms with coeffi-
cients 1 /2�c in the equations describe input and output flows
of the particles to and from the partial ensemble �� or ��,
respectively. The “in” term is the second term in the RHS of
Eq. �29� and the “out” term is contained in M�. These terms
describe the random walk of an impurity ion between the
two states with resonant frequencies �0+� and �0−�. These
equations model the contribution �m from the magnetic in-
teractions.

One can introduce the value ��eg�t��=�eg
�+��t�+�eg

�−��t�,
which is the net coherence of an ion whose resonant fre-
quency is subject to the random telegraph signal ��t�. This
value can be found from the solution of the two equations,

��̇eg� = − �� + i����eg� − i���eg�A + i� , �30�

��̇eg�A = − � +
1

�c
+ i����eg�A − i���eg� , �31�

where ��eg�t��A=�eg
�+��t�−�eg

�−��t�.
To know how this random process affects any spectral

component Es�
� of the pulse Es�t�, we consider, for ex-
ample, one component with 
=0. It corresponds to a cw field
with constant amplitude ��=constant� and resonant detuning
�. For this component one can neglect the time derivatives in
Eqs. �30� and �31� and find the solution for ��eg�
���
=0
= ��eg�, which is

��eg� =
i�

� + �tlg + i�
, �32�

where

�tlg =
�2�c

1 + �� + i���c
�33�

is a complex number. Comparing this solution with Eq. �8�,
we conclude that the real part of this number,

Re��tlg� = �2�c
1 + ��c

�1 + ��c�2 + �2�c
2 , �34�

is just the dephasing rate �m, induced by the magnetic inter-
actions, and the imaginary part,

Im��tlg� = − �2�c
��c

�1 + ��c�2 + �2�c
2 , �35�

is the contribution of the dephasing process to the resonant
frequency �0. If �2�c

2�1, the contribution of the magnetic
interactions to the coherence dephasing is cancelled.

D. Numerical example

Here we consider the propagation of the Gaussian pulse in
a solid containing impurity ions and compare our approxi-

mation given by Eqs. �22� and �25� with the exact solution,
Eq. �19�, for weak pulses. At low temperature the contribu-
tion of phonons to the line broadening of impurity ions is not
dominant. Then, three physical parameters are of importance,
i.e., �i� the lifetime of the excited state, �ii� the inhomoge-
neous broadening, and �iii� the homogeneous dephasing in-
duced by magnetic interactions.

�i� For rare-earth ions and for the iron group �chromium in
particular�, incorporated into a solid, the lifetime of the ex-
cited state ranges from hundreds of �s �for example, 500 �s
for Pr3+ :LaF3, Ref. �26�� up to several ms �4 ms for ruby,
Ref. �27��.

�ii� In a perfect crystal, the inhomogeneous width can be
as small as a few GHz.

�iii� At liquid helium temperature the homogeneous
dephasing time T2, caused by magnetic interactions, can be
as long as 22 �s for Pr3+ :LaF3 �26� and 16 �s for ruby �27�.
However such a long dephasing time is typical for dilute
samples where the concentration of impurity ions is very
low. With concentration increase, the dephasing time T2
shortens. Usually, to slow down the spin dynamics of the
host spin, influencing an impurity ion, weak permanent mag-
netic fields of the order of 100 G are applied �22�.

To give a hint what would be the propagation of an off-
resonant pulse, we consider low-temperature ruby with inho-
mogeneous half-width �inh=3 GHz. If we take a detuning
�=10 GHz, then, according to Sec. III A, the inhomoge-
neous broadening is ineffective. Assume that the concentra-
tion of the chromium ions is not low and a weak permanent
magnetic field is applied along the symmetry axis of the
crystal. Then, we can take for �m, induced by the magnetic
interactions, the maximum possible value of �m=20 MHz,
which corresponds to 40 MHz full width of the homoge-
neous line. Then, if we take �m=�2�c and assume that �

1 /�c, the contribution of the magnetic dephasing according
to Eq. �34� reduces for a resonant detuning of �=10 GHz
down to 80 Hz, which is comparable with the natural broad-
ening for ruby, �. In the simulations below we take �d
=100 Hz.

At room temperature the phonon broadened R1 line in
ruby has a half linewidth �ph=165 GHz. A typical value of
the absorption coefficient at 300 K for 0.5 weight percent of
Cr2O3:Al2O3, corresponding to a chromium density N
=1.62�1020 / cm3, is �0=4 cm−1. This coefficient is related
to �, defined in Sec. II, as �0=� /�ph. Then the delay of the
pulse in a sample of length z will be td=�0z�ph /2�2. If we
take z=10 cm, then the delay time of the pulse is 5.25 ns,
which corresponds to its group velocity vg=c /16.

We consider the propagation of two pulses of duration
tp1=375 ps and tp2=187 ps �full width at half maximum of
the pulse intensity, tp1,2

=2�2 ln 2 /�s1,2
�. We take �0z�ph

=6.6 THz, which corresponds to the parameters taken above
��0=4cm−1, z=10 cm, and �ph=165 GHz�. Then, the delay
of the pulses, detuned from resonance by �=10 GHz, is td
=5.2 ns. The pulse-chirp parameter is �ch=550 MHz, which
is 1.8 �3.6� times smaller than the �s parameter of the pulse
with duration 375 ps �187 ps�. Therefore, the pulses will be
broadened and drop in intensity. According to the analytical
solution, given by Eq. �22�, the pulse with duration 375 ps
�187 ps� will be broadened 3.5 �13.2� times. With no pulse
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broadening, its fractional delay �the ratio of the pulse delay
to its duration� would be 14 and 28 for the 375 ps and 187 ps
pulses, respectively. If the broadening is taken into account,
then the fractional delay is only 4 �2� for the 375 ps �187 ps�
pulse. Figure 2 shows the time evolution of the intensity of
the output pulse. The bold solid line is the intensity of the
input pulse. The exact solution �module squared of Eq. �19��
is shown by dots and the approximate solution, Eq. �25�, is
shown by the thin solid line. In both plots we disregard z /c,
which is small. The exact and approximate solutions coin-
cide excellently. From these plots it is clearly seen that a
decrease of the pulse intensities and an increase of their
widths are produced by the chirp of the pulses. The contri-
bution of the irreversible processes due to coherence decay is
negligibly small. In the next section we show how to elimi-
nate a pulse chirp and avoid pulse broadening.

Concluding this section we show that the polarization of
the medium �u and v components� is well described by the
approximation given in Eqs. �12� and �13�. Figure 3 shows
the comparison of the numerical solution of the matter equa-
tions �4� and �5�, with our analytical approximation �12� and
�13�, for the pulse with duration 375 ps and frequency, de-
tuned from resonance by �=10 GHz. The decay rate of the
atomic coherence is �d=100 Hz. The difference between two
solutions is indistinguishable. It should be noted that the
third-order adiabatic correction, which gives an additional
small term −�2� /�3�t2 in Eq. �12�, is approximately 2
�102 times smaller than the first main term, � /�. In spite of
its smallness this term produces pulse stretching and chirping
in a thick sample.

IV. COMPENSATION OF A PULSE CHIRP

If we would have a doublet structure in a spectrum and
the pulse frequency is tuned in between the two resonances,
a pulse chirp would not appear. This is because the red and
blue shifted resonances produce a pulse chirp with opposite
sign and, hence, they are compensated �16�.

If such a doublet is not available in the spectrum, one
could consider the possibility to place another sample in the
beam path. The estimated group delay dispersion for the
sample, taken in the previous section as an example, is D2
=−1.6�109 fs2 /mm. For example, the group delay disper-
sion of silica is 36 fs2 /mm at the 800 nm wavelength. There-
fore, to compensate the pulse chirp, produced in our sample,
one needs 4.6�103 km of silica, which is unrealistic. There
is another way to solve the problem, if one can find a reso-
nance in a sample with a different impurity. If the pulse
frequency is red detuned for our sample �sample �a�� and
blue detuned for the resonance in sample �b�, then by an
appropriate adjustment of the length of the sample �b�, one
can compensate the pulse chirp.

Following Sec. II it is easy to show that the pulse propa-
gation through two samples in a row is described by the
equation

Es�zs,t� = �
−�

+� Es�0,
�
2�

e−i
�t−zab/c�−Aa�
�za−Ab�
�zbd
 , �36�

where za and zb the physical lengths of samples �a� and �b�,
respectively, zab=za+zb, and
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Iin(t)
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2 0 2 4 6 8
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0.5
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Iout(t)

(b)
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FIG. 2. Time dependence of the intensity of the pulse at the
input of the sample, Iin�t�=E�0, t�E*�0, t� �thick solid line�, and at
the output of the sample, Iout�t�=E�z , t�E*�z , t�. The dots correspond
to the exact solution, Eq. �19�, and the thin solid line corresponds to
the approximation, given by Eq. �22�, and hence Eq. �25�. All plots
are normalized to the maximum intensity of the input pulse, Iin�0�.
Plot �a� is for the input pulse with duration 375 ns, and plot �b� is
for the 187 ns pulse.
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FIG. 3. Comparison of the numerical solution of the matter
equations �4� and �5� for the u and v components �solid line� with
the analytical approximation, Eqs. �12� and �13� �dots�. The vertical
scale is in units � /�s.
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Aa,b�
� =
�a,b/2

�a,b − i
 + i�a,b
. �37�

The parameters �a,b and �a,b are assumed to be different for
both samples. For simplicity, in the subsequent simulations
we take �a=�b=100 Hz, since their contribution is negli-
gible. For sample �a� we take the parameters that are used for
our numerical example in Sec. III. For sample �b� we take �b
and zb such that �aza /�a

3=−�bzb /�b
3. Then, one can expect

that the pulse chirp, acquired in sample �a�, is compensated
in sample �b�, and the pulse coming out of the composite
sample �a�+ �b� resumes its shape and amplitude.

For simplicity we take �a=�b=�. To satisfy the adiabatic
condition, ��a,b���s��d, we choose the detuning for
sample �b� �b=−�a /2, which is 5 times larger than �s for a
375 ns pulse and 2.5 times larger than �s for a 187 ns pulse.
For such a detuning from resonance, the group velocity of
the pulse, Vg, in sample �b� is 63 times smaller than c. For a
complete compensation of the pulse chirp the physical length
of sample �b� is to be zb=za /8=1.25 cm. To calculate ana-
lytically the integral in Eq. �36�, we apply the same approxi-
mation as used in the derivation of the solution, given by Eq.
�22�. We find that the amplitude of the output pulse is then
described by the expression

Es�zs,t� = E0 exp�i�ab − �s
2�t − tab�2/4� , �38�

where the phase of the field is

�ab = � za

2�a
+

zb

2�b
� , �39�

and the net delay time of the pulse, acquired in the two
samples, is

tab = � za

2�a
2 +

zb

2�b
2� . �40�

Figure 4 shows the comparison of the analytical approxima-
tion, Eq. �38�, with the exact solution, Eq. �36�, for the
375 ns pulse. The plots clearly demonstrate that the pulse
acquires in sample �b� an additional delay of 2.6 ns. The
pulse almost resumes its amplitude and width. However, be-
cause of the fourth term of expansion Aa,b�
�, which is
−i�a,b
3 /�a,b

4 in samples �a� and �b� �not shown in Eq. �20��,
the pulse is distorted �see, Refs. �9,16� for details�. The con-
tributions of these terms are not compensated. This is be-
cause they are even functions of the resonant detunings �a
and �a. Therefore, their contribution is additive, i.e., accu-
mulated, and it is impossible to suppress them.

It is convenient to combine them in one term,

�Aa�
�za + Ab�
�zb�
=0
�3� =

− 2i

�dst
3 , �41�

where the left-hand side of Eq. �41� is the third derivative of
the change in spectral phase of the pulse for 
=0 and �dst is
the distortion parameter, introduced in Refs. �9,16�. If �s
��dst, the pulse distortion is small. Otherwise the pulse is
corrupted.

For a 375 ns pulse we have �s=1 GHz and �dst
=696 MHz, which means that �s /�dst=1.44. Therefore, the

pulse experiences some corruption. For a 187 ns pulse we
have �s=2 GHz, which is almost three times larger than
�dst=696 MHz ��s /�dst=2.9�. Figure 5 shows the 187 ns
pulse propagation through the compound medium with the
same parameters as in Fig. 4. The pulse experiences a
breakup and its intensity drops.

In Refs. �9,16� it is shown that this breakup is mainly
caused by the third-order dispersion and the output pulse is
well described by the expression
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5 6 7 8 9 10
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(b)

t (ns)

Iout(t)

FIG. 4. Time evolution of the intensity, Iout�t�, of a 375 ns pulse
at the output of the composite sample. The thin solid line is the
result of the approximation, Eq. �38�, and the dots correspond to the
exact solution, Eq. �36�. Plot �b� is a zoom in of plot �a�.
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FIG. 5. Time evolution of the intensity of a 187 ns pulse at the
output of the composite sample. The parameters of the samples and
notations are the same as in Fig. 4.
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Es�zs,t� = �dstE0ei�ab�
−�

+�

Es�0,t − tab − ��Ai�− �dst��d� ,

�42�

where Ai�−�dst�� is the Airy function. Figure 6 clearly shows
that this approximation fits well the exact solution, Eq. �36�.
Therefore, no higher-order dispersions higher than the third
order contribute appreciably.

There is a trade off between the pulse broadening due to
the pulse chirp and the pulse corruption due to the distortion
induced by the fourth term of the adiabatic expansion, Eq.
�20�. One can make a not complete compensation of the
pulse broadening such that the narrowed width �out, Eq. �23�,
is smaller than the distortion parameter, �dst. Then the pulse
is essentially not corrupted but only broadened. In both cases
its intensity reduces.

V. CONCLUSION

We considered the propagation of a pulse in an optically
dense medium, having a single resonance, if the pulse fre-

quency is far detuned from this resonance. Conditions if re-
laxation processes are ineffective and the atoms in the me-
dium evolve purely dynamically are found. The condition for
the adiabatic evolution of the atomic coherence it specified.
It is shown that even if the atomic dynamics is adiabatic, the
output pulse is broadened in time. This is due to the group
delay dispersion, which produces a chirp of the pulse fre-
quency and a stretching of its length. We propose to use a
composite medium with two components having different
resonant frequencies. If the pulse frequency is red detuned
with respect to one resonance and blue detuned with respect
to the other, then it is possible to choose proper lengths of the
two components or the right concentrations of the resonant
particles in the components to compensate the pulse chirp.
Then the pulse is not broadened. However, there is a critical
length �optical density� of the material, beyond which the
pulse experiences a corruption. One can avoid this corrup-
tion, but at the expense of pulse broadening.

A delay line, based on this effect, can be controlled by
optical pumping out of the ground state atoms with an aux-
iliary laser beam that is resonant to a different transition in
the same way it was done in Ref. �14�. One can also consider
the possibility to work with a fiber doped with trivalent er-
bium ions �Er+3�. The transition between the ground state
4I15/2 and 4I13/2 multiplet is in the region of 1540 nm, which
is practically used in telecommunication. Cooling the fiber to
decrease the interaction of phonons with the impurity ion
may help to make the evolution of the optical coherence
induced between the ground and excited states of the ion
purely dynamical.

ACKNOWLEDGMENT

This work was supported by the FWO Vlaanderen.

�1� M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 �2005�.

�2� L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature
�London� 397, 594 �1999�.

�3� R. N. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs,
Phys. Rev. A 71, 053811 �2005�.

�4� A. B. Matsko, D. V. Strekalov, and L. Maleki, Opt. Express
13, 2210 �2005�.

�5� R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner,
Phys. Rev. A 71, 023801 �2005�.

�6� A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev.
Lett. 74, 2447 �1995�.

�7� D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and
M. D. Lukin, Phys. Rev. Lett. 86, 783 �2001�.

�8� C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature
�London� 409, 490 �2001�.

�9� R. N. Shakhmuratov and J. Odeurs, Phys. Rev. A 71, 013819
�2005�.

�10� R. M. Camacho, M. V. Pack, and J. C. Howell, Phys. Rev. A
74, 033801 �2006�.

�11� H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T.
Kohmoto, M. Kunitomo, and Y. Fukuda, Phys. Rev. A 68,
053801 �2003�.

�12� R. M. Camacho, M. V. Pack, and J. C. Howell, Phys. Rev. A
73, 063812 �2006�.

�13� M. R. Vanner, R. J. McLean, P. Hannaford, and A. M.
Akulshin, J. Phys. B 41, 051004 �2008�.

�14� R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg,
and R. W. Boyd, Phys. Rev. Lett. 98, 153601 �2007�.

�15� R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. How-
ell, Phys. Rev. Lett. 98, 043902 �2007�.

�16� R. N. Shakhmuratov and J. Odeurs, Phys. Rev. A 77, 033854
�2008�.

�17� D. Grischkowsky, Phys. Rev. A 7, 2096 �1973�.
�18� R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, J. Appl.

Phys. 28, 49 �1957�.
�19� A. Abragam, The Principles of Nuclear Magnetism �Clarendon

Press, Oxford, 1961�.
�20� L. Allen and J. H. Eberly, Optical Resonance and Two-level

Atoms �Wiley, New York, 1975�.

7 7.5 8 8.5 9 9.5 10
0

0.1

0.2

0.3

0.4
Iout(t)

t (ns)

FIG. 6. Comparison of the exact solution �dots�, Eq. �36�, with
the analytical approximation �solid line�, Eq. �42�, for the intensity
Iout�t� of a 187 ns pulse at the output of the composite sample. The
parameters of the samples and notations are the same as in Fig. 5.

OFF-RESONANCE SLOW LIGHT PHYSICAL REVIEW A 78, 063836 �2008�

063836-9



�21� J. Mathews and R. L. Walker, Mathematical Methods of Phys-
ics �Benjamin, Inc., New York, 1965�, p. 111.

�22� F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, Phys. Rev. B
58, 5462 �1998�.

�23� J. P. van der Ziel and N. Bloembergen, Phys. Rev. 138, A1287
�1965�.

�24� I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev.
141, 391 �1966�.

�25� A. R. Kessel’, R. N. Shakhmuratov, and L. D. Eksin, Sov.
Phys. JETP 67, 2071 �1988�.

�26� R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 50, 1269
�1983�.

�27� A. Szabo and T. Muramoto, Phys. Rev. A 39,. 3992 �1989�.
�28� A. Szabo and R. Kaarli, Phys. Rev. B 44,. 12307 �1991�.
�29� K. Wódkiewicz, B. W. Shore, and J. H. Eberly, Phys. Rev. A

30, 2390 �1984�.
�30� K. Wódkiewicz and J. H. Eberly, Phys. Rev. A 32, 992 �1985�.
�31� R. N. Shakhmuratov and A. Szabo, Phys. Rev. A 58, 3099

�1998�.

R. N. SHAKHMURATOV AND J. ODEURS PHYSICAL REVIEW A 78, 063836 �2008�

063836-10


