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We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and
sensing in the presence of loss. We model propagation loss with beam splitters and derive a reduced density-
matrix formalism from which we examine how photon loss affects coherence. It is shown that particular
entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder
interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater
visibility with loss than possible with path-entangled �N ,0�+ �0,N� states. We also show that the effectiveness
of a detection scheme is related to super-resolution visibility.
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I. INTRODUCTION

Quantum states of light, such as squeezed states or en-
tangled states, can be used for metrology, image production,
and object ranging, with greater precision, resolution, and
sensitivity than what is possible classically �1–4�. In 2000,
one of the authors introduced a path-entangled number state
�N ,0�+ �0,N�, known as the N00N state, which is an en-
tangled two-mode state that has either all N photons in one
path a of a Mach-Zehnder interferometer or the other path b.
The state may be written as �N�0�a,b= ��N ,0�a,b
+ �0,N�a,b� /�2. With this state, one can achieve super-
resolution as well as Heisenberg-limited supersensitivity in
interferometry and imaging �5,6�, where supersensitivity is
defined as the ability of a particular quantum system to per-
form better than the shot-noise limit, and super-resolution as
performing better than the Rayleigh diffraction limit. The
super-resolution effect was demonstrated for N=2 in a proof-
of-principle experiment by Shih in 2001 �7�. In 2004, the
Steinberg group demonstrated super-resolution for N=3, and
the Zeilinger group did so for N=4 �8–10�. Finally, in 2007
a joint Japanese-British collaboration demonstrated both
super-resolution and sensitivity in a single N=4 experiment
�11�. A large amount of publications also investigated alter-
native states and detection schemes to obtain supersensitivity
and super-resolution. N00N states served for many years as a
standard model for the newly emerging fields of quantum
optical metrology, imaging, and sensing. Consequently, a
few authors investigated the effects of loss on the perfor-
mance of quantum interferometers with N00N states. It turns
out that N00N states undergoing loss decohere very rapidly,
making it difficult to achieve supersensitivity and resolution
in an environment with loss �12–14�.

In this paper, we address how environmental interaction
brings about decoherence for a more generalized state with
photons in both modes, and we have discovered a class of
states that improve drastically on the performance of N00N
states when loss is present. We find with these new states that
while minimum sensitivity is decreased slightly, robustness
against decoherence is increased greatly.

For practical purposes, phase sensitivity is typically ob-
tained by the linear error propagation method �see, however,

Ref. �6��, where Ô represents the operator for the detection
scheme being used,

�� =
�Ô

���Ô�/���
, �1�

and �ÔN=��Ô2�− �Ô�2. Equation �1�, for a N00N state with

no loss, and a detection operator ÂN= �0,N��N ,0�
+ �N ,0��0,N�, which can be implemented with coincidence
measurements �10�, reduces to the Heisenberg limit, ��
=1 /N, which is a �N improvement over the shot-noise limit.

II. THE INPUT STATE

The state we now wish to examine is the following:

�m � m��a,b =
1
�2

��m,m��a,b + �m�,m�a,b� , �2�

where we demand that m�m�. Such states can be produced,
for example, by postselecting on the output of a pair of op-
tical parametric oscillators �15�. Our setup in Fig. 1 is a
Mach-Zehnder or an equivalent Michelson interferometer
where the details of our source and detection �such as beam
splitters, detectors, etc.� are contained in their respective
boxes. Here we are concerned primarily with how the state
evolves with respect to loss, which is typically modeled by
additional beam splitters coupled to the environment �16�.

Similar to the approach of Ref. �13�, we model loss in the
interferometer with fictitious beam splitters, but in our case
these are added to both arms of the interferometer. However,
we assume unit detection efficiency for the detectors. We
develop the photon statistics as a function of beam-splitter
transmittance as well as derive a reduced density matrix,
which characterizes the propagation losses inside of the in-
terferometer. Loss is represented by photons being reflected
into the environment �17�. The beam splitter transforms the
modes according to �18�

â� = taâ + r
a
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b̂� = tbb̂ + r
b
*b̂v, �3�

where tu=�Tuexp�i�u� and ru=�Ruexp�i�u�, u=a ,b are the
complex transmission and reflectance coefficients for modes
a and b, respectively. The �m�m�� input state acquires an
unknown phase shift �, and the beam-splitter transforma-
tions are applied. We then trace over the environmental
modes to model the photons lost, and we obtain the reduced
density matrix �̂a�,b�=Trva,vb

��������, which leads to

�̂a�,b� = 	
k=0

m

	
l,l�=0

m�

�ak,l�2�m − k,m� − l��m − k,m� − l�

+ �bk,l�2�m� − l,m − k��m� − l,m − k�

+ a
l,l�
* bl�,l�m� − l,m − l���m − l,m� − l��

+ al�,lbl,l�
* �m − l�,m� − l��m� − l�,m − l� . �4�

Here the ak,l and bk,l coefficients are defined as

�ak,l�2 
 �k,l
2 Ta

m−kRa
kTb

m�−lRb
l ,

�bk,l�2 
 �k,l
2 Ta

m�−lRa
l Tb

m−kRb
k ,

a
l,l�
* bl�,l 
 �l,l��l�,lTa

�m+m�−2l�/2Ra
l Tb

�m+m�−2l��/2

	Rb
l�e−i�m−m����+�b−�a�,

al�,lbl,l�
* 
 �l�,l�l,l�Ta

�m+m�−2l��/2Ra
l�Tb

�m+m�−2l�/2

	Rb
l ei�m−m����+�b−�a�, �5�

and

�k,l 

1

�2m!m�!
�m

k
��m�

l
���m − k�!k!�m� − l�!l!�1/2. �6�

Without loss of generality, we can set the transmission
phases of the two beam splitters �a=�b=0.

The reduced density matrix in Eq. �4� appears as an inco-
herent mixture plus interference terms, which survive with
loss in either mode up to the limit of m�. The surviving
interference terms all carry amplified phase information in
the quantity �m−m���. Thus the best-case minimum phase
sensitivity, under no loss, is reduced from the Heisenberg
limit, ��N00N=1 /N, to ��m,m�=1 / �m−m��. Although this
sensitivity is less than what N00N states are capable of
achieving �in the absence of loss�, the fact that many more
interference terms survive than with N00N states suggests
that these states are more robust against photon loss.

III. OPERATOR SELECTION AND VISIBILITY

To maximize phase information, we choose a detection
operator of the form

Â = 	
r,s=0

m�

�m� − r,m − s��m − r,m� − s�

+ �m − r,m� − s��m� − r,m − s� , �7�

which we will show is theoretically optimal. This operator is
a more general summation over all possible cases up to m�

photons in either arm than the ÂN operator �traditionally used
for N00N states �1��. The reduced density matrix for an
N00N state is easily obtained by setting m=N and m�=0 in

Eq. �4�. We then obtain for the expectation value of ÂN

�ÂN� = Tr�ÂN�̂a�,b�� = 2 Re�a0,0
* b0,0� = �TaTb�N/2 cos�N�� .

�8�

The expectation value of the operator Â given in Eq. �7� for
the �m�m�� state shows the benefit of having many more
interference terms compared to the N00N state,

�Â� = Tr�Â�̂a�,b�� = 2 Re� 	
l,l�=0

m�

a
l,l�
* bl�,l�

= 2 	
l,l�=0

m�

�a
l,l�
* bl�,l�cos��m − m���� . �9�

To prove that we have chosen the best possible theoretical
operator, we use the work of Mandel, who showed that the
visibility of any pure or attenuated mixed state in an inter-
ferometer may be expressed as a function of the off-diagonal
terms in the reduced density matrix from Eq. �4� �19�,

Vf = 2��1,2� = 2
 	
l,l�=0

m�

a
l,l�
* bl�,l
 = 2 	

l,l�=0

m�

�a
l,l�
* bl�,l� , �10�

where we call Vf the fundamental visibility and �1,2 is taken
from one of the off-diagonal terms in the density matrix in
Eq. �4�. Our task now is to choose an operator capable of
sensing at the fundamental visibility limit. Any detection op-

erator Ô exhibiting an amplitude smaller than Vf, i.e., Vf


 �Ô��=0, is not using all available off-diagonal terms, and

� �

Sensor
Source

Number
Resolving
Detectors

b′
vb

a′

b

va

a

φ

FIG. 1. �Color online� Interferometer with loss modeled by
beam splitters in both arms. The reflectance of the beam splitters
determines how many photons one lost. An accumulated unknown
phase � is obtained due to a path length difference between the

arms. The unitary operator for the phase shift is given by Û

=exp�ib̂†b̂��. A simple proof shows that this operator commutes
with the beam-splitter operation. The placement of the beam splitter
before the phase shift has been acquired, therefore, leads to the
same result.
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thus not optimal. From Eqs. �9� and �10� we see that the

expectation value of Â may be written as �Â�=Vf cos
��m−m����. We call the visibility of a particular detection

scheme the detection visibility, Vdet= �Ô��=0. We see that the

ÂN operator, and its more general form Â in Eq. �7�, are both
optimal for N00N and �m�m�� states, respectively, and give
a detection visibility equivalent to the fundamental visibility.
The fundamental visibility for a N00N state is simply Vf
= �TaTb�N/2, which is just the probability the N00N state ar-
rives at the detector with no loss.

IV. INCREASED ROBUSTNESS TO LOSS

The �m�m�� states, with m−m�=N, are capable of pro-
ducing the same resolution as an N-photon N00N state, but at

the cost of requiring m� more photons to do so, and thus they
operate at a smaller shot-noise limit. As we will show, in the
presence of loss, however, many �m�m�� states operate be-
low their own shot-noise limit, while N00N states of the
same resolving power do not.

To compare a certain �m�m�� to a N00N state we choose
the state such that m−m�=N, so the amount of phase infor-
mation is the same for either state. This way our minimum
phase sensitivity also starts from the same point,
1 / �m−m��=1 /N. The true Heisenberg limit for an �m�m��
state, however, is determined by the total photon number in
the state and is therefore given by 1 / �m+m��. The shot-noise
limit for an �m�m�� state is 1 /�m+m�, while the N00N state
is the usual 1 /�N.

As would be the case in a practical quantum sensor, we
assume loss in the long arm b of the interferometer to be
much greater than that of the delay arm a, which we assume
to be under controlled loss conditions. Figure 2 is an ex-
ample of an �m�m�� state showing more robustness to loss
in phase sensitivity than an equivalent N00N state. A N00N
state of N=10 degrades to the shot-noise limit at approxi-

FIG. 2. �Color online� Phase sensitivity �� for a �20�10�
�m�m�� state �curved black solid line� versus a �10�0� N00N state
�curved blue dashed line� undergoing loss. Loss is 40% in the long
arm and zero in the delay arm. Bottom black solid line is the
Heisenberg limit for �20�10�, 1 / �m+m��. The red solid line is the
Heisenberg limit for the �10�0� N00N state and lossless limit for
�20�10�, 1 / �m−m��. The black dotted line is the shot-noise limit
for �20�10�, while the blue dashed line is the shot-noise limit for
�10�0�. The N00N state is no longer below its shot-noise limit
while the minimum phase sensitivity for the �m�m�� state �20�10�
is at its respective shot-noise limit.

FIG. 3. �Color online� Phase resolution for a �20�10� �m�m��
state �curved black solid line� versus a �10�0� N00N state �curved
blue dashed line� undergoing 3 dB of loss. Loss is 3 dB in the long

arm, zero in the delay arm. The amplitude of �Â�, and hence the
visibility of the super-resolving sub-Rayleigh fringes, for a �20�10�
state is 41%, while the �10�0� N00N state visibility is 3.1%.

(a) (b)

FIG. 4. �Color online� �a� Visibility for �10�0� as a function of loss in the delay and long arms, La and Lb, respectively. Contour lines
represent the value of the visibility. �b� Same as �a� for the state �20�10�.
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mately 26% loss in the long arm �zero loss in the delay arm�,
whereas a �20�10� �m�m�� state degrades to its respective
shot-noise limit at larger loss, 40% loss in the long arm �zero
loss in the delay arm�.

Also important is to note how �Â�, and by extension the
visibility, evolve with loss. Under lossless conditions, the
visibility of a N00N or �m�m�� state is always 1, and hence

so is the amplitude of �Â�. Figure 3 shows a comparison of

�Â� for �20�10� and �10�0� under 50% =3 dB loss in the
long arm �zero in the delay arm�.

We can examine the visibility as a function of loss in both
arms directly with contour plots. Figures 4�a� and 4�b� show
an order of magnitude increase in visibility for the �20�10�
�m�m�� state over the �10�0� N00N state.

The improvement in visibility is greater than that seen in
minimum phase sensitivity in Fig. 2. This suggests that the
�m�m�� states are much better suited than N00N states for
resolving interference fringes under loss.

A heuristic way to understand the improvement of
�m�m�� states over N00N states is to consider “which-path”
information available to the environment after photon loss.
For example, even a single photon lost in mode b projects
the N00N state from �N ,0�+eiN� �0,N�→eiN� �0,N−1�. That
is, a single photon in environmental mode b provides com-
plete which-path information—the environment “knows”
with certainty it cannot have the �0� component of the N00N
state, which collapses the state into the separable state
�0,N−1�. In contrast, an �m�m�� state may lose up to m�
photons to the environment without complete knowledge of
whether the m or m� component was present, and hence com-

plete “which-path” information is not available, and a great
deal of coherence is hence preserved.

In comparing the �m�m�� states to N00N states, there
emerges a delicate tradeoff in sensor performance from add-
ing m� photons to increase the number of available output
states, which contain phase information. Add too few m�
photons and there will not be significant improvement. Add
too many m� photons and the total number of photons re-
quired to carry the phase information for an equivalent N00N
state rises, causing the shot-noise limit to be lowered further
and reached quicker under conditions of loss �see Table I�.

V. CONCLUSION

We have shown that the class of entangled Fock states
with photons in both modes, �m�m�� states, is more robust
to loss than N00N states possessing all photons in either
mode. The visibility for an �m�m�� state under loss may be
an order of magnitude or more greater than N00N states, as
well as having attenuated minimum phase sensitivities that
are lower and more likely to be less than the shot-noise limit
than a N00N state. While the �m�m�� states are not capable
of reaching the Heisenberg limit of 1 /N, it seems unlikely
that any state is capable of reaching this precision in the limit
of practical sensing with appreciable photon loss. While
�m�m�� states are more robust, they do appear to have loss-
induced limitations as well. For many �m�m�� states, vis-
ibility drops to approximately 10% around the 70% loss level
in one arm, assuming perfect transmission in the other.

Other issues that need consideration are how to produce
�m�m�� states and how to optimally detect them. As of yet
there is no efficient, on demand, Fock number state genera-
tor. However, the output from an optical parametric amplifier
�OPA� is essentially a summation of many �m�m�� states as
well as several N00N states. While we know what the opti-
mal operators look like mathematically, it is also currently
unknown how to produce these in the lab. We are currently
analyzing the sensing capabilities for the entire output state
of an OPA, as well as schemes for generating �m�m�� states
from an OPA output with postselection.
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