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We investigate intensity of the parametric down conversion of ultrashort, ultraviolet pulse both in a low- and
high-conversion regime. In the first regime, we develop a simple analytical expressions for the photon flux of
the fluorescence. Numerical simulations using three-dimensional stochastic Wigner method provide results in
the latter regime. We find that the perturbative approximation for the photon flux as a function of the wave-
length of the signal and the observation angle, quantitatively describes even the nonperturbative regime. For
short pump pulses the intensity of the fluorescence is highest at frequencies where the group velocities of the
pump and the down-conversion are equal. For longer pump pulses this requirement is gradually relaxed.
Additionally, for small pump beams, the intensity strongly depends on the spatial divergence between inter-
acting fields.
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I. INTRODUCTION

Quantum parametric fluorescence is one of the most fre-
quently used sources of nonclassical radiation. In the low
gain regime, the parametric process is used as a robust
source of single photons and photon pairs. The parametric
fluorescence-based sources allowed for a number of funda-
mental experiments. Examples include Bell inequality break-
ing �1�, quantum cryptography �2�, and quantum teleporta-
tion �3�. Nowadays the effort focuses on engineering the
correlation properties �4–7� of such sources. On the other
hand, in some experiments intense pump pulses are used,
which results in high parametric gain. This regime is charac-
terized by an appreciable amount of multiple pair creation
events and most conveniently described by recalling the no-
tion of squeezing �8�. Single or two-mode squeezing de-
scribed in textbooks can be used to describe realistic multi-
mode parametric amplifier �9� and it turns out that a
laboratory device produces a superposition of squeezed
states in modes defined both by the nonlinear medium and
the pump pulse. High-gain parametric amplifiers are nowa-
days also frequently used for amplification of ultrashort
pulses �10�. In this application the parametric fluorescence is
an important and troublesome source of noise.

In this paper we provide a number of original results. We
calculate the average angular and spectral intensity of a
spontaneous parametric fluorescence. Since parametric fluo-
rescence has quantum origin, its intensity cannot be calcu-
lated using classical nonlinear optics. Below, we adopt both a
perturbative and stochastic approach for this task. With a few
approximations we provide a simple formula for the intensity
of the fluorescence in single-pair generation regime. Numeri-
cal simulations show, that it qualitatively reproduces main
features of the donwn-conversion spectrum in the high gain
regime as well.

Our results could be used as guidelines for constructing
brighter photon-pair sources. Other application would be op-
timization of high-gain parametric amplifiers for a minimal
contribution of parametric fluorescence �11�.

Let us mention that a process analogous to parametric
down-conversion is observed in physics of cold atoms. When
a pair of Bose-Einstein condensates collide, a halo of spon-
taneously scattered of atoms is observed �12,13�. Stochastic
methods used for description of this process proved ex-
tremely successful �14,15� and we adopted them to obtain
results presented below.

The paper is organized as follows. In Sec. II we recall
some basics of the theory of the parametric down-
conversion. In Sec. III, we calculate the photon flux in the
perturbative regime. In Sec. IV, we compare these results
with numerical predictions in the high-gain regime. We con-
clude in Sec. V.

II. THEORY OF THE PARAMETRIC DOWN-
CONVERSION

A process of parametric down-conversion takes place in a
crystal with nonzero second order nonlinear susceptibility
tensor ��2� when it is irradiated with a pump beam. Upon
passing through the nonlinear medium each of the pump
pulses gives rise to photon pairs which form the parametric
fluorescence. Below, we formulate a theoretical model de-
scribing the nonlinear interaction which allows for calcula-
tion of the fluorescence intensity.

We assume that the medium interfaces are parallel to the
x-y plane, while fields propagate along the z coordinate, as
depicted in Fig. 1. We expand all the fields involved in the
interaction using an approach from nonlinear optics. At each
z an expansion in a basis of plane waves with frequency �
and wave vector kx, ky is given, while z parametrizes the
development of the evolution. To shorten the notation, let us
denote the triple �� ,kx ,ky� parametrizing each plane-wave
component of the fields by �. For concreteness, we consider
type-I interaction in �-barium borate �BBO� in which pump
propagates as an e ray while the fluorescence as an o ray.
Results can, however, be easily generalized for any nonlinear
crystal by substituting its particular dispersion relation in the
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formulas below. This will, in general, break a cylindrical
symmetry found in type-I phase matching, but the essential
results remain unchanged.

Let us consider a regime in which the pump consists of

intense pulses described by a classical envelope Ãp��p ,z� in
the frequency domain, spanned by �p= ��p ,kpx ,kpy�. The

evolution of the pump pulse Ãp��p ,z� along z is determined
by the dispersion relation of the crystal. A nonlinear interac-
tion with the fluorescence field can be neglected, since the
intensity of the pumping field is large and its depletion due to
parametric down-conversion is minimal. This condition is
readily satisfied in many experiments. Note that the intensity
of the pump is also assumed large enough to neglect any
quantum fluctuations and describe it by a classical field.

For a pump propagating as an e-ray in a crystal cut at an
angle � to the z axis the dispersion relation of the crystal
reads

�p
2

c2 =
�kpx cos � − kpz sin ��2

ne
2��p�

+
�kpz cos � + kpx sin ��2 + kpy

2

no
2��p�

,

�1�

where no��p� and ne��p� are ordinary and extraordinary re-
fractive indices of the crystal. For each plane wave compo-
nent of pump field with given �p= ��p ,kpx ,kpy� the above
relation fixes the z component of the wave vector kpz at a
value kpz��p�. During propagation along z each of the plane-
wave components will acquire phase equal to exp�ikpz��p�L�.
Thus, the equation of evolution of the pump pulse Ãp��p ,z�
can be written as �16�

�

�z
Ãp��p,z� = ikz,p��p�Ãp��p,z� . �2�

On the contrary, the parametric fluorescence has to be
described by a quantum field. We expand this field in a basis
of plane waves parametrized by �= �� ,kx ,ky�, which corre-
sponds to the following expression for the field operator

Ê�x ,y ,z , t� in the position space �17�:

Ê�x,y,z,t� = i� d3�

�2��3� ��

2�0
�n���

â��,z�eikxx+ikyy−i�t + H.c.

�3�

Here â�� ,z� form a complete set of bosonic annihilation op-
erators at each z while n��� is the index of refraction of the

medium. The evolution of the parametric fluorescence is also
largely determined by the crystal dispersion, which deter-
mines kz for each plane wave component with given �
= �� ,kx ,ky� at a value kz=kz���,

kz��� =�no
2�2

c2 − kx
2 − ky

2. �4�

Additionally, the signal field interacts with the pump pulse
via the second order nonlinearity. Classical equations, de-
scribing propagation of the fluorescence field through the
crystal are well known �18�. Quantization of the signal field
corresponds to replacement of c-number amplitudes and their
complex conjugates of plane-wave modes by annihilation
and creation operators â�� ,z� and â†�� ,z� and leads to the
Heisenberg equations for their evolution:

�

�z
â��,z� = ikz���â��,z� +

1

LNL
� d��

Ãp���,z�
A0

â†��� − �,z� .

�5�

Here, A0 is the maximal amplitude of the pump pulse in

time-position space A0=�d3�pÃp��p�, while LNL is a nonlin-
ear length, a constant which determines a characteristic
length over which nonlinear interaction produces a few pho-
ton pairs, defined as

1

LNL
=

�p
2deffA0

8c2k��p/2�
. �6�

For a crystal of a length L and given pump pulses

Ãp�� ,z=0� at the crystal entrance we can find Green func-
tions C�� ,��� and S�� ,��� of Eq. �5� and express the fluo-
rescence field at the crystal exit face âout���= â�� ,L� in terms
of that on the input face âin���= â�� ,0�:

âout��� =� d���C��,���âin���� + S��,���âin
† ����� . �7�

The above equation gives a complete quantum description
of the parametric amplifier. In our case it is highly redundant,
since we are interested in the average intensity of the para-
metric fluorescence �â†���â���	= �n̂���	 as a function of the
frequency and direction, both contained in �. In the follow-
ing section, we use Eq. �7� only as a backbone for develop-
ing more specialized results.

III. PERTURBATIVE APPROXIMATION

In this section we discuss the properties of the average
intensity of the parametric fluorescence calculated in the first
order approximation with respect to the strength of the non-
linearity 1 /LNL. This approximation physically corresponds
to a situation when the fluorescence field consists of a single
or a few pairs of photons emitted into distinct frequency or
angular regions. It is expected that as soon as the pump be-
comes so intense that the photons are emitted in bunches,
perturbative expansion fails. However, as we show, some
results inferred from the perturbative approach, can be di-
rectly applied even in the high-gain regime.

n( , )� �z

y

x

pump

�

optical axis

�

signal

idler

FIG. 1. Scheme of a measurement of the photon flux n̄�	 ,
� of
the spontaneous parametric fluorescence. The nonlinear crystal is
pumped along the z axis. Out of the emerging parametric fluores-
cence we observe a small portion at the wavelength 	 propagating
at an angle 
 to the z axis in the x-z plane.
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Our starting point will be an expression directly related to
the well known biphoton wave function which have been
introduced in works on spontaneous parametric down-
conversion in the context of photon sources �4�. However,
the intensity of such sources have, surprisingly, received very
little theoretical attention. In this section we apply formalism
developed in previous work �9� to calculate the intensity of
the parametric fluorescence. This new result can be ex-
pressed in a simple form after a few justified approximations.

In order to calculate n̄���= �â†���â���	 which describes
the intensity of the parametric fluorescence, we first obtain
an approximate Green functions C�� ,��� and S�� ,��. This is
done by transforming into the interaction picture, which is
accomplished by substituting

â��,z� = exp�ikz���z�âI��,z� �8�

into Eq. �5�. The resulting equation of evolution of âI�� ,z�
contains only nonlinear term and can be easily solved pertur-
batively with respect to 1 /LNL �9�. The first order solution is
next compared with a general form given by Eq. �7�. The
C�� ,��� function in the lowest order describes simple dis-
persive evolution of the fluorescence field passing through
the crystal

C��,��� = ��� − ���eikz���L, �9�

while the S�� ,��� describes the process of pair generation

S��,��� =
LÃp�� + ���

LNLA0
ei�kz���−kz������L/2�sinc
L�k��,���

2
� ,

�10�

where �k�� ,��� is a wave vector mismatch between plane-
wave components of the fluorescence characterized by spa-
tiotemporal frequencies � and �� and coupled plane wave
component of the pump characterized by spatiotemporal fre-
quency �+��:

�k��,��� = kpz�� + ��� − kz��� − kz���� . �11�

Let us note that S�� ,��� is directly realted to the biphoton
wave function and differs from it just by phase factor �9�.

The above result can be used to calculate the intensity of
spontaneous parametric fluorescence emitted at a certain di-
rection in a certain frequency, corresponding to a vector �:

n̄��� = �âout
† ���âout���	 =� d3���S��,����2

= 
 L

LNL
�2� d3�� Ãp�� + ���

A0

2

sinc2
L�k��,���
2

� .

�12�

The above integral can be given a meaningful physical inter-
pretation. Observation of a signal photon testifies generation
of the idler photon. In our case the first is detected using
narrow-band filters and is nearly plane-wave and monochro-
matic, characterized by vector �. Thus, all the frequency and
direction distribution present in the pump is transferred to the
idler photon, as depicted in Fig. 2. Each plane-wave compo-
nent of the idler characterized by �� can support the produc-

tion of signal characterized by � if the pair in question is
phase matched with a pump component characterized by �
+��, i.e., the phase mismatch L�k�� ,��� is small.

The integral given in Eq. �12� cannot be evaluated ana-

lytically in case of pulsed pumping, when Ãp��p ,z� is non-
zero over a finite range of �. However, the integrand can be
approximated with a Gaussian function. First, let us assume a
Gaussian form of the pump amplitude at the crystal entrance

face Ãp��p ,z=0�, corresponding to a pulse of duration p
propagating in a beam of width wp, centered around fre-
quency 2�0:

Ãp��p,z = 0� = A0
wp

2p

�2��3/2

�exp
−
p

2�� − 2�0�2

2
−

wp
2�kx

2 + ky
2�

2
� .

�13�

Concentration of the pump energy around given �p to-
gether with requirement of phase matching �k�� ,����1 /L
reduces the range of spatiotemporal frequencies � and ��
over which a significant amount of parametric fluorescence
is generated. To analyze this effect, let us consider perfectly
phase-matched parametric down-conversion of the central
plane-wave component of the pump with �p= �2�0 ,0 ,0�.
This part of the fluorescence consists of a plane wave com-
ponent pairs characterized by � and �� which satisfy the
following set of equations:

�� + �� = �2�0,0,0� ,

�k��,��� = 0.
� �14�

The first equation corresponds to a requirement that both
components of the down-conversion couple to the central
component of the pump, while the second equation is the
perfect phase matching condition. This is in fact a set of four
equations for six components of � and �� which defines a
two-dimensional surface. Assuming �= �� ,kx ,ky� as before,
from the first equation we get ��= �2�0−� ,−kx ,−ky�. Then
the solution of the second equation can be cast into the fol-
lowing form:

�kx
2 + ky

2 = k0��� . �15�

In Appendix A we express k0��� in terms of material and
pump parameters. Equation �15� is an axially symmetric sur-

�p

�i�s

FIG. 2. �Color online� Observation of a plane-wave monochro-
matic component of the fluorescence field, described by wave vec-
tor �s, leads to projection of the conjugate idler field into a pulsed
form, described by wave vectors �i. The idler wave packet takes up
all the frequency and wave vector span of the pump pulse, de-
scribed by wave vectors �p.
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face in three-dimensional space of �= �� ,kx ,ky�, describing
plane-wave components of the parametric fluorescence
which can be produced from the central component of the
pump in a perfectly phase-matched process. In Fig. 3 we plot
a section through this surface in the kx−� plane, for para-
metric down conversion in a BBO crystal pumped at
2�c / �2�0�=400 nm and four different cut angles �.

As the spatiotemporal frequency of the fluorescence � de-
viates from the perfect phase matching surface k0��� its in-
tensity diminishes. In the region of � in which the fluores-
cence intensity is large, the sinc function can be
approximated by a Gaussian �19�. Such an approximation
fails only for very thick crystals, in which intricacies of the
phase matching may play an important role, but the fluores-
cence emitted in such cases contains very complicated cor-
relations, which render it useless in most of the known ap-
plications.

The next step towards Gaussian approximation of the in-
tegrand in Eq. �12� is a linearization of the phase mismatch
�k�� ,��� given by Eq. �11� around points on perfect phase-
matching surface. Since it is axially symmetric, we choose
points in kx�0 and � half-plane. For each fixed observation
frequency �obs we expand phase mismatch �k�� ,��� around
�0= (�obs ,k0��obs� ,0) and �0�= (2�0−�obs ,−k0��obs� ,0) up to
linear terms. This gives �see Appendix B for details�

�kz
lin��,��� = ��� − �2�0 − �obs����1� + �kx − k0��obs����x

+ ky��y + �kx� + k0��obs����x� + ky���y�, �16�

where the expansion coefficients equal

��1� =  �kpz��p�
���


�p=�0+�0�

−  �kz����
���


��=�0�

,

��i =  �kpz��p�
�kpi


�p=�0+�0�

−  �kz���
�ki


�=�0

,

��i� =  �kpz��p�
�kpi


�p=�0+�0�

−  �kz����
�ki�


��=�0�

.

i = x,y . �17�

The above coefficients have simple physical meaning. ��1� is
a difference of inverse group velocities between the pump
pulse and the fluorescence component characterized by ��,
while �� give the amount of spatial displacement per unit
length between pump pulses and the fluorescence component
characterized by � or �� in x or y direction. Note, that all the
above coefficients depend on the choice of the observation
frequency �obs.

Finally, in Eq. �12� we approximate the sinc function by a
Gaussian

sinc2
L�kz

2
� � exp
−

L2

12
��kz

lin�2� �18�

and obtain the following expression for the fluorescence in-
tensity:

n̄��� = 
 L

LNL
�2� d3��e−�L2/12���kz

lin��,����2 Ãp�� + ���
A0

2

.

�19�

This integral can be evaluated analytically. Let us substitute
�=�0= (�obs ,k0��obs� ,0) which describes the perfect phase-
matching line. Then we obtain an estimate of the intensity of
the fluorescence emitted at a frequency �obs at an angle 

=arcsin�ck0��obs� /�obs� to the z axis in the z-x plane

n„�obs,k
0��obs�,0… =

wp
2p

4�3/2
 L

LNL
�2

��4 +
L2���x�

2 + ��y�
2�

wp
2

+ 
L��1�

p
�2�−1/2

. �20�

Let us consider the dependence of the intensity of the fluo-
rescence along the perfect phase-matching line
n(�obs ,k0��obs� ,0) on the frequency �obs at which we ob-
serve it. Note again, that observation of the fluorescence sig-
nal at the frequency �obs testifies generation of the conjugate
�idler� photons at the frequency 2�0−�obs. It turns out, that
the propagation properties of the idler photons influence the
intensity of the signal. In particular three parameters, which
vary with �obs come into play. The first is the ratio of the
temporal walk-off between pump pulse and conjugate pho-
tons over the crystal length L��1� to the pump pulse duration
p. The other two measure the ratio of the transverse dis-
placement between the pump pulse and conjugate photons
L��x� and L��y� to the pump pulse width wp.

This can be understood by reconsidering the picture
drawn in Fig. 2. As we argued before, observation of a nearly
plane-wave signal transfers the frequency and wave vector
distribution of the pump to the idler photon, which takes a
form of a short pulse and propagates according to the crystal
dispersion. Usually, it quickly diverges from the pump
pulse—the expression in the square brackets in Eq. �20� is
large. However, for some frequencies of the signal �obs the
idler propagates with the pump for a longer distance which

500 600 700 800 900
Λs�nm�

5

10

15

Αs�deg�

FIG. 3. �Color online� Angle 
s=arcsin�ck0��� /�� at which per-
fectly phase-matched fluorescence at the wavelength 	=2�c /�
emerges outside the crystal. Plot corresponds to type-I phase match-
ing in BBO pumped at 2�c / �2�0�=400 nm for crystals cut at
angles �=29° �solid line�, 31.3° �dashed line�, 35° �dotted line�, and
40° �dash-dot line�.
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increases the nonlinear interaction and the photon flux
n̄(�obs ,k0��obs� ,0).

We plot relevant material coefficients in BBO in the case
when it is pumped at 400 nm and cut at four characteristic
crystal cut angles � in Fig. 4 and 5. We also plot the intensity
of the fluorescence along the perfect phase-matching line
n̄(�obs ,k0��obs� ,0) given in Eq. �20� as a function of the
wavelength of observation 2�c /�obs in Fig. 6 for a few typi-
cal pump pulse durations and widths.

It is worthwhile to consider the features displayed by
these plots. For short pump pulses, when temporal walk-off
between pump and conjugate photons is more pronounced,
the fluorescence intensity reaches local maximum values at a
wavelength where this walk-off vanishes, ��1=0. For longer
pulses the temporal walk-off loses its importance, and the
intensity of the fluorescence increases with wavelength due
to reduced spatial displacement between the pump and con-
jugate photons, i.e., ��x�

2+��y�
2.

IV. THREE-DIMENSIONAL STOCHASTIC MODEL

In the previous section we calculated the intensity of the
parametric fluorescence in the single pair generation limit.
Now we switch to intense-pumping regime, when photons
are generated in bunches and perturbative approximation
breaks down. Estimation of the fluorescence intensity is of a
great importance in novel practical applications of paramet-
ric amplifiers. For example, when using this kind of nonlin-
ear interaction to amplify broadband chirped pulses, the
parametric fluorescence is a source of large and difficult to
avoid noise �11�.

In this section we describe a numerical method of solving
the dynamics of a coupled pump-signal system given by Eqs.
�2� and �5� and estimating the intensity of the parametric
fluorescence. We use so-called stochastic Wigner method,
which can, in principle, provide exact solutions for linear
quantum systems, such as described by Eq. �5�. If the Wigner
function of the field at the entrance is Gaussian, in particular
representing vacuum state, the Wigner function of the final
state of the parametric fluorescence will be Gaussian too. It
is easily deduced from a general form of the input-output
relations given by Eq. �7�.

A crucial observation is that if the Heisenberg equation is
linear, the evolution of the Wigner function is the same as a
classical Liouville equation for the density probability of
finding the system in a state with particular electric field.
Thus the Wigner function W�
�� ,z�� can be interpreted as a
probability density of finding the system with a fluorescence
field described by a spectral amplitude 
�� ,z�.

Therefore, to find the Wigner function of the fluorescence
at the crystal exit face we repeat the following procedure.
First we draw an input spectral amplitude 
�� ,z=0� with

500 600 700 800 900
Λs�nm�

0.05

0.10

0.15

�Ρx�
2 � �Ρy�

2

FIG. 4. �Color online� Square idler spatial displacement coeffi-
cient ��x�

2 +��y�
2 in BBO for four different crystal cut angles �

=29° �solid line�, �=31.3° �dashed line�, �=35° �dotted line�, and
�=40° �dot-dashed line�.

500 600 700 800 900
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(c) (d)

FIG. 5. �Color online� Inverse of the group velocities of pump �dotted line�, signal �solid line�, and idler �dashed line� for following
angles of the crystal setting: �a� �=29°, �b� �=31.3°, �c� 35°, and �d� 40°.
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probability given by the vacuum Wigner function

W�
��,z = 0�� = 
 2

�
�N

exp
− 2�
�

�
����2� , �21�

where we assumed a finite number N of discrete modes in-
dexed by �. Next we solve classical equations of propagation
of the signal field:

�

�z

��,z� = ikz���
��,z� +� d��

Ãp��,z�
*�� − ��,z�
LNLA0

.

�22�

This way we obtain a possible output spectral amplitude

�� ,z=L�. By repeating this procedure many times, we ob-
tain a set of probable output field amplitudes �
�� ,z=L��,
which approximates Wigner function W�
�� ,z=L��. This is
schematically illustrated in Fig. 7.

This can be used to calculate the mean photon flux at a
given direction and frequency. It equals a mean �
����2 av-
eraged with the Wigner function W�
�� ,z=L�� minus

vacuum average. Using the set of output amplitudes �
�� ,z
=L�� this is calculated as

n̄��� = 
 �

�����
��,z=L��

�
����2� −
1

2
. �23�

We performed the procedure outlined above for interac-
tion in 2-mm-long BBO crystal. The pump intensity was
adjusted so that the total number of photons in the fluores-
cence field is near 108. This corresponds to the typical con-
ditions found in noncollinear optical parametric amplifier-
�OPA� �NOPA� used for amplification of ultrashort pulses
�10�.

For each of the various pump pulse durations, widths and
crystal cut angles we performed ten independent simulations
of classical fluorescence evolution. The average photon flux
was computed according to the formula �23�. Additionally,
we assumed that n̄��� is almost independent of the angle
around z axis and we averaged the results over this angle.
This last step made ten independent simulations sufficient to
calculate smooth intensity distributions.

Figure 8 shows the results of the simulations. The area of
high intensity winds around the perfect phase-matching
curve pictured in Fig. 3, as we argued before. In particular,
for a given crystal cut angle � the angle at which a particular
frequency is emitted is nearly fixed. Note that the angular
spread of the downconversion at a given frequency does not
change with changing the pump beam waist. This is because
the former is limited by the angular bandwidth of the phase
matching in the crystal in our case. We find that the spectrum
of the down-conversion is in general more sensitive to
changing the pump beam waist from wp=80–160 �m than it
is to switching the length of the pumping pulses from p
=60–120 fs. For a focused beam we observe more narrow-
band spectrum, except the crystal cut at �=40° when we
achieve broadband generation regardless of the pumping.

Qualitatively, the intensity along the perfect phase-
matching curve changes as predicted by the perturbation
theory and plotted in Fig. 6. This can be considered an un-
expected success of the perturbation theory and may be
qualitatively explained as follows. The process of parametric
amplification with intense pumping leads to intense fluores-
cence fields, which exhibit mainly classical properties. In
particular, 1 /2 in Eq. �23� can be neglected, which makes the
process virtually identical to a classical amplification of a
weak, white noise. In the course of interaction the compo-
nents of the fluorescence become pairwise correlated. To
some extent, the noiselike fluorescence can be separated into
pairs of peaks which have approximately opposite kx and ky
and frequencies summing up to the frequency of the pump,
2�0. Most of such pairs quickly diverge away from the pump
pulse, but some propagate with it experiencing exponential
growth. This is very similar to the mechanism behind the
intensity of the fluorescence in a single pair generation re-
gime, hence the intensity profiles are similar.

It is worthwhile to compare the numerical results from
Fig. 8 with Figs. 4 and 5. We find that for short pump pulses
the temporal walk-off between the pump and the fluores-
cence must be very small to achieve intense generation. For
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FIG. 6. �Color online� Photon flux of the fluorescence
n̄(�obs ,k0��obs� ,0) along the perfect phase matching line plotted in
Fig. 3 calculated using Gaussian approximation for 2-mm-long
BBO crystal. Plots are made for four different crystal cut angles �a�
�=29°, �b� 31.3°, �c� 35°, and �d� 40°. Various lines indicate differ-
ent pump pulse parameters: solid lines correspond to p=60 fs,
wp=80 �m, dashed lines correspond to larger pump beam, p

=60 fs, wp=160 �m and dotted lines correspond to longer pump
pulses p=120 fs, wp=80 �m.

FIG. 7. Graphical illustration of the Wigner method.
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longer pulses, this requirement is relaxed and our calcula-
tions reveal broadband parametric generation.

V. CONCLUSIONS

In this paper we adopted perturbative and Wigner stochas-
tic approaches to the task of calculating an intensity of the
parametric fluorescence. In a single pair generation limit,
original analytical expressions for the down-converted field
can be derived. By linearizing the phase-matching function
we found simple formulas for the intensity of the fluores-
cence in this regime. Photon flux of the signal depends on
the temporal and spatial walk-off between the idler and the
pump. In the case of type-I interaction in BBO this leads to
peaks in the spectrum of the down-conversion signal at the
frequencies where group velocity of the idler matches up
with the pump.

Note that our derivations did not rely on any specific
properties of type-I phase matching. Photon flux will depend
on the group velocity mismatch and spatial walk-off also for
other configurations of polarizations. Naturally, one must not
forget that those quantities will change depending on the
interaction type.

In an intense pumping case we performed a number of
numerical stochastic simulations. We found that the calcu-
lated spectrum of the fluorescence exhibits the same features
as predicted by the perturbative approximation. However, the
contrast between the wavelengths at which the fluorescence
is intense and those at which it is weak is more apparent due
to exponential character of amplification in non-perturbative
regime. In our view this is an important finding, since in
many cases one may perform simple analytical calculations
instead of tedious, three-dimensional stochastic simulations.

We conjecture that the group velocity mismatch and spa-
tial walk-off are the crucial factors determining the bright-
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FIG. 8. The contour plot of the averaged photon flux of the fluorescence as a function of the angle 
=arcsin�c�kx� /�� and the wavelength
	=2�c /� for a 2-mm-long BBO. Each row corresponds to different crystal cuts: �=29° �first row�, �=31.3° �second row�, �=35° �third
row�, and �=40° �fourth row�. Each column corresponds to different pump parameters: column A is for p=60 fs, wp=80 �m; column B is
for p=60 fs, wp=160 �m; and column C is for p=120 fs, wp=80 �m. The contour lines were drawn at 0.25, 0.5, and 0.75 of the maximum
of each plot.
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ness of the down-conversion based photon sources. This is
supported by similar brightness of two commonly used
sources of entangled photon pairs: BBO type I in nearly
collinear geometry �20� and noncolinear type-II source �1�,
which indeed exhibit similar group velocity differences.

Let us note that in practical situations the group velocity
difference and walk-off can be varied by changing the orien-
tation of the crystal, phase matching type and the crystal.
One example is presented in the text above, where adjusting
the crystal cut angle changed the wavelength of photons
emitted from type-I BBO source.

Results presented in this paper facilitate comparison of
various possible crystals, phase-matching types, and geom-
etries at a source design stage. However, our findings apply
to sources in which plane monochromatic waves are effec-
tively observed. Geometries using single mode fiber cou-
pling set to collect highly divergent spatial modes may re-
quire more complicated treatment �19�.

The above results could be also used for optimization of
parametric amplifiers, in which one seeks minimal contribu-
tion from the parametric fluorescence. From this point of
view both group velocity difference ��1� and spatial walk-off
��� should be made as high as possible. Unfortunately, in-
creasing ��1� reduces the spectral bandwidth, while increas-
ing ��� reduces angular bandwidth of the amplifier. There-
fore both group velocity difference ��1� and spatial walk-off
��� should be set to values providing optimal tradeoff be-
tween parametric fluorescence intensity and the bandwidth of
the amplifier. In practice changing ��1� can be accomplished
by tilting the crystal and changing the angle between the
pump and signal beams. An important conclusion from our
results is that the bandwidth should be made as narrow as
possible in a given application. On the other hand, the ratio
of the walk-off angle times crystal length to the pump beam
diameter L��� /wp can be then independently adjusted by
changing the pump beam waist wp. In practice the wp also
controls the pump power density and the parametric gain.
For very small wp the length over which signal and pump
beams overlap is reduced, thus reducing available gain. We
conclude that wp should be made as small as possible with-
out damaging the crystal while at the same time the diameter
of the seed beam sent to the amplifier should be increased
along optic axis, so that amplification takes place in the en-
tire crystal length.
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APPENDIX A

In this appendix we provide an explicit expression for
k0��� from Eq. �15�. Note, that the set of Eqs. �14� yields

kpz�2�0,0,0� − kz��,kx,ky� − kz�2�0 − �,− kx,− ky� = 0.

Using Eqs. �1� and �4� we obtain

�kx
2 + ky

2 = k0��� �
1

2kpz�2�0�
�4kz

2���kz
2�2�0 − ��

− �kpz
2 �2�0� − kz

2��� − kz
2�2�0 − ���2�1/2.

This expresses k0��� in terms of material and pump param-
eters as

kpz�2�0� =
ne�2�0�no�2�0�

�n0
2�2�0�cos2 � + ne

2�2�0�sin2 �

2�0

c
� ,

kz��� = no���
�

c
.

APPENDIX B

In this appendix we provide a detailed derivation of Eq.
�16�. Note that a surface of perfect phase matching is given
by �kx

2+ky
2=k0��obs�. Due to cylindric symmetry we can re-

strict the problem to ky =0. We expect that largest contribu-
tion to the intensity of parametric fluorescence comes from �
and �� such that �kz�� ,��� is small. Thus we linearize wave
vector mismatch around �0= (�obs ,k0��obs� ,0) and �0�
= (2�0−�obs ,−k0��obs� ,0) with � fixed. As a result, we ob-
tain

�kz
lin��,��� = �kpz

lin��0+�0�
− �kz

lin��0
− �kz

lin��0�
.

Here,

�kpz
lin��0+�0�

= �kpz��p�
���


�0+�0�

��� − �2�0 − �obs��

+ �kpz��p�
�kpx


�0+�0�

�kx + kx��

+ �kpz��p�
�kpy


�0+�0�

�ky + ky�� ,

�kz
lin��0

= �kz���
�kx


�0

�kx − k0��obs�� + �kz���
�ky


�0

ky ,

�kz
lin��0�

= �kz����
���


�0�

��� − �2�0 − �obs�� + �kz����
�kx�


�0

��kx� + k0��obs�� + �kz���
�ky�


�0

ky�.

Using the definitions from Eq. �17� we obtain Eq. �16�.

JAN CHWEDEŃCZUK AND WOJCIECH WASILEWSKI PHYSICAL REVIEW A 78, 063823 �2008�

063823-8



�1� P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.
Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 �1995�.

�2� N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 �1948�.

�3� D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter,
and A. Zeilinger, Nature �London� 390, 575 �1997�.

�4� W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A
64, 063815 �2001�.

�5� V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong,
Phys. Rev. Lett. 88, 183602 �2002�.

�6� A. B. U’Ren, K. Banaszek, and I. A. Walmsley, Quantum Inf.
Comput. 3, 480 �2003�.

�7� M. Tsang and D. Psaltis, Phys. Rev. A 71, 043806 �2005�.
�8� M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed.

�Cambridge University Press, Cambridge, 1997�.
�9� W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radze-

wicz, Phys. Rev. A 73, 063819 �2006�.
�10� T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 �1997�.
�11� F. Tavella, A. Marcinkevicius, and F. Krausz, New J. Phys. 8,

219 �2006�.
�12� J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 89,

020401 �2002�.
�13� A. Perrin, H. Chang, V. Krachmalnicoff, M. Schellekens, D.

Boiron, A. Aspect, and C. I. Westbrook, Phys. Rev. Lett. 99,
150405 �2007�.

�14� A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev.
Lett. 94, 040401 �2005�.

�15� P. Deuar and P. D. Drummond, Phys. Rev. Lett. 98, 120402
�2007�.

�16� Y. B. Band and M. Trippenbach, Phys. Rev. Lett. 76, 1457
�1996�.

�17� M. I. Kolobov, Rev. Mod. Phys. 71, 1539 �1999�.
�18� Y. B. Band, C. Radzewicz, and J. S. Krasiński, Phys. Rev. A

49, 517 �1994�.
�19� A. Dragan, Phys. Rev. A 70, 053814 �2004�.
�20� P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H.

Eberhard, Phys. Rev. A 60, R773 �1999�.

INTENSITY OF PARAMETRIC FLUORESCENCE PUMPED … PHYSICAL REVIEW A 78, 063823 �2008�

063823-9


