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Using the angular spectrum representation of fields and the first Born approximation we develop a theory of
scattering of scalar waves with any spectral composition and any correlation properties from collections of
particles which have either deterministic or random distributions of the index of refraction and locations. An
example illustrating the far-field intensity and the far-field spectral degree of coherence produced on scattering
of a model field from collections of several particles with Gaussian potentials is considered.
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I. INTRODUCTION

Scattering of electromagnetic waves from collections of
particles is of considerable interest in many areas such as
medical diagnostics and imaging, remote sensing in the at-
mosphere and ocean, to name a few. Most techniques for
analyzing interaction of waves with such media are based on
the theory of radiative transfer which does not take into ac-
count the interference effects and therefore are not suitable
for calculations in all scattering regimes. However, in some
situations, for instance, when the dimensions of particles are
on the same order as the typical transverse spatial correlation
length of the incident field, interference effects should be
taken into account.

On a rigorous basis scattering of stochastic fields from
random media was first treated in Refs. �1–3� �see also Ref.
�4��. Inverse problem, i.e., the problem of finding the statis-
tical properties of scatterers from the statistical properties of
the scattered field was addressed in Ref. �5� �see also Ref.
�6��. Analysis of scattering from collections of particles was
carried out in Refs. �7,8� but was limited to incident poly-
chromatic plane waves and to spectral properties of scattered
light. Later new techniques such as variable coherence to-
mography �9� and variable coherence microscopy �10� were
proposed and tested experimentally. Both methods use cor-
relation properties of an incident field to sense the statistical
properties of a particulate medium.

In a recent publication �11� a theory was developed that
makes it possible to study scattering of scalar fields of arbi-
trary spectral composition and coherence properties from de-
terministic and random continuous scatterers. The combina-
tion of scattering matrix theory and the angular spectrum
decomposition of fields employed in Ref. �11� made the
treatment of complex phenomenon of scattering complete
and simple. In this paper we will extend the theory in Ref.
�11� to scattering of arbitrary scalar fields from collections of
discrete particles of both deterministic and random nature.

II. REVIEW OF THE SCATTERING THEORY

Following Ref. �11� �see also Refs. �4,12��, we will first
review the general theory of scattering of scalar fields with
arbitrary spectral and coherence properties from static deter-
ministic or random media. Let us first consider a monochro-
matic scalar field at a point with position vector r and fre-

quency �, U�i��r ;��e−i�t, propagating into the half-space z
�0. Its space-dependent part can be represented in the form
of the angular spectrum of plane waves

U�i��r;�� =� � a�i��u;��eik�u�·r+uzz�d2u�, �1�

where integration extends over the �ux,uy� plane. Here k
=� /c is the wave number, c being the speed of light in
vacuum; u= �ux ,uy ,uz� is a unit vector, u�= �ux ,uy ,0�, and

uz = �1 − �u��2, when �u�� � 1 �homogeneous waves� ,

�2a�

=i��u��2 − 1, when �u�� � 1 �evanescent waves� .

�2b�

It was shown in Ref. �11� that the total field produced on
scattering, being the sum of the incident and the scattered
fields can be calculated by the formula

U�t��r;�� =� � a�t��u;��eik�u�·r�uzz�d2ud2u�� , �3�

where the scattering amplitude of the total scattered field is
given by the expression

a�t��u,�� = S�u,u�,��a�i��u�,�� , �4�

S being the spectral scattering matrix. Positive or negative
sign in Eq. �3� must be chosen for forward-scattering and
back-scattering portions of the scattered field, respectively.
Integration in Eq. �3� is performed only over the homoge-
neous part of the angular spectrum.

If the field incident on the scatterer is stochastic, wide-
sense statistically stationary, then its second-order, two-point
spatial correlation properties �in frequency domain� can be
characterized by the cross-spectral density function �see Ref.
�4� Sec. 4.1�

W�i��r1,r2;�� = �U�i�*�r1;��U�i��r2;��	 �5�

or by its angular correlation function

A�i��u1,u2;�� = �a�i�*�u1;��a�i��u2;��	 , �6�

which can be shown to be the four-dimensional Fourier
transform of W�i� �12�. The cross-spectral density matrix of
the total scattered field then becomes
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W�t��r1,r2;�� = �U�t�*�r1;��U�t��r2;��	

=� � � � M�u1,u2;u1�,u2�;��A�i��u1�,u2�;��

� eik�u2·r2−u1·r1�d2u1d2u2d2u1�� d2u2�� , �7�

where

M�u1,u1�,u2,u2�;�� = S*�u1,u1�;��S�u2,u2�;�� �8�

is the pair scattering matrix �11�, integrations in Eq. �7� are
being taken only over homogeneous waves.

Under the first Born approximation the scattering matrix
may be expressed in terms of the scattering potential in a
simple manner. Let n�r ,�� be the refractive index distribu-
tion throughout the scatterer. The scattering potential F�r ,��
is then given by the formula �see Ref. �12�, Sec. 13.1�

F�r,�� =
k2

4�
�n2�r,�� − 1�, r�D ,

=0, otherwise, �9�

where D denotes the domain occupied by the scatterer. Then,
the pair-scattering matrix of the total field takes the form

M�u1,u2;u1�,u2�;�� = F̃*�k�u1 − u1��,��F̃�k�u2 − u2��,�� ,

�10�

where tilde denotes the two-dimensional Fourier transform.
In the case when the scatterer is random the expression

�8� generalizes to

M�u1,u1�,u2,u2�;�� = �S*�u1,u1�;��S�u2,u2�;��	rm, �11�

where �¯	rm denotes the average taken over the ensemble of
realizations of the scattering medium.

In particular, in the far field of the scatterer the total field
U�t� and the cross-spectral density function W�t� along direc-
tions specified by unit vectors u1 and u2 reduce to the forms
�11�

U�t��ru,�� 
 �
2�iuz

k

eikr

r
� S�u,u�,��a�i��u�,��d2u�� ,

�12�

W�t��ru1,ru2;�� 
 �
4�2

k2r2uz1uz2� � M�u1,u2;u1�,u2�;��

� A�i��u1�,u2�;��d2u1�d
2u2�. �13�

With the help of the cross-spectral density function
W�t��r1 ,r2 ;�� �see Eq. �7�� we may at once determine the
spectrum S�t��r ;�� and the spectral degree of coherence
��t��r1 ,r2 ;�� of the total field using the formulas �see Ref.
�13�, Sec. 4.3.2�:

S�t��r;�� = W�t��r,r;�� , �14�

��t��r1,r2;�� =
W�t��r1,r2;��

�S�t��r1;���S�t��r2;��
. �15�

III. SCATTERING FROM COLLECTIONS OF PARTICLES

Suppose that light is being scattered from a static collec-
tion of particles of L different types which occupy domain D
�see Fig. 1�. To characterize the response of such a collection
to the incident light we will use the discrete-particle model,
in which the scattering potential F�r ,�� of the collection can
be represented by a finite sum of potentials of individual
scatterers, i.e.,

F�r,�� = �
l=1

L

�
m=1

Ml

f l�r − rm,�� , �16�

where rm is the location of a scattering center, f l is the scat-
tering potential of the scatterer of type l, Ml is the number of
particles of type l.

In the case when the collection is static but random one
can characterize its response with the help of the correlation
function of the scattering potential which reduces for the
particulate medium to the form �Ref. �4�, Sec. 6.3.1�

CF�r1,r2,�� = �F*�r1,��F�r2,��	rm

= �
l=1

L

�
j=1

L

�
m=1

Ml

�
n=1

Nj

�f
l
*�r − rm,��f j�r − rn,��	rm.

�17�

If all particles in the collection are identical the summations
over indexes l and j in the expressions �16� and �17� may be
omitted and they become

F�r,�� = �
n=1

N

f�r − rn,�� , �18�

CF�r1,r2,�� = �
m=1

M

�
n=1

N

�f*�r1 − rm,��f�r2 − rn,��	rm.

�19�

In scattering from collections of particles by scalar wave-
fields several cases should be differentiated. The incident
field can be either deterministic or stochastic and, in addi-
tion, particles can form deterministic collection �Sec. III A�
or random collection �Sec. III B�.

A. Deterministic collection of scatterers

We begin by considering the simplest situation when the
incident field, say U�i��r ,��, is deterministic and it is scat-
tered from a deterministic collection of particles, i.e., the

z

u
u'1

u'2
f (r-r , ω)n

1

2u

FIG. 1. Notation relating to the scattering of two correlated
plane waves from a collection of particles.
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distribution of the refractive index within particles and their
locations are deterministic. In this case the scattering poten-
tial of the system of n �identical� particles is given by Eq.
�18�.

In this case, within the validity of the first Born approxi-
mation the scattering matrix takes the form �Ref. �11�, Eq.
�35��

S�u,u�,�� = F�F�r,��� = �
n=1

N

F�f�r − rn,��� , �20�

where F denotes three-dimensional Fourier transform.
On performing Fourier transforms of potentials of indi-

vidual particles with the help of variables Rn=r−rn
�n=1, ... ,N� we find that

S�u,u�,�� = �
n=1

N

e−irn·K f̃�K,�� , �21�

where K=k�u−u�� is the so-called momentum-transfer vec-
tor.

The total scattered field produced on scattering can be
found with the help of Eqs. �3�, �4�, and �21� to be

U�t��r,�� = �
n=1

N � � e−irn·K f̃�K,��

�a�i��u�,��e−ik�u�·r�uzz�d2ud2u�� . �22�

In the far-zone of the scatterer the total field reduces to the
expression involving single integral, i.e.,

U�t��ru,�� = �
2�iuz

k

eikr

r �
n=1

N

e−ikrn·u� eikrn·u� f̃�K,��

�a�i��u�,��d2u�� . �23�

We will now consider the case when the field incident on the
system of particles is stochastic and is characterized by the
cross-spectral density function W�i��r1 ,r2 ,��. The cross-
spectral density function of the total scattered field is then
given by expression �7�. Noting that �see Eq. �21��

S*�u1,u1�,��S�u2,u2�,��

= �
m=1

M

�
n=1

N

e−i�K2·rn−K1·rm� f̃*�− K1,�� f̃�K2,�� , �24�

where K	=k�u	−u	�� �	=1,2�, we find, on substituting from
Eq. �24� into Eq. �7� that

W�t��r1,r2,�� = �
m=1

M

�
n=1

N � � � � e−i�K2·rn−K1·rm�

� f̃*�− K1,�� f̃�K2,��A�i��u1�,u2�,��

�eik�u2·r2−u1·r1�d2u1d2u2d2u1�� d2u2�� .

�25�

In the far zone of the scattering volume the last equation
reduces to the formula

x

y

z
z = 1m

z

x
y

z = 1m

x
y

z
z = 1m

(b)(a) (c)

x

y

.

z = 1m z = 1+3×10 m-7

z

(d)

FIG. 2. �Color online� The coordinates of the particles �a� �0,0 ,1m�; �b� �0,3�10−7m ,1m�, �0,−3�10−7m ,1m�; �c� �0,0 ,1m�, �0,3
�10−7m ,1m�, �0,−3�10−7m ,1m�, �3�10−7m ,0 ,1m�, �−3�10−7m ,0 ,1m�; �d� �0,0 ,1m�, �0,3�10−7m ,1m�, �0,−3�10−7m ,1m�, �3
�10−7m ,0 ,1m�, �−3�10−7m ,0 ,1m�, �0,0 ,1+3�10−7m�, �0,3�10−7m ,1+3�10−7m�, �0,−3�10−7m ,1+3�10−7m�, �3�10−7m ,0 ,1
+3�10−7m�, �−3�10−7m ,0 ,1+3�10−7m�.
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W�t��ru1,ru2,�� = �
4�2

k2r2u1zu2z�
m=1

M

�
n=1

N � � e−i�K2·rn−K1·rm�

� f̃*�− K1,�� f̃�K2,��

�A�i��u1�,u2�,��d2u1�� d2u2�� . �26�

B. Random collections of scatterers

Let us now assume that the incident field U�i��r ,�� is
deterministic but it is scattered from random collection of
identical particles. In general, second-order statistical prop-
erties of such a collection at a pair of points r1 and r2 may be
characterized by a correlation function �19�. In the case when
the scattering medium is random it can be shown �see Ref.
�11�, Eq. �43�� that within the validity of the first Born ap-
proximation the pair-scattering matrix is related to the corre-
lation function �see Eq. �17�� of the scattering potential by
the formula

M�u1,u2,u1�,u2�� = C̃F�K1,K2,�� , �27�

where, as before, K	=k�u	−u	��, �	=1,2� are the
momentum-transfer vectors and tilde stands for six-
dimensional Fourier transform.

By random collection of particles we mean the collection
whose elements have deterministic potential but their posi-
tions are distributed randomly in a given volume. Under this
assumption, on substituting from Eq. �19� into Eq. �27� and
evaluating the Fourier transforms of individual particles in
the collection with the help of the variables R2n=r2−rn and
R1m=r1−rm, we find that

M�u1,u2,u1�,u2�� = C̃f�− K1,K2,��Q�K1,K2� . �28�

Here C̃f are given by the expressions
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FIG. 3. Contours of the spectral density of the far field produced by scattering of two correlated plane waves on particles with Gaussian
potential. The parameters 
 and � are kept fixed: k
=1, k�=1, �a� one particle; �b� two particles; �c� five particles; �d� ten particles.
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C̃f�K1,K2,�� =� � �f*�R1m,��f�R2n,��	

�e−i�K2·R2n−K1·R1m�d3R1md3R2n �29�

and

Q�K1,K2� = ��
m

�
n

e−i�K2·rn−K1·rm�

rm

�30�

where the later is call the “pair-structure factor.” The pair
structure factor may be considered as a two-point generali-
zation of the structure factor �see Eq. �5� of Ref. �7�� fre-
quently used for characterization of collection of particles.
Unlike structure factor that describes the way in which the
intensity of the incident beam is scattered in space, pair-
structure factor provides information about spatial correla-
tions of the scattered field.

The cross-spectral density function of the field scattered
from the random collection of particles can then be found by
the formula

W�t��r1,r2,��

=� � � � C̃f�K1,K2,��Q�K1,K2�a�i�*�u1�,��

�a�i��u2�,��eik�u2·r2−u1·r1�d2u1d2u2d2u1�� d2u2�� .

�31�

In the far zone of the scatterer the previous expression re-
duces to the form

W�t��ru1,ru2,��

= �
4�2

k2r2u1zu2z� � C̃f�K1,K2,��Q�K1,K2�

�a�i�*�u1�,��a�i��u2�,��d2u1�� d2u2�� . �32�

In case when the incident field is random the last two
formulas have the same form, except for the product
a�i�*�u1� ,��a�i��u2� ,�� of amplitudes of the incident light must
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FIG. 4. Contours of the spectral density of the far field produced by scattering of two correlated plane waves on two particles with
Gaussian potential. The parameter � is kept fixed: k�=1, �a� k
=3, �b� k
=1.5, �c� k
=0.9, �d� k
=0.5.

SCATTERING OF SCALAR LIGHT FIELDS FROM … PHYSICAL REVIEW A 78, 063815 �2008�

063815-5



be substituted by their correlation function A�i��u1� ,u2� ,��.
We then find that the cross-spectral density function becomes

W�t��r1,r2,��

=� � � � C̃f�K1,K2,��Q�K1,K2�

�A�i�*�u1�,u2�,��eik�u2·r2−u1·r1�d2u1d2u2d2u1�� d2u2�� .

�33�

In the far zone of the scatterer the last formula reduces to the
expression

W�t��ru1,ru2,��

= �
4�2

k2r2u1zu2z� � C̃f�K1,K2,��Q�− K1,K2�

�A�i�*�u1�,u2�,��d2u1�� d2u2�� . �34�

IV. EXAMPLE OF TWO PARTIALLY CORRELATED
POLYCHROMATIC PLANE WAVES SCATTERED

BY A DETERMINISTIC MEDIUM

As an application to the theory discussed in Sec. III we
consider the incident field U�i� which consists of two mutu-
ally correlated polychromatic plane waves propagating along
directions u1� and u2�, and scattered from a collection of
spheres. The spectral amplitude a�i��u� ,�� of the incident
field has the form

a�i��u�,�� = a�i��u1�,����2��u� − u1�� + a�i��u2�,����2��u� − u2�� ,

�35�

��2��u� being the spherical Dirac delta function �14� �see also
Ref. �11�, where the same model incident field was initially
introduced�.

On substituting from Eq. �35� into Eq. �6�, we find that the
angular correlation function of the incident field takes the
form
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FIG. 5. Contours of the spectral density of the far field, produced by scattering of two correlated plane waves on two particles with
Gaussian potential. The parameter 
 is kept fixed: k
=1, �a� one particle, k�=10; �b� one particle, k�=0.1; �c� two particles, k�=10; �d�
two particles, k�=0.1.
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A�i��u1�,u2�;�� = a�u1�,u1�;����2��u� − u1���
�2��u� − u1��

+ a�u2�,u2�;����2��u� − u2���
�2��u� − u2��

+ a�u1�,u2�;����2��u� − u1���
�2��u� − u2��

+ a�u2�,u1�;����2��u� − u2���
�2��u� − u1�� ,

�36�

where the angular correlation function a�u1� ,u2� ;�� is as-
sumed to be Gaussian, i.e.,

a�up�,uq�;�� = apqe�−k2�2/2��uq� − up��2
�p,q = 1,2� , �37�

where apq and � may depend, in general, on frequency �.
Suppose that the scatterers are spherical centered at points

rc= �xn ,yn ,zn�, having a three-dimensional �soft� Gaussian
potential

f�rn;�� = B exp�−
�x − xn�2 + �y − yn�2 + �z − zn�2

2
2 � .

�38�

The variance 
2 is taken to be independent of position but, in
general, will depend on the frequency. On calculating three-
dimensional Fourier transform of the expression �38� we find
that

F̃�K;�� = B�2���3/2�
3e−K2
2/2�
n=1

N

eixnKxeiynKyeiznKz. �39�

On substituting from Eq. �39� into Eq. �10� and setting K
=k�u−u�� we find that, within the accuracy of the first Born
approximation, the pair scattering matrix has the form

M�1��u1,u2;u1�,u2�;�� = B2�2��3
6�e�−k2
2/2��u1 − u1��2�
n=1

N

e−ikxn�u1x−u1x� �e−ikyn�u1y−u1y� �e−ikzn�u1z−u1z� ��
� �e�−k2
2/2��u2 − u2��2�

n=1

N

eikxn�u2x−u2x� �eikyn�u2y−u2y� �eikzn�u2z−u2z� �� . �40�

When we substitute from Eqs. �36� and �40� �with the help of Eq. �37�� first into Eq. �13� and then into Eq. �14� we obtain
the formula for the spectral density of the far field

S�t��ru;�� =
B2�2��5
6uz

2

k2r2 �e−k2
2�u − u1��2��
n=1

N

e−ikxn�ux−u1x� �e−ikyn�uy−u1y� �e−ikzn�uz−u1z� ��
n=1

N

eikxn�ux−u1x� �eikyn�uy−u1y� �eikzn�uz−u1z� ��a11

+ e−k2
2�u − u2��2��
n=1

N

e−ikxn�ux−u2x� �e−ikyn�uy−u2y� �e−ikzn�uz−u2z� ��
n=1

N

eikxn�ux−u2x� �eikyn�uy−u2y� �eikzn�uz−u2z� ��a22

+ 2e�−k2
2/2��u − u1��2
e�−k2
2/2��u − u2��2

e�−k2�2/2��u2� − u1��2

� Re�a12��
n=1

N

e−ikxn�ux−u1x� �e−ikyn�uy−u1y� �e−ikzn�uz−u1z� ��
n=1

N

eikxn�ux−u2x� �eikyn�uy−u2y� �eikzn�uz−u2z� ���� . �41�

We note that on integrating spherical � functions in Eq.
�13� �or, alternatively, Eq. �26� valid specifically for deter-
ministic collections� we could get rid of the double integral
in Eq. �41� and write the right-hand side as a linear combi-
nation.

In Fig. 2 we show distributions of one, two, five, and ten
spheres that we used for all our numerical examples �Figs.
3–6�. The parameters used for all of the numerical calcula-
tions are 
=0.633�10−6 m, B=1, a1=0.6ei�/7, a2=0.9ei�/6.

In Figs. 3–5 we illustrate the behavior of the spectral den-
sity of the far field calculated from Eq. �41� and normalized
by the factor B2�2��5
6uz

2 /k2r2. By these sets of contour-
plots we show the dependence of spectral density distribu-
tion on various parameters of the incident field and of the
particle system. Angles � and � are the polar and the azi-
muthal angles of the unit vector u in spherical coordinates,
i.e., ux=cos � cos �, uy =cos � sin �, uz=sin �. Angles �1,2� ,

�1,2� are the polar and azimuthal angles of vectors u1,2� in
spherical coordinates. For Figs. 3–5 we have chosen the di-
rections of the incident field to be �1�=−� /4, �1�=−� /3, �2�
=� /6, �2�=� /5.

In Fig. 3 we show the behavior of spectral density of far
fields as a number of particles in the system grows from 1 to
10 �see Fig. 2�, provided the size of the individual particles
as well as correlation and directions of the incident plane
waves are kept fixed. One can see that with the increase of
the number of particles from 1 to 5 �see Figs. 3�a�–3�c�� the
distribution becomes more localized around two centers cor-
responding to directions of the incident plane waves. How-
ever, for larger number of particles, e.g., 10 �Fig. 3�d��, the
localization becomes less pronounced again.

In Fig. 4 the spectral density of the far field is shown for
four different values of the scaled size of the particles k
. As
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the size decreases the interference effects disappear �Fig.
4�a�� and the distribution becomes more localized �compare
peak values in Figs. 4�a� and 4�b��. However, with further
decrease of k
 the localization becomes less noticeable
�Figs. 4�c� and 4�d��.

In Fig. 5 we compare the changes in far-field spectral
density with the scaled degree of correlation k� of the inci-
dent plane waves. Figures 5�a� and 5�b� refer to one-particle

system. Figures 5�c� and 5�d� refer to two-particle system.
One can readily see that for two-particle system the influence
of k� is less evident �compare Figs. 5�c� and 5�d��. On sub-
stituting from Eqs. �37� and �40� �with the help of Eq. �36��
first into Eq. �13� and then into Eq. �15� we now obtain the
expression for the spectral degree of coherence of the far
field produced on scattering of two correlated plane waves
on the collection of spheres with Gaussian potentials

��t��ru1,ru2;�� =
1

�S�t��ru1;���S�t��ru2;���e�−k2
2/2��u1 − u1��2��
n=1

N

e−ikxn�u1x−u1x� �e−ikyn�u1y−u1y� �e−ikzn�u1z−u1z� ��
� e�−k2
2/2��u2 − u1��2��

n=1

N

eikxn�u2x−u1x� �eikyn�u2y−u1y� �eikzn�u2z−u1z� ��a11

+ e�−k2
2/2��u1 − u2��2��
n=1

N

e−ikxn�u1x−u2x� �e−ikyn�u1y−u2y� �e−ikzn�u1z−u2z� ��
� e�−k2
2/2��u2 − u2��2��

n=1

N

eikxn�u2x−u2x� �eikyn�u2y−u2y� �eikzn�u2z−u2z� ��a22

+ �e�−k2
2/2��u1 − u1��2��
n=1

N

e−ikxn�u1x−u1x� �e−ikyn�u1y−u1y� �e−ikzn�u1z−u1z� ��

n=1

n=2

n=5
n=10
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FIG. 6. �Color online� Modulus of the spectral degree of coherence of the far field as a function of �d=�2−�1, where �1=0, produced by
scattering of two correlated plane waves, �a� on different number of particles �k
=1, k�=1�; �b� on five particles, for different 
 values
�k�=1�; �c� on five particles, for different � values �k
=1�.
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� e�−k2
2/2��u2 − u2��2��
n=1

N

eikxn�u2x−u2x� �eikyn�u2y−u2y� �eikzn�u2z−u2z� ��a12

+ e�−k2
2/2��u1 − u2��2��
n=1

N

e−ikxn�u1x−u2x� �e−ikyn�u1y−u2y� �e−ikzn�u1z−u2z� ��
� e�−k2
2/2��u2 − u1��2��

n=1

N

eikxn�u2x−u1x� �eikyn�u2y−u1y� �eikzn�u2z−u1z� ��a21�e�−k2�2/2��u1� − u2��2� . �42�

We note here again that on integrating spherical � func-
tions in Eq. �13� �or, alternatively, Eq. �26� valid specifically
for deterministic collections� we could get rid in Eq. �42� of
the double integral and write the right-hand side as a linear
combination.

Figure 6 shows the behavior of the modulus of the spec-
tral degree of coherence ���t��ru1 ,ru2 ;��� of the far-field cal-
culated from Eq. �42�. We assume that the plane waves are
incident on the collection of spheres along directions speci-
fied by polar angles �1�=� /2, �2�=−� /2 and azimuthal
angles �1�=�2�=0.3 rad. The modulus of the degree of coher-
ence of the scattered field was calculated as a function of the
angle �d=�2−�1, while the other angles were kept fixed: �1
=0, �1=� /2, �2=� /2.

In Fig. 6�a� the behavior of ���t��ru1 ,ru2 ;��� for four col-
lections of particles �see Fig. 2� is plotted. The appearance of
interference effects is obviously seen starting from the case
n=2. Figure 6�b� shows the influence of different values of 

on scattering from five particles when k�=1. In Fig. 6�c� we
illustrate the effect of the scaled correlation parameter k� of
the incident plane waves on the scattered spectral density
scattered from five particles, while the scaled size of the
spheres k
 is kept fixed.

V. CONCLUDING REMARKS

We have developed the theory for far-field scattering of
electromagnetic fields of deterministic and random nature
from collections of discrete particles which have either de-
terministic or random locations. The theory is based on the
scattering matrices approach and uses the first Born approxi-
mation but is not limited to it. It enables scattering of fields
with practically arbitrary spectral and coherence properties

from particulate media in the most rigorous possible manner,
while previously the majority of calculations were done for a
single monochromatic or, at best, a polychromatic plane
wave. From the example that we have considered, that in-
volves scattering of two mutually correlated plane waves on
several particles with Gaussian potentials, it is seen how the
spectral density and the state of coherence of the far field
depend on directions of the plane waves, their degree of
correlation and, of course, on all the properties of the collec-
tion of scatterers.

Although our analysis is limited only to collections for
which the boundaries of the individual particles are soft and
multiple scattering effects are neglected. In many practical
cases our calculations are very relevant, e.g., in scattering of
a random light beam from a tenuous collection of cells sus-
pended in a solution. If the size of a cell is on the order of the
wavelength then interference effects dominate multiple scat-
tering effects and the first Born approximation is sufficient
for obtaining an adequate solution.

This approach may be later extended to beamlike fields of
interest, for example, Gaussian beam, Bessel beam, etc., or
any general, three-dimensional �nonparaxial� fields. Also, we
have only introduced analytical formulas describing how
scattering from random collections of particles may be car-
ried out in a similar fashion as from deterministic collec-
tions. Since, however, this subject involves completely dif-
ferent aspects of what was considered in this paper we will
address it in detail in a later publication.
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