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Generating “squeezed” superpositions of coherent states using photon addition and subtraction
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We study how photon addition and subtraction can be used to generate squeezed superpositions of coherent
states (SSCSs) in free-traveling fields with high fidelities and large amplitudes. It is shown that an arbitrary
N-photon subtraction results in the generation of a SSCS with nearly the perfect fidelity (F>0.999) regardless
of the number of photons subtracted. In this case, the amplitude of the SSCS increases as the number of the
subtracted photons gets larger. For example, two-photon subtraction from a squeezed vacuum state of 6.1 dB
can generate a SSCS of a=1.26, while in the case of the four-photon subtraction a SSCS of a larger amplitude
a=1.65 is obtained under the same condition. When a photon is subtracted from a squeezed vacuum state and
another photon is added subsequently, a SSCS with a lower fidelity (F~0.96) yet higher amplitude («=~2) can
be generated. We analyze some experimental imperfections including inefficiency of the detector used for the

photon subtraction.
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I. INTRODUCTION

The development of the quantum theory of light has deep-
ened our understanding of nonclassical properties of optical
fields. Recently, superpositions of coherent states (SCSs) in
free-traveling fields [1,2] have attracted special attention due
to their remarkable usefulness. When their amplitudes are
large, the SCSs show typical properties of macroscopic
quantum superpositions, and because of this, they are often
called “Schrodinger cat states” recalling the famous cat para-
dox [3]. The SCSs enable one to perform many interesting
studies for fundamental tests of quantum theory [4—6]. Fur-
thermore, it has been found that SCSs are useful for various
applications in quantum-information processing [7—12]. The
power of this approach lies in the fact that all four Bell states
can be discriminated in a deterministic way only using a
beam splitter and photon counting [8,9], which is obviously
not the case for the single-photon based approach.

In spite of the manifold usefulness of the SCSs, until re-
cently, the generation of free-traveling SCSs has been known
to be difficult. There have been schemes to generate such
SCSs using strong nonlinear interactions [1,13] or photon
number resolving detectors [14,15], which are not feasible
using current technology. Recently, more realistic schemes
have been suggested by several authors [16-21]. For ex-
ample, a scheme using weak Kerr nonlinearities and simple
optical elements was suggested [18] based on a previous pro-
posal where strong Kerr nonlinearities are required [13]. As
another example, a simple observation was made that SCSs
with small amplitudes, such as a<1.2, are well-
approximated by squeezed single photons [16]. It was also
pointed out that squeezed single photons can be obtained by
subtracting or adding one photon from pure squeezed vacu-
ums [22]. Meanwhile, single-photon-subtracted squeezed
states, which are close to small SCSs (a¢<1), have been
generated by several experimental groups [23-26] and theo-
retical analysis has been performed [27-29]. Recently,
squeezed SCSs (SSCSs) were generated and detected [30],
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where the size of the states (a=1.6) was reasonably large for
fundamental tests of quantum theory and quantum-
information processing, for which the states are suited de-
spite their squeezing [31]. A scheme using time separated
two-photon subtraction was suggested [32] and experimen-
tally demonstrated [33] to generate SCSs of large ampli-
tudes. Despite all the recent progress, however, the fidelities
of the generated states are yet to be improved for practical
quantum-information processing.

The directions of the development for the generation of
SCSs are twofold. First, one needs to generate SCSs with
larger amplitudes (a=2) for macroscopic tests of quantum
theory. Second, for quantum-information processing, it is im-
portant to generate SCSs with higher fidelity > 0.99 while
a=~1.6is an appropriate value [34]. The SSCSs, generated in
a recent experiment [30], are simply a squeezed version of
the SCSs. Interestingly, the direction of the squeezing in Ref.
[30] makes the SSCSs more robust against decoherence than
the regular SCSs [35]. The SSCSs can be useful in some
protocols as they are [31], and if required, it may be possible
to unsqueeze them by means of the squeezing transformation
[19,20,36].

In this paper, we are interested in finding methods to gen-
erate SSCSs with larger amplitudes and higher fidelities us-
ing photon subtraction and addition. Here, we show that the
two photon subtraction enables one to produce the SSCS
with very high fidelity, and the combination of the subtrac-
tion and addition can return the SSCS with a lower fidelity
yet higher amplitude.

We also find that consecutive applications of photon sub-
traction (or subtracting a well-defined number of photons)
from a squeezed vacuum state result in the generation of a
SSCS with nearly the perfect fidelity regardless of the num-
ber of photons subtracted. The amplitude of the SSCS in-
creases as the number of the subtracted photons gets larger.
This paper is organized as follows. In Sec. II, we investigate
combinations of the ideal single photon addition and subtrac-
tion. In Sec. III, some experimental imperfections are ana-
lyzed for the realization of the states discussed in Sec. II. In
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Sec. IV, we numerically show that an arbitrary N photon
subtraction, regardless of N, can be used to generate a SSCS
with an extremely high fidelity as F>0.999. We conclude
with final remarks in Sec. V.

II. PHOTON ADDITION TO AND SUBTRACTION
FROM SQUEEZED VACUUM

A. Combinations of photon addition and subtraction
The SCSs are defined as

SCSy) =No(|@) +e'l- a)), (1)

where N, A is a normalization factor, | + a) is a coherent state
of amplitude *a, and ¢ is a real local phase factor. The
SCSs such as [SCS.(a))=N.(la)*=|-a)) are called even
and odd SCSs, respectively, because the even (odd) SCS al-
ways contains an even (odd) number of photons. The
squeezed vacuum state, [S(r)), with the squeezing parameter
r can be obtained by applying the squeezing operator,

g(r) _ er(&z—éT2)/2’ 2)

where a (a") is the bosonic annihilation (creation) operator,
to the vacuum state. In the number state basis, it can be
represented as

- k
— (7911 !
|S(r)) = Vsech r v2k) [— — tanh r] 12k), (3)
= T2

where r was assumed to be real. As seen in Eq. (3), the
squeezed vacuum state contains only an even number of pho-
tons. A squeezed single photon, known as a good approxi-
mation of a small SCS, can be obtained by adding a photon
to a squeezed vacuum as

d*S‘(r)|O) =cosh r§(r)|l>, (4)

where the right-hand side is unnormalized due to the charac-
teristics of the creation operator a'. We note that Eq. (4) can
easily be shown using the following unitary transformations
[37]:

S'T(r)&ﬁ(r) =d coshr—d'sinhr,

§*(r)a*S(r) = a* cosh r—a sinh r. (5)

It is also known that the squeezed single photon can also be
obtained by subtracting a photon from a squeezed vacuum as

aS(r)|0) = — sinh rS(r)[1). (6)

This may cause us to conjecture that when the photon addi-
tion and subtraction are applied successively to the squeezed
vacuum, an approximate even SCS may be generated. We
can consider four immediate cases, namely, addition and sub-
traction (44", subtraction and addition (47@), successive ad-
ditions [(a")?], and successive subtractions (4%). From Egs.
(4) and (6), it is straigtforward to see that (a")? will result in
the same state produced using d@'a. It is also easy to see that
aa’ will cause the same effect with 42. Therefore we shall
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consider only two cases, a'a and a2, among the four based
on the fact that the photon subtraction is relatively easier to
perform than the photon addition.

Now suppose an ideal situation that a photon is subtracted
from the squeezed vacuum state and then another photon is
subsequently added. The resulting state, which we shall call
photon-subtracted-and-added squeezed state (PSAS), is ob-
tained by applying the annihilation and creation operators,

a'a, to the squeezed vacuum state |3‘ (r)). After a straightfor-
ward calculation using Egs. (5) and the normalization, the
PSAS appears to be

[Warad = NataS(O[10) = \2(amh 7], (7)

where Ai;={1+2(tanh r)"2}~"2. In the same manner, the
two-photon subtracted squeezed state (TPSS) can be ob-
tained as

|¢22) = NiS(r)(J0) = \2 tanh r[2)), (8)

with Nﬁzz{] +2(tanh r)2}—1/2'

B. Fidelities against ideal states

The fidelity, F=|(¢| )|, is a measure of how close a
state |i) is to the target state |¢). It is unity when the two
states are identical, while it is zero when the two are orthogo-
nal to each other. The fidelity between the TPSS (or PSAS)
and the ideal squeezed (or regular) SCS can be obtained as
follows. A even SSCS can be expressed as

SSCS) = N, S(r)[|a) + |- )], 9)

where N, =[2+2¢72¢]"12, The fidelity F between the TPSS
and the even SSCS can be calculated as

F=[(,2SSCS)?
= 8IN N[0S (r = r")| )
+ 28T (r = )| )])? (10)

where v=-tanh r. This expression can be evaluated with
help of the x representation:

<¢1|¢2>=f (U |x)(x| ¢ )dx, (11)

where the relevant wave functions are

(IS = r)[0) = (mgd) e 2,
. 2x?
&[S(r—=r"2)y = (47'r(g.’2)_1/4<g—x2 - l)e‘xz/zgz,

<x| a> — 77—1/46—(): - \fza)z/Z’ (1 2)

where g=exp[—(r—r')]. After some calculations, we arrive at
the fidelity:
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FIG. 1. (Color online) (a) Optimal fidelity F,,,, between the ideal
TPSS (a?) and the squeezed SCS of amplitude a (solid curve) and
the optimal fidelity between the ideal TPSS and the corresponding
regular SCS (dashed curve). The squeezing parameter r,,, of the
initial squeezed state is r=—0.7. (b) The squeezing parameter r' of
the target SSCS for which the fidelity is optimized.

8g 8—2012/( 1+¢?) 2

1 +4ag* - g*
(1+g>°

N+./\/'a2{l +v
(13)

The same approach can be used to derive fidelity of states
prepared by combined photon subtraction and addition:

2 2
8ge—2a /(1+g7) 1 +4a2g2_g4 2
Fi,=—————| NN 1+ u———55— ,
ata 1+g2 «P/\[ua M (1+gz)2
(14)
where
27-172 1
Naig=[1+2u7 77, u= . (15)
tanh r

In Figs. 1 and 2, we have used the analytical expressions
to show the optimal fidelities for a range of coherent ampli-
tudes. That is, for each «, such squeezing r’ of the SSCS is
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FIG. 2. (Color online) (a) Optimal fidelity F,,,, between the ideal
PSAS (afa) and the SSCS of amplitude « (solid curve) and the
optimal fidelity between the ideal PSAS and the corresponding
regular SCS (dashed curve). The squeezing parameter r;p, of the
initial squeezed state is r=—0.7. (b) The squeezing parameter of the
target SSCS for which the fidelity is optimized.
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FIG. 3. (Color online) (a) The Wigner function of the TPSS with
r=—=0.7 (=6.1 dB) and (b) the Wigner function of the ideal SSCS
with @=1.26 and r' =—0.425. The fidelity between the two states is
nearly perfect as F>0.999.

found to provide the maximal overlap with the state prepared
from the initial squeezed state with r=-0.7 (p-squeezed
state, approximately 6.1 dB of squeezing, which can be real-
ized using current technology). For comparison a fidelity
with the corresponding regular SCS is also shown.

Figure 1(a) shows the fidelity of the TPSS. It is seen that
although the fidelity tops at 0.9 for a regular SCS, when a
SSCS is considered, the fidelity of F=0.999 can be achieved
for a=1.26 and r’'=-0.425. The squeezing parameter r’ of
the target SSCS that optimizes the fidelity against the corre-
sponding amplitude « is plotted in Fig. 1(b). The fidelity for
the PSAS and the optimizing squeezing parameter against «
are depicted in Fig. 2. The optimal fidelity is F=0.956,
which is not as good as the case of the TPSS. However, in
this case, the amplitude of the SSCS is larger as a=1.93,
while the optimal squeezing for the SSCS is only r'=-0.17.

The Wigner function of a state with density operator p can
be obtained from the Fourier transform of its characteristic
function C(2)=Ti[D({)p], where D({)=exp[{at-{*a] is the
displacement operator. The Wigner functions of the TPSS
and PSAS can be obtained using Egs. (7) and (8) as

W(B) = Nyye ?2(1 + 2 tanh r{Z’ + tanh r[1 + 8Z(Z - 1)]}),
(16)

Wi4(B) = N, ;e (1 + 2 coth r{Z' + coth r[1 +8Z(Z - 1)]}),
(17)

where Z=32’,Bf+e‘zrﬂi2 and Z' =—4ezrﬁf+4e‘2’ﬁ?. In Figs. 3
and 4, we consider the squeezing parameter r=—0.7 (6.1 dB)
for the initial squeezed state. Figure 3 shows again that the
TPSS is an extremely good approximation of the even SSCS.
In Fig. 3, the Wigner functions of the TPSS of r=-0.7 and
the even SSCS of r’'=—-0.425 look virtually identical and the
fidelity between the two states is F'>0.999. Figure 4 presents
the Wigner functions of the PSAS of r=-0.7 and the even
SSCS of r'=-0.14 and a=2, where the fidelity between the
two states is F'=0.955. This shows that a slight variation of
parameters still allows for high fidelity.
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FIG. 4. (Color online) (a) The Wigner function of the PSAS
(left) with r=-0.7 (=6.1 dB) and (b) the Wigner function of the
ideal SSCS with @=2 and r’'=-0.14 (right). The fidelity between
the two states is F'=0.955.

To conclude, if one is interested in generating SSCSs of
high fidelity, the two-photon subtraction would be a useful
scheme, while the photon subtraction and addition would be
a better strategy to generate large SSCSs.

III. EXPERIMENTAL CONSIDERATIONS

A. Optical operations with ideal avalanche photodetectors

So far, we have considered ideal photon addition and sub-
traction using annihilation and creation operators. In real ex-
periments, however, they can be implemented only using ap-
proximate schemes. The setup for implementation of the
annihilation (creation) of a single photon consists of a beam
splitter (BS) [noncollinear optical parametric amplification
(NOPA)] and an avalanche photodetector. In the Wigner
function formalism, the actions of a BS and NOPA, coupling
two modes of light, can be characterized with the help of a
transformation matrix acting on a vector of variables
(x1,p1,X2,p,) corresponding to quadrature operators X; and

P; with [X;,P;/]=id;;:
t 0 r O
0 -x 0 1t
where the generalized parameters are
t=\E‘, r=X=\s"m (19)

for V|, to describe the action of a beam splitter with trans-
missivity 7, and

t:\E, r=—x=VG-1 (20)

for Vi, to describe a NOPA with amplification gain G. The
three-mode Wigner function for the initial squeezed state and
two vacuum ancillas is expressed as
Wi(é) = ( 152:0?). (21)
Qm*[2 | [7A\2

tot

Here, the vector of variables for the three-mode Wigner func-
tion is defined as &=(x;,py.x4.P4.X5.p5), Where x=8,/\2
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and p=g;/ V2 being compared to the variable, z, used in Eqgs.
(16) and (17), and the subscripts of x and p in order to denote
the initial and two ancillary modes, respectively. Further-

script T stands for transposition, and X, is the covariance
matrix of the state,

_ 1111
Et0t=dlag<Vx,Vp,2 >3 2) (22)

with V, and V, being the variances of the initial squeezed
state.

The initial state subsequently interacts with the two
vacuum modes, transforming the vector of variables into

E— & =VpV,é, (23)

where the transformation matrices V, and Vj are of the form
(18) coupling modes 1 and A and 1 and B with parameters ,,
ra, X4 and tg, rp, and yp, respectively. To complete the trans-
formation, a conditioning measurement is needed. When us-
ing two ideal avalanche photodetectors and postselecting the
state only when both produce a detection event, we imple-

ment a pair of projection operators i- |0)(0| and the Wigner
function of the output state is transformed to

Wout(xl’pl) = f Wtot(gl)[l - zwwvac(xA»pA)]
X[1 = 27Wy,(xp, pp) Jdxdp sdxpdpps,
(24)

where W,,.(x,p)=exp(—x>—p?)/ is the Wigner function of
a vacuum state. This integral can be expressed as a sum of
four Gaussian integrals,

f[l(inn) 21(2,,)) -
|2t0t|
+ 41(2W)], (25)

where I(2) is shorthand for

Wout(xl’pl) 2I(Zyn)

1
I2) = B )zf exp(— 552'1§T>dxAdpAdede (26)

and 3, ;7 18 a covariance matrix for the particular event when
either the two detectors did detect vacuum (y) or no mea-
surement has taken place (n). The particular covariance ma-
trices can be found as

I e I P (27)

where the 11 i is the semi-inverted covariance matrix of the

vacuum state,

1, = diag(0,0,0,0,0,0), TI,, =diag(0,0,2,2,2,2),

11, = diag(0,0,2,2,0,0), II,,, = diag(0,0,0,0,2,2).
(28)

The matrices E i+ can be decomposed into a block form,
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A Cia

Ji Ji
2“/2 N 29
JJ (C.T., B“/> ( )

Ji g7

where the submatrix A;;» corresponds to variables x;,p;, sub-
matrix Bj; t0 xy, pa, xB, pp. and submatrix Cj; covers rela-
tions between these two groups. After the integration, we can
arrive at the final Wigner function:

Wol.p) = M@[cww%(x,p) =2, Wy, (5:0)
= 2¢,, Wy, (6.p) +4ey, Wy (x.p)], (30)
where
Wale.p) = —— exp{— 1<x,p)2-'(x,p>f} a1
|2 2

is the Wigner function of a Gaussian state with covariance
matrix Y, the coefficients are

ijr = |2jj’| (32)
and

N= (cnn - 2Cny - chn + 4ny)(\’|2tol|)_l (33)

is the normalization factor and overall probability of success.
In order to compare the final state (30) with our target
state, the even SSCS, we need to employ its Wigner function

(x— \"Tga)z}

o8r*
Wes(x.p) = Nics exp| —
™ 8

{ (x+ \"2:’“)2]
+exp|—-——
g

+2e%8 COS(2V%0[])) , (34)

where Ngeg=[2+2¢72¢'T"2, a is the coherent amplitude,
and g=exp(-2r) characterizes squeezing of the state. The
fidelity can then be calculated as the overlap between the two
Wigner functions:

F= 277f Wou(x,p) Wyes(x, p)dxdp. (35)

Since the Wigner function W,,(x,p) is a sum of Gaussian
functions, we can treat the integration in parts and express
the final fidelity as

N\ |2t0t| [cnnf Ann) 2c yf( ny) - 2cy (Ayn)
+4c,, f(A)]. (36)

Here f(2) denotes the fidelity between a Gaussian state with
covariance matrix % and a SSCS. Since all the covariance
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FIG. 5. (Color online) (a) Optimal fidelity F,, between the
TPSS (a?) generated using ideal avalanche photon detectors and the
SSCS of amplitude « (solid curve) and the optimal fidelity with the
corresponding regular SCS (dashed curve). The squeezing param-
eter of the initial squeezed state is ¥=—0.7. The parameter of real
transformation is 7=0.99. (b) The squeezing parameter of the target
SSCS for which the fidelity is optimized.

matrices used are diagonal, we can write these partial fideli-
ties as functions of the diagonal elements as

-1
fldiag(u,v)] = 2{(1 + e-2a2) \/(g + 2M)(§ + Zvﬂ

X[ ( -2a? ) ( 207 )}
— | + - .
TP\ T 2wg) TP\ Tk 12w
(37)

With Egs. (36) and (37) we can finally obtain the required
fidelity. In analogy with the previous section, the behavior of
the state is depicted in Figs. 5 and 6. The comparison reveals
that these real states behave in a similar pattern as the ideal
ones, the performance is, however, slightly worse. For real-
istic parameters, 7=0.99 and G=1.01, the optimal fidelities

1 0.5
(b)

0.2 !

FIG. 6. (Color online) Optimal fidelity F,,, between the PSAS
(aa) generated using ideal avalanche photon detectors and the
SSCS of amplitude « (solid curve) and the optimal fidelity with the
corresponding regular SCS (dashed curve). The squeezing param-
eter of the initial squeezed state is r=—0.7. (b) The squeezing pa-
rameter of the target SSCS for which the fidelity is optimized. The

parameters of real transformations are 7=0.99, G=1.01.
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opt

FIG. 7. (Color online) (a) Optimal fidelity F,, between the
TPSS (a?) generated using realistic avalanche photon detectors and
the SSCS of amplitude « (solid curve) and the optimal fidelity with
the corresponding regular SCS (dashed curve). The squeezing pa-
rameter of the initial squeezed state is r=-0.7. The parameters of
realistic transformations are 7=0.99 and %=0.6. (b) The squeezing
parameter of the target SSCS for which the fidelity is optimized.

are F'=0.96 for two photon subtraction and F'=0.91 for sub-
traction and addition.

B. Effects of imperfect detectors

We have so far considered ideal avalanche photodetectors
with unit quantum efficiency. However, in real experiments,
detection efficiency is always limited. A realistic detector
with efficiency # can be modeled by a beam splitter with
transmissivity # and vacuum at the idle port inserted in front
of an ideal detector. The Wigner function of the output state
can then be represented as

1
Woul(xl’pl) = —/_,[I(Er,m) - 21(2};)) - 21(2\,211)
277\”|Etot|

+41(3))], (38)

where the covariance matrice 3,/

(ot incorporates the effect of
the imperfect detection as

o . 1111
o= EZeE +(1- n)dlag<0,0,5555),

_ . —
= = diag(1, 1.V 9.\ 7.\ n.\n) (39)

and the matrices E]'.j, can be obtained from Egs. (39) and
(27). Finally, the fidelities can be arrived at using Egs. (36)
and (37). Figure 7 presents the optimal fidelity of the TPSS
generated using avalanche photodetectors with 7=0.6 and a
beam splitter of 7=0.99. Remarkably, under these realistic
assumptions, the fidelity F=0.95 can still be obtained. The
fidelity for PSAS under the same considerations is plotted in
Fig. 8 where the optimal fidelity drops down to F'=0.89.
This confirms that two-photon subtraction is a better scheme
to generate SSCSs of high fidelity, even though the ampli-
tudes are smaller in this case.
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FIG. 8. (Color online) (a) Optimal fidelity F,, between the
PSAS (a'a) generated using realistic avalanche photon detectors
and the SSCS of amplitude « (solid curve) and the optimal fidelity
with the corresponding regular SCS (dashed curve). The squeezing
parameter of the initial squeezed state is r=—0.7. (b) The squeezing
parameter of the target SSCS for which the fidelity is optimized.
The parameters of realistic transformations are 7=0.99, G=1.01,
and 7=0.6.

IV. SUCCESSIVE APPLICATIONS
OF PHOTON SUBTRACTION

We have shown that the SSCS is extremely well-
approximated by the TPSS. We now show that this can be
generalized to arbitrary N-photon subtraction with N=3.
Namely, N-photon-subtracted squeezed states (NPSSs) are
good approximations of the SSCSs, which may be compared
with the proposal by Fiurasek er al. to generate an arbitrary
state by photon subtractions and displacements of a squeezed
state [39]. We suppose that a beam splitter of transmmittivity
T and an ideal photodetector is used to subtract N photons
from a squeezed state. The Wigner function of the NPSS is
then obtained as [38]

) , g) & (2R]
WN(B) = MN exp(— )\Br - N kg(l) k‘[(N— k)']Z
B' 2
X HN_k[i\/ﬂ<ﬂ,+ T)} , (40)
where
N2
2[RV
M= 2 -2 @
A=(1-R)/(1+R), (42)
R = Tltanh r|?, (43)

and H,[x] is the Hermite polynomial. When N is odd (even),
the NPSS should be compared with the odd (even) SCS. The
fidelity between the NPSS and the SSCS can be obtained
using Eq. (35). It is nontrivial to obtain analytical expres-
sions of the fidelity for an arbitrary N. As presented in Fig. 9,
we numerically assess the fidelity F and plot it from N=3 to
8 against the amplitude « of the SSCS. We suppose R is 0.6,
ie., r=0.7 (6.1 dB) when 7=0.99 and r=0.75 (6.5 dB)
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FIG. 9. The optimal fidelity between the NPSSs with
R(=Ttanh r)=0.6 and the SSCSs of r'=0.44 from N=3 (left) to
N=8 (right). The x axis represents the amplitude « of the target
SSCS. The optimal fidelity is F>0.999 regardless of the number of
N.

when 7=0.95. The degrees of squeezing, 6.1-6.5 dB, are
experimentally achievable. Interestingly, the squeezing pa-
rameter of the SSCS is r'=0.44 regardless of N. Our numeri-
cal calculation confirms this generalization up to N=15. For
example, the fidelity is as high as F>0.999 for «=2.52 («
=3) when N=10 (N=15) with the same squeezing parameter
r'=0.44 of the SSCS.

V. REMARKS

We have pointed out the twofold directions of the devel-
opment for the generation of SCSs. The generation of SCSs
with high fidelities (F>0.99) and those with large ampli-
tudes (w=2) aims at practical applications of quantum-
information processing and macroscopic tests of quantum
theory. The SSCSs, which were generated in recent experi-
ments [30], may be a good alternative to the SCSs for the
aforementioned purposes while their fidelity in those experi-
ments is yet to be improved. In this paper, we have studied
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how photon addition and subtraction can be used to generate
the SSCSs with high fidelities and large amplitudes. We have
found that the single photon subtraction and subsequent ad-
dition with a squeezed vacuum state can cause the produc-
tion of the approximate SSCS with F=0.956 and a=2
when the squeezing degree is about 6.1 dB which is achiev-
able using current technology. Furthermore, we show that N
photon subtraction may be used to generate the SSCSs with
extremely high fidelities as F'>0.999. The amplitude of the
SSCS increases as the number of the subtracted photons gets
larger. For example, a=1.26 is obtained for two-photon sub-
traction while a=1.68 for four-photon subtraction when the
fidelity is £>0.999 for both cases.

We have assessed some experimental imperfections in
implementing photon addition and subtraction such as inef-
ficiency of photodetectors and nonunit transmmittivity of
beam splitters. It has been shown that the fidelity of F
~(.95 can still be obtained with detection efficiency 7
=0.6 and beam-splitter trasmmittivity 7=0.99 for two-
photon subtraction to generate SSCSs. We believe that our
work will immediately motivate experimental efforts to gen-
erate high-fidelity SCSs and large-amplitude ones that are
useful for various quantum-information applications and fun-
damental studies.
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