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We propose a nonadiabatic change of the control-field amplitude to restore the temporal shape of a signal
pulse, which usually experiences an appreciable temporal broadening in a conventional regime of
electromagnetically-induced-transparency. This broadening sets a major limit on the maximum time delay
achievable in a slow-light medium. A circumvention of this limit may be useful for the application of a
slow-light medium as a practical, controllable delay line.
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I. INTRODUCTION

All-optical signal processing, which includes pulse split-
ting and shaping, tunable delay lines and buffers used for
data synchronization, etc., is of great interest in modern op-
tics. Electromagnetically-induced-transparency �EIT� opens
wide perspectives in this domain �1�. However, there are
serious hindrances setting limits on the maximum time delay
of the pulse achievable on propagation through an EIT me-
dium �2�. One of them is the broadening of the temporal
profile of the pulse due to the absorption of the wings of its
spectrum detuned from the center of the EIT hole �transpar-
ency window� �2–4�. Recently, we showed �5� that an abrupt
rise of the coupling field amplitude produces a narrowing of
the temporal profile of the pulse and amplifies its amplitude.
Under appropriate conditions this procedure does not distort
the shape of the pulse. In Ref. �5� we did not consider the
effect of the pulse broadening due to the absorption of its
spectrum wings. In this paper we develop an analytical
theory, which takes into account the pulse broadening, and
we show that the pulse almost resumes its shape. This allows
one to appreciably extend the maximum pulse delay in an
EIT medium.

The paper is organized as follows. In Sec. II we give a
brief summary of our previous theory considering the
mechanisms of the pulse broadening and its distortion. In
Sec. III we give a qualitative explanation of the pulse trans-
formation in an EIT medium if an instantaneous change of
the coupling field is applied. Section IV presents the analysis
of the solution of the matter equations describing the evolu-
tion of the atom in our scenario of the pulse transformation.
In Sec. V the analytical solution of the wave equation along
with its analysis are given. Sections VI and VII are devoted
to the comparison of our model with existing models, to a
consideration of other mechanisms of pulse delay, and to
give a short list of available experimental data.

II. TEMPORAL BROADENING OF THE PULSE
WITH DISTANCE IN AN EIT MEDIUM

In this section we briefly outline the mechanism and con-
sequences of the pulse broadening in an EIT medium. We
follow our previous paper �4� where a comprehensive ana-

lytical theory of this effect is presented. It is based on the
solution of the Maxwell-Bloch equations that is valid for the
propagation of the signal field in the linear response approxi-
mation, i.e., for a weak signal field. To be specific we address
to the �-excitation scheme �see inset in Fig. 1�a�� and intro-
duce the following parameters: �= �dmeEc0� /2� is the cou-
pling parameter for the coupling field Ec�z , t�
=Ec0 exp�−i�ct+ ikcz� and �= �dgeEs0�z , t�� /2� is the cou-
pling parameter for the signal field Es�z , t�
=Es0�z , t�exp�−i�st+ iksz�. For simplicity we consider the
case of exact resonance: �c=�em, �s=�eg, where �em and
�eg are resonant frequencies of the transitions between the
metastable �m� and excited �e� states, and the ground �g� and
excited �e� states, respectively. Here dme and dge are matrix
elements of the dipole transitions m−e and g−e, respec-
tively. We focus on the most practical case when the half-
width � of the absorption line, corresponding to the transi-
tion g−e, is much larger than the coupling parameter �.
Then, in the broad absorption line of the signal field the
narrow EIT hole with the halfwidth �h=�2 /� appears. This
narrow hole is accompanied by steep dispersion, i.e., a fast
variation of the refractive index. The latter results in a sub-
stantial increase of the group index and a decrease of the
group velocity of the signal field. Therefore, to reduce the
group velocity as much as possible, one needs to create a
transparency window as narrow as possible.

For the signal field with a Gaussian envelope Es0�0, t�
=E0 exp�−�in

2 t2 /4� at the input, we have the following ex-
pression at the output of the medium with physical length L
and Beer’s absorption coefficient �B at frequency �eg:

Es0�L,t� = E0
�out

�in
exp�− �out

2 �t − td�2/4� , �1�

where �in is the spectrum halfwidth of the pulse at the input
of the sample �z=0� and

�out =
�in

�1 + ��in/�eff�2
�2�

is the spectrum halfwidth of the pulse at the output of the
sample �z=L�. These expressions are valid if �in	�h. There
td=L /Vg��BL /2�h is the time delay due to the reduced
group velocity of the pulse
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Vg = �c−1 + �B/2�h�−1. �3�

The parameter �eff describes the effective width of the pulse
spectrum at the output of a thick sample ��BL
1�

�eff =
�h

��BL/2
. �4�

With the increase of the sample thickness L, the delay time td
increases as �L while the temporal width of the pulse
�1 /�eff broadens as ��L. Therefore the product �efftd in-
creases as ��L. This product shows the actual delay time of
the pulse �fractional delay� reflecting the spreading of its
trailing edge. The pulse spreading is a natural cause of the
worsening of the performance of the EIT medium as a delay
line. With the pulse broadening, its amplitude drops as the
ratio �out /�in=1 /�1+ ��in /�eff�2. In a thick sample we have

�out /�in��h /�in
��BL /2, i.e., it drops as 1 /�L. Thus, if the

pulse delays ��BL /2 times with respect to its broadened du-
ration, which can be identified as an actual fractional delay,
the amplitude of the pulse drops �h /�in

��BL /2 times. To
avoid this drop, we have to use pulses with large ratio
�h /�in���BL /2
1, which implies the use of spectrally
narrow pulses with long duration. This is in contradiction
with the requirement of applications to work with pulses that
are as short as possible.

The above speculations are applicable if ��� /2 �see, for
example, Ref. �4��. It is remarkable that the same arguments
and the same formulas �1�–�4� are applicable if ��� /2. The
only difference is in the halfwidth of the transparency win-
dow. If ��� /2, instead of an EIT hole we have the Autler-
Townes splitting of the absorption line for the signal field
with a distance 2� between peaks �6�. In this case, to have a
reduced absorption, the pulse halfwidth �in is to be smaller
than �. The expansion �11� in Ref. �4� converges if �in
	� and hence the approach developed in Ref. �4� is appli-
cable. If ��� /2 the parameter �h=�2 /� is still valid in
Eqs. �1�–�4�, but it has no meaning of the halfwidth of the
transparency window, which is �. The common condition of
induced transparency for both domains of � ��
� /2� is
�2
��, where � is the decay rate of the low-frequency
coherence g−m. If �
�in
�, the pulse broadening is in-
effective and there is a critical value of the propagation dis-
tance Lc, beyond which the pulse breakup takes place �4�.

There is also an extra loss coming from the decay of the
low-frequency coherence g−m, which is the backbone of
EIT. This coherence reflects the dynamical population trap-
ping in the dark state �7,8� evolving in time. Due to the
decay of this coherence, the pulse amplitude drops exponen-
tially �4�

exp	−
�BL

2

��

�� + �2
 � exp	−
�BL

2

�

�h

 . �5�

Concluding this section, we emphasize that, due to the ab-
sorption of the wings of the pulse spectrum and the decay of
the low-frequency coherence, the energy of the output pulse
or its time integrated intensity Is�z , t�= �Es�z , t��2 is reduced as
�4�

Us�L� = �
−�

�

Is�L,t�dt =
�out

�in
exp	−

�BL�

�h

Us�0� , �6�

where Us�0� is the pulse energy at the input.

III. GENERAL ARGUMENTS

In this section we give a qualitative explanation of the
pulse transformation in an EIT medium. Assume that at time
tin the maximum of the pulse arrives at the input of an EIT
medium with coordinate zin=ctin, see Fig. 1�a�. The solid line
z=ct in Fig. 1�a� shows the spatiotemporal evolution of the
pulse maximum in free space. At the front face of the me-
dium the pulse evolves in time as �0�zin , t�=�0�t−zin /c� and
its duration is T0. When the signal pulse enters an EIT me-
dium, its group velocity is reduced to V1. Then the maximum
of the pulse evolves along the line z=V1�t− tin�+zin. The

�
Φ

m

e

g

Φ1

Φ0

t
z = ct

z = V1 (t-tin) + zin

zin

(a)z

Φ2

z = V2 (t-t0) + z0

Φ1

z

t

z = V1t

t0

(b)

(b)

(a)

FIG. 1. �Color online� �a� Transformation of the signal pulse
crossing at time tin and coordinate zin an interface between two
media where the pulse has different group velocities c and V1, re-
spectively �c
V1�. The solid lines z=ct and z=V1�t− tin�+zin show
the spatiotemporal evolution of the pulse maximum in these media,
where the pulse has shapes �0 and �1, respectively. The dashed
lines and ellipses indicate the spatiotemporal spread of the pulses
�0 and �1 in the media. The temporal profile of the pulse does not
change when crossing the interface, while the spatial profile appre-
ciably narrows. �-excitation scheme of the three-level atom is
shown in the inset. �b� Spatiotemporal evolution of the pulse if at
time t0 all its spatial components change the group velocity from V1

to V2 �V2
V1�. In this case the spatial spread of the pulse does not
change while the temporal profile narrows.
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pulse must satisfy the boundary condition at z=zin. There-
fore, the pulse, propagating inside the medium with group
velocity V1 and satisfying the boundary condition at zin, must
change its spatiotemporal dependence to �1�z , t�=�0�t− tin
− �z−zin� /V1�. According to the boundary condition the pulse
duration T1 inside the EIT medium is to be the same as it was
in free space, i.e., T1=T0. Meanwhile the spatial length of the
pulse L0=T0c changes to L1=T1V1. If V1�c, this length re-
duces appreciably in the EIT medium.

Let us at time t0 increase instantaneously the group veloc-
ity of the pulse from V1 to V2 �V2�V1� for all its spatial
components. From then on the maximum of the pulse
evolves along the line z=V2�t− t0�+z0, where z0=V1t0 is the
coordinate of the pulse maximum when the change of the
group velocity took place, see Fig. 1�b�. Here, for simplicity,
we take zin=0 and tin=0. The pulse evolution, which is de-
scribed by the function �2�z , t� after t0, must satisfy the ini-
tial condition �2�z , t0�=�0�t0−z /V1�. This means that the
spatial length of the pulse does not change. Therefore, the
temporal duration T2 of the pulse after t0 must satisfy the
condition T1V1=T2V2. According to this relation, the pulse
duration shortens as T2=T0V1 /V2 and the pulse evolution
should be described by the function �2�z , t�=�0��V2 /V1��t
− t0�− �z−z0� /V1�, which is �0��V2 /V1��t− t0− �z−z0� /V2�
.

In a previous paper �5� we developed an analytical theory
of the signal pulse transformation in an EIT medium when
the coupling field amplitude instantaneously increases. It in-
duces an instantaneous change of the group velocity and am-
plitude of the pulse. We did not consider the spread of the
temporal profile of the pulse in the EIT medium due to the
absorption of the spectral wings of the pulse. Figure 2 sche-
matically shows the pulse spreading in an EIT medium along
with the modification of the pulse when its group velocity is
abruptly changed. In the next sections we consider the pulse
transformation in an EIT medium with the pulse broadening
taken into account.

IV. SOLUTION OF THE MATTER EQUATIONS

In this section we consider the atomic evolution in the
linear response approximation, which is valid if ��� ,�.

We analyze the solution of the matter equations if the spec-
tral width of the pulse 2�in is smaller than the width of the
transparency window 2�h for �	� /2, or 2 � for ��� /2.
The solution will be presented in terms of a perturbation
theory �4,9�, which is equivalent to the expansion in a power
series of �in /�h for the Fourier transforms of the atomic
variables. If ��� /2 and hence �h=�2 /�����in, this
expansion converges even more rapidly. Each time we will
specify how many terms of the expansion are taken into ac-
count. Throughout the paper we neglect the decay � of the
low-frequency coherence g−m.

First we consider the atomic response on an abrupt
change of the coupling field at time t= t0. We assume that the
amplitude of the coupling field changes stepwise such that
��z , t�=��1+h��t− t0−z /c��, where ��t� is the Heaviside
step function. This change of the amplitude of the control
field propagates in the sample with velocity c. In the linear
response approximation ���� ,��, the atomic response can
be found from the solution of two approximate equations �4�

�̇eg = − ��eg + i��z,t� + i��z,t��mg, �7�

�̇mg = i��z,t��eg, �8�

where �eg=�eg exp�i�st− iksz� and �mg=�mg exp�i��s−�c�t
− i�ks−kc�z� are slowly varying amplitudes of the nondiago-
nal elements of the three-level atom density matrix �ij. Here,
as already mentioned, for simplicity we neglect the decay �
of the low-frequency coherence �mg.

For t	 tz= t0+z /c, i.e., before the change of the coupling
field arrives at the atoms with coordinate z, the approximate
solution of Eqs. �7� and �8� is �4�

i�eg � −
�t

�1��z,t�
�2 +

��t
�2��z,t�
�4 −

��2 − �2��t
�3��z,t�

�6 ,

�9�

�mg � −
��z,t�

�
+

��t
�1��z,t�
�3 −

��2 − �2��t
�2��z,t�

�5 ,

�10�

where �t
�1��z , t�=���z , t� /�t, �t

�2��z , t�=�2��z , t� /�t2, and
�t

�3��z , t�=�3��z , t� /�t3. This solution is obtained expanding
the Fourier transforms i�eg��� and �mg��� in power series
near frequency �=0. Then, the inverse Fourier transform of
the expansion is performed, see Ref. �4� for details. Each
term of the expansion is �in /�h times smaller than the pre-
ceding one if �in /�h	1. Meanwhile, it is enough to take
into account only the first three terms of the expansion. Sub-
stituting the solution �9� into the wave equation, one obtains
that the first two terms of the expansion �9� describe the
delay and time broadening of the pulse, respectively. The
third term of this expansion is responsible for the breakup of
the pulse. It is effective if �
�in
�. Otherwise its contri-
bution is insignificant.

To find the atomic response on an abrupt change of the
coupling field, we use the Laplace transform

tin

Φin

z

t

z = V1t

t0

z = V2t + z0

Φout

zout

FIG. 2. �Color online� Transformation of the signal pulse in the
EIT medium after an abrupt change of the group velocity of the
pulse from V1 to V2 at t0. Pulse �in enters an EIT medium at tin. It
experiences a time broadening and drop of its amplitude. Pulse �out

narrows in time and its amplitude rises. The value of z0 is defined as
z0=V1t0. Other notations are the same as in Fig. 1.
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f�p� = �
tz

�

e−ptF�t�dt . �11�

We neglect the difference between tz and t0, assuming that
the value z /c is small with respect to the duration of the
pulse T0. This approximation is valid if Vg�c. For conve-
nience we take t0=0. Later, in the final result we can substi-
tute t by t− t0 for arbitrary t0. If at t=0 the coupling field
changes from � to �a�, where �a=1+h and h� is the
amount of the jump of the coupling field amplitude, equa-
tions �7� and �8� can be reduced with the help of the Laplace
transform to algebraic equations for the image functions
�eg�z , p� and �mg�z , p�

p�eg − �eg�z,0� = − ��eg + i� + i�a��mg, �12�

p�mg − �mg�z,0� = i�a��eg, �13�

where the arguments z and p of the image functions are not
shown explicitly while the arguments of the original func-
tions �eg�z ,0� and �mg�z ,0� are shown explicitly to empha-
size that they define the initial condition for the solution at
t=0. Since we consider the case if the coupling field ampli-
tude jumps up, the value of a is larger than 1 by definition.
Solving Eqs. �12� and �13� we obtain

i�eg =
− p� + pi�eg�z,0� − �a��mg�z,0�

p2 + �p + a�2 . �14�

The original function �eg�z , t� of the image function
�eg�z , p�, Eqs. �14�, is easily found

i�eg�z,t� = F1�z,t� + F2�z,t� + F3�z,t� , �15�

where

F1�z,t� = − ��t − t0��
t0

t

��z,��K0�t − ��d� , �16�

F2�z,t� = i�eg�z,t0�K0�t − t0� , �17�

F3�z,t� = − �a��mg�z,t0�K1�t − t0� . �18�

Here, it is already taken into account that time t varies from
t0, which is not necessarily 0. The functions K0�x� and K1�x�
are

K0�x� = ��x�
�+e−�+x − �−e−�−x

�+ − �−
, �19�

K1�x� = ��x�
e−�−x − e−�+x

�+ − �−
, �20�

where

�� =
�

2
���2

4
− a�2. �21�

Below we consider the case if � /2��a�. Then �� are real
and transients, induced by the abrupt change of the coupling
field, are exponentially decaying. It is easy to generalize the

consideration to the case if � /2��a�. Then, the transients
are oscillatorily decaying.

Taking the integral in Eq. �16� by parts iteratively and
retaining only the two main terms, we find

F1�z,t� � − ��z,t0�K1�t − t0�

−
�t

�1��z,t� − �t
�1��z,t0�K2�t − t0�
a�2 , �22�

where

K2�x� = ��x�
�+e−�−x − �−e−�+x

�+ − �−
. �23�

As will be shown in the next section, these terms specify the
transients after the abrupt change of the coupling field am-
plitude and the new group velocity of the pulse. The third
and fourth terms of the expansion �not shown in Eq. �22��
describe the pulse broadening and distortion. The reason why
they are neglected will be discussed in our numerical ex-
ample, which follows Eq. �24�.

For t� t0, the main contribution to the solution �15� is
given by the functions F1�z , t� and F3�z , t�. The contribution
of F2�z , t� is ��in /�h times smaller. Approximating
�mg�z , t0� in Eq. �18� by the first term of expansion �10�:
�mg�z , t0��−��z , t0� /�, we obtain

i�eg�z,t� � h��z,t0�K1�t − t0�

−
�t

�1��z,t� − �t
�1��z,t0�K2�t − t0�
a�2 . �24�

Figure 3 shows a comparison of the numerically found solu-
tion of Eqs. �7� and �8� for i�eg�z , t� with the analytical so-
lution given by Eq. �9� for t	 t0 and Eq. �24� for t� t0. In our
example we take �h1=3�in, �=30�in, �=300�in, and h=1
�the coupling field amplitude doubles at t= t0�. Here, �h1
=�2 /� is the halfwidth of the transparency window for t
	 t0. Even in this case where the spectral width of the input

-5 -3 -1 1 3 5
-0.001

0

0.001

0.002

0.003

0.004
iσeg

∆int

FIG. 3. Time evolution of the coherence i�eg�z , t� induced by
the signal field with ��z , t�=�0 exp�−�in

2 t2 /4�, where �0 is the
coupling amplitude of the signal field. For simplicity, the z depen-
dence is not shown explicitly. Time scale is given in units of �int.
The time of the jump of the coupling field amplitude is �int0=1.
The thin solid line is the result of the numerical solution of the
matter equations and the dash-dot line is the analytical solution.
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pulse 2�in is three times smaller than the width of the trans-
parency window 2�h1 all three terms of expansion �9� for
i�eg�z , t� have to be taken into account. For t� t0 the half-
width of the transparency window is �h2=a�2 /�=a�h1,
where a= �h+1�2. In our example it broadens by a factor of
4. Therefore, it is enough to take into account only the first
time derivative in Eq. �24� since the higher time derivatives
of ��z , t� give much smaller contributions. In the next sec-
tion we will not take into account the second time derivative
in the response function of the atoms after the abrupt change
of the coupling field amplitude. This approximation is valid
because after t0 this term gives a much smaller contribution.
However, to secure the smallness of further broadening of
the pulse after t0, we impose the additional condition that the
signal pulse does not propagate a long distance in the EIT
medium but leaves the sample shortly after t0.

It is important to notice that, before the instantaneous
change of the coupling field amplitude, the atoms are pre-
dominantly in the time-dependent dark state �7,8�

�d1�t�� = cos �1�g� − sin �1�m� , �25�

where �1=tan−1���z , t� /��. If ��z , t���, then cos �1�1
and sin �1���z , t� /�. From this expression it immediately
follows that �mg�−��z , t� /�. An atom in this state cannot
be excited by the signal and coupling fields because of de-
structive interference of the excitation paths g→e and m
→e �7,8�. There is a counterpart of the dark state, the so
called bright state

�b1�t�� = sin �1�g� + cos �1�m� . �26�

The interference of the excitation paths is constructive for
this state, hence the atom leaves state �b1�t�� �7,8�. �see also
Refs. �10,11��. These states are defined as follows. In the
interaction representation the Hamiltonian of a three-level
atom interacting with the signal and coupling fields is

H = − �P̂eg − �P̂em + H.c., �27�

where we set �=1 for simplicity of notations. The operators

P̂mn= �m��n� are defined in the basis of the eigenfunctions �g�,
�m�, �e� of the unperturbed atom in the interaction represen-
tation �i.e., without time exponents�. In the basis of the dark
�d1�, bright �b1�, and excited �e� states �they are orthogonal
and normalized� this Hamiltonian is transformed to

Hdbg
�1� = − B1�P̂b1e + P̂eb1

� , �28�

where B1=��2+�2, see, for example, Ref. �11�. From this
expression it is clearly seen that the dark state is uncoupled
from the excited state and the bright state is coupled to ex-
cited state with the coupling parameter B1, which is B1�� if
�
�.

If the coupling field parameter � suddenly changes to
�a�, the definition of the dark and bright states changes as

�d2�t�� = cos �2�g� − sin �2�m� , �29�

�b2�t�� = sin �2�g� + cos �2�m� , �30�

where �2=tan−1���z , t� /�a��. The corresponding Hamil-

tonian in this new basis is Hdbg
�2� =−B2�P̂b2e+ P̂eb2

�, where B2

=�a�2+�2. The atom, adiabatically following the slowly
changing dark state �d1�t�� before the jump �t	 t0�, just after
the jump �t� t0� is described by the state �d�t��= �d1�t��,
which is not a pure dark state anymore. With the help of Eqs.
�25�, �29�, and �30� one can show that

�d1�t�� = cos��1 − �2��d2� − sin��1 − �2��b2� , �31�

where sin��1−�2����z , t� /�−��z , t� /�a�=h��z , t� /�a�.
Thus, the atomic state �d�t��= �d1�t�� instantly acquires a
bright state component, �b2�, after the sudden change of the
coupling field amplitude. Therefore, the atom can now be
excited and the probability amplitude of the excitation into
state e becomes proportional to the probability amplitude of
the bright state �h��z , t�. This excitation is mostly produced
by the coupling field, inducing the transition m→e to bring
the population of state m, which was ���z , t� /��2, down to
the value ���z , t� /�a��2. Decay of the excited state e and
depopulation of the bright state �b2�t�� by the excitation B2
bring the atom in a new equilibrium state �d2�t��. In the next
section, we consider the signal field modification caused by
transients following an abrupt change of the coupling field
amplitude.

V. SOLUTION OF THE WAVE EQUATION

The propagation of the signal field in an EIT medium is
described by the wave equation

	 �

�z
+

1

c

�

�t

��z,t� =

�

2
i�eg�z,t� , �32�

where �=4��sNa�deg�2 /�c is a coupling parameter, related
to Beer’s constant as �=�B�, and Na is the concentration of
the resonant atoms in the sample. Substituting the solution
�9� of the matter equations into the right-hand side of Eq.
�32�, one can find for a Gaussian pulse at the input the solu-
tion �1� at the output z=L �4�. The first time derivative of
��z , t� in Eq. �9� modifies the group velocity of the pulse to
the value V1. The second time derivative of ��z , t� in Eq. �9�
produces a time broadening of the pulse. The third time de-
rivative of ��z , t� in Eq. �9� results in a distortion of the
pulse shape. If �in	�h1, the contribution of the third time
derivative can be neglected �4�. Solution �1� is valid for t
	 t0. It can be expressed for arbitrary z as

�1�z,t� = �0
�out

�in
exp�− �out

2 �t − z/V1�2/4� , �33�

where �0 is the maximum amplitude of the coupling param-
eter for the signal field and �out is defined in Eq. �2�, where
�eff=�h1 /��Bz /2.

Taking into account the solution �24� of the matter equa-
tions, we express the wave equation �32� for t� t0 as
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	 �

�z
+

1

V2

�

�t

��z,t� =

�h

2
�1�z,t0�K1�t − t0� , �34�

where V2= �c−1+�B� /2a�2�−1 is a new group velocity,
which is nearly a times higher than V1, i.e., V2�aV1. Here,
in the atomic response function, Eq. �24�, we neglect the
third term, proportional to K2�t− t0�, because of its smallness
��in��+−�−� /a�2 with respect to the first term, propor-
tional to ��z , t0�.

The fundamental solution �2�z , t� of Eq. �34� can be
found as the sum of the fundamental solution �2h�z , t� to the
homogeneous equation

	 �

�z
+

1

V2

�

�t

��z,t� = 0, �35�

and a particular solution �2i�z , t� to the inhomogeneous
equation �34�. This sum must satisfy the initial condition
�2�z , t0�=�1�z , t0� �see Fig. 2�. We construct a particular so-
lution as follows:

�2i�z,t� =
�h

2
�

0

z

K1	t − t0 −
z − z�

V2

�1�z�,t0�dz�. �36�

It satisfies Eq. �34�. With the substitution �= t− t0− �z
−z�� /V2, Eq. �36� can be reduced to

�2i�z,t� =
�hV2

2
�

0

t−t0

K1����1�z − V2�t − t0 − ��,t0�d� ,

�37�

where the lower limit of the integration is obtained by taking
into account that the function K1�x� contains the Heaviside
step function ��x�. From this expression it is obvious that
�2i�z , t�→0 when t→ t0+0. Taking the integral in Eq. �37�
by parts and retaining the first main term, we obtain

�2i�z,t� =
�hV2

2a�2 ��1�z − V2�t − t0�,t0� − K2�t − t0��1�z,t0�
 .

�38�

The other terms are at least �in /�h times smaller. For sim-
plicity we disregard the variation of �out�z� along the cut line
t= t0 in Fig. 2, assuming that the spectral half width of the
pulse at t= t0 is equal to �1=�out�z0�, where z0=V1t0. Then,
taking into account that V2�2a�2 /�, the function �2i�z , t�
for the Gaussian input pulse can be expressed as

�2i�z,t� =
h�0�1

�in
�e−��1

2V2
2/4V1

2��t − t0 − ��z − z0�/V2�
2

− K2�t − t0�e−��1
2/4��t0 − �z/V1��2

� . �39�

This particular solution to the inhomogeneous equation �34�
is zero for t= t0. Thus, we have to find the fundamental so-
lution to the homogeneous equation �35� satisfying the initial
condition �2h�z , t0�=�1�z , t0�. For a Gaussian input pulse,
this solution is �see the Appendix�

�2h�z,t� =
�0�1

�in
e−��1

2V2
2/4V1

2��t − t0 − �z − z0�/V2�2
. �40�

Figure 4 shows a three-dimensional �3D� plot of the solution
of the wave equation for the Gaussian input pulse, which is
described by �1�z , t� for t	 t0 and by �2�z , t�=�2i�z , t�
+�2h�z , t� for t� t0. The latter,

�2�z,t� =
�0�1

�in
��ae−��1

2V2
2/4V1

2��t − t0 − �z − z0�/V2�2

− hK2�t − t0�e−��1
2/4��t0 − z/V1�2

� , �41�

tends to

�2�z,t� = �a
�1

�in
�0 exp�−

�1
2V2

2

4V1
2 	t − t0 −

z − z0

V2

2� ,

�42�

for t� t0+�−
−1. It is obvious that the signal pulse narrows

since its spectral width broadens as �1V2 /V1�a�1. For our
numerical example we choose a such that �1V2 /V1=�in.
Therefore, the transformed pulse resumes its original width,
which was at the input. The group velocity of the pulse V2
rises a times, which means that the ratio V2 /V1 is equal to
the increase factor of the coupling field intensity. In this case
the amplitude of the signal pulse rises only �a times, see Eq.
�42�, while, according to the imposed condition, the second
factor in this equation is �1 /�in=V1 /V2=1 /a. Therefore, the
amplitude of the transformed output pulse is still �a times
smaller than the amplitude of the input pulse, i.e.,
�a�1 /�in=1 /�a. According to the definition of the time in-
tegrated intensity of the pulse �see Eq. �6��, this value for the

FIG. 4. 3D plot of the pulse ��z , t� evolution in the EIT medium
with �B=40 cm−1. The parameters of the pulse and the medium are
�h1=3�in, �=30�in, �=300�in, and h=1.2. Time t varies from
�int=−20 to �int=100. Coordinate z varies from 0 to 15 cm. z and
t axes are scaled in arbitrary units, which are relevant to line num-
ber in a grid formed by 50�50 lines. The amplitude of the coupling
field suddenly rises at time �int0=66.6 and h=1.2. This rise exactly
compensates the pulse broadening.
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modified pulse �2�z , t�, i.e., the pulse energy, does not
change after the jump of the coupling field amplitude and
equals Us�z�=�1 /�inUs�0� in spite of the increase of the
pulse amplitude and the restoration of its duration.

Figure 5 demonstrates the time dependence of ��z , t� for
different z in the EIT medium �thin solid line�. This depen-
dence is compared with the one one obtains if the pulse
propagates the same distance in free space �thick solid line�.
Figure 5�a� is plotted for z, where the jump of the coupling
field has not yet reached the pulse front and the change of the
pulse shape is not complete. Figure 5�b� shows the pulse
when its transformation is complete. The pulse evolution, if
the coupling field does not change, is shown by the dotted
line in Fig. 5�a� for comparison.

VI. COMPARISON WITH EXISTING MODELS

The instantaneous processing of slow light, discussed in
this paper, is consistent with the dark-state polariton concept
introduced in Refs. �12,13�. As was shown in Ref. �5�, any
change of the coupling field amplitude can be considered as
adiabatic for the dark-state polariton if the group velocity of
the signal pulse is many orders of magnitude smaller than the
speed of light in vacuum. The atoms and the slow signal
pulse are described in this concept by a coherent superposi-
tion of the atomic low-frequency coherence �gm and the sig-
nal pulse amplitude Es. This superposition state satisfies the
wave equation with modified group velocity Vg. The value of
the polariton velocity is defined by the coupling field inten-
sity. A change of the group velocity of the polariton, intro-
duced by a slow or fast variation of the coupling field inten-
sity, changes the dark-state polariton parameters but the
compound system, atoms+field, remains in this polariton
state.

The results of our paper can also be explained by means
of the adiabaton picture of EIT �14,15�. According to the
adiabaton model, the signal pulse, entering the EIT medium,
is transformed to the coupling field and leaves the sample
with group velocity c �14,15�. Then a dip and a bump in the
temporal profiles of the coupling and signal fields are
formed, both propagating with reduced group velocity Vg.
This correlated structure is called adiabaton �14�. It is pro-
duced by the “spin wave,” which is the coherence �mg�z
−Vgt�, propagating with group velocity Vg �15�. In contrast
to Ref. �14�, a weak signal pulse is considered in Ref. �15�.
The spin-wave propagation is described by the equation

	 �

�z
+

1

V1

�

�t

�1�z,t� = 0, �43�

where �1�z , t�=tan−1���z , t� /��z , t�� defines the mixing
angle in the dark state �25�. The propagation of this spin
wave means that the probability amplitude of the metastable
state m, which is proportional to sin �1��1, moves from
atom to atom. Before arrival of this wave to point z, state m
is empty and the coupling field does not interact with the
atom. The appearance of the population of the metastable
state causes the absorption of the coupling field, which in-
duces the transition m→e. Simultaneously, the signal field
appears induced by the transition e→g. If the amplitude of
the coupling field is suddenly increased, the spin-wave am-
plitude does not change, but its group velocity increases. The
amplitude of the induced signal field increases also because
of the speedup of the cascade m→e→g. The spreading of
the temporal profile of the signal field in the EIT medium
with a fast relaxation of the excited state e can be explained
as follows. With the solution of the Schrödinger equation for
a three-level atom given in Eq. �13� of Ref. �15�, one can
derive the wave equation for ��z , t�, which is

	 �

�z
+

1

V1

�

�t

�1�z,t� =

��

2�4

�2�1�z,t�
�t2 . �44�

It differs from Eq. �43� by the right hand side, containing the
second time derivative of �1�z , t�. One can apply the method
of solution of such an equation developed in Ref. �4� and
obtain

�1�z,t� = �10
�out�z�

�in
exp�− �out

2 �z��t − z/V1�2/4� , �45�

where �10=tan−1��0 /��. This solution clearly shows that the
spin wave spreads with propagation distance and decreases
in amplitude.

In our proposal we do not compensate the energy loss of
the signal pulse after the restoration of its shape. Therefore, it
is reasonable to use an amplifier at the output of the EIT
medium. Meanwhile, the restoration of the pulse duration
helps to increase appreciably the maximum pulse delay,
which can be achieved with EIT.

VII. EXPERIMENTAL DATA

Most of the experiments to produce slow light with EIT
were performed with gases. Among them are experiments in

-20 0 20 40 60 80 100
0

0.5

1Φ(z,t)

∆int

(a)

-20 0 20 40 60 80 1000

0.5

1Φ(z,t)

∆in t

(b)

FIG. 5. Time dependence of ��z , t� in the EIT medium after a
change of the coupling field amplitude �thin solid line�. Dotted line
in �a� shows the signal pulse without the change of the coupling
field amplitude. Time dependence of the signal field travelling the
same distance in free space is shown by the thick solid line. z
=11 cm in �a� and z=15 cm in �b�. Other parameters are the same
as in Fig. 4.
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a rubidium vapor cell excited by a signal field with wave-
length 780 nm and a coupling field with wavelength
775.8 nm, Ref. �16�; in a buffer-gas cell of hot Rb atoms
excited by a signal pulse with wavelength 795 nm and a
coupling field with the same frequency but orthogonal polar-
ization �see, for example, Ref. �17�� or with a frequency
offset 6.8 GHz, Ref. �18�; in Pb vapor excited by a signal
pulse with wavelength 283 nm and by a coupling field with
wavelength 1064 nm, Ref. �19� or 406 nm, Ref. �20�. A steep
dispersion and group velocity below c /3000 was found in a
cesium vapor cell at 852 nm if it was excited by a strong
coupling field with a frequency offset 9.192 GHz �the cesium
ground-state hyperfine splitting� with respect to the signal
field �see, for example, Ref. �21��. A record low group ve-
locity of 17 m /s was found in an ultracold gas of Na atoms
excited by a signal field, 589 nm, and a coupling field with a
frequency offset 1.8 GHz, Ref. �22�. The signal pulse is de-
layed by 7.05 �s in a 229-�m-long cloud of sodium atoms.
There are few examples where optically dense crystals were
employed, i.e., Pr-doped Y2SiO5 �Pr:YSO� whose 605.9 nm
transition is imposed to the resonant probe field and to the
coupling field with a frequency offset 10.2 MHz, Ref. �23� or
8.65 MHz, Ref. �24�.

Practical optical communication systems typically make
use of light with wavelengths of around 1350 or 1550 nm.
Recently, for this communication band a slowing down of
the light propagation was observed due to a single gain in-
duced by stimulated Brillouin scattering �SBS� in a standard
single-mode fiber and a dispersion-shifted optical fiber �see,
for example, Refs. �25,26��, and due to narrow band partially
degenerated optical parametric amplification �OPA� and
stimulated Raman scattering �SRS� in highly nonlinear
dispersion-shifted fiber �see, for example, Refs. �27,28��. In
these experiments the gain-variable fractional delay of the
pulse does not exceed 1.3 for a 500-m-long fiber with SBS
�26� and 2.3 for a 2-km-long fiber with SRS �28�. Small
fractional delays in a long fiber are due to the small group
index change, of the order of 10−3, which corresponds to a
decrease of the speed of light by �0.1%. Resonant media at
EIT conditions demonstrate a much higher group velocity
refractive index �group index�, ng=c /Vg. For example, in
solids ng=6�106 was measured in Ref. �23� �compare with
�ng=10−3 for SBS and SRS, where �ng=ng−np and np is the
phase index of the fiber�. It should be mentioned that pulse
distortion and the broadening mechanism for EIT radically
differ from SBS and SRS, where the broadening and distor-
tion of the pulse increase appreciably with gain rise.

The lack of EIT experiments for pulses with wavelength
around 1550 nm seems not to be due to technical limitations.
For example, the laser materials YAlO3:Er, erbium in both
silicate and phosphate glasses have optical transitions be-
tween the ground state 4I15/2 and the 4I13/2 multiplet in the
region of 6500 cm−1 �1540 nm�, see, for example, Refs.
�29,30�. These transitions are good candidates for EIT since
they have hyperfine splitting and hence a simultaneous exci-
tation by the probe and coupling fields is capable to create
the low-frequency coherence among ground-state sublevels,
which is the backbone of EIT.

VIII. CONCLUSION

We considered the temporal broadening of the pulse dur-
ing its propagation in an EIT medium. The pulse duration
broadens with distance L as ��L and its maximum intensity
drops as �1 /L. Since the maximum of the pulse delays as
�L, the fractional delay of the pulse �the ratio of the pulse
delay to its duration� increases with distance as �L /�L
=�L. The pulse broadening and its amplitude decrease set a
limit for the maximum pulse delay achievable in EIT me-
dium. We propose to make an abrupt increase of the intensity
of the coupling field just before the signal field leaves the
EIT medium. The value of the increase is chosen such that
the signal pulse resumes its initial temporal width. However,
the intensity of the signal pulse, being increased after the
abrupt increase of the intensity of the coupling field, does not
resume its input value. From the value �1 /L, reduced by the
pulse broadening, the maximum intensity of the pulse rises
to the value �1 /�L after the increase of the coupling field.
We propose to increase the coupling field when the front
edge of the signal field is close to the exit of the sample.
Then, the maximum delay is achieved since almost all the
length of the EIT medium is used to delay the pulse. After
the increase of the coupling field, the group velocity of the
signal pulse is appreciably increased and the transparency
window significantly widens. Therefore, the further pulse
broadening during the process of leaving the sample is al-
most insignificant.

Our consideration is applicable to the case if the spectral
width of the signal field 2�in is smaller than the half width of
the transparency window, which is 2�2 /� for ��� /2 or
2 � for ��� /2. If the Rabi frequency of the coupling field
�, the spectral width of the pulse �in, and the decay rate of
the coherence � induced by the signal field between the
ground state g and excited state e, satisfy the condition �

�in
�, the pulse broadening is ineffective. In this case,
there is a maximum propagation distance, beyond which the
signal pulse experiences a breakup. This distortion of the
pulse is irreversible and any manipulations with the coupling
field do not restore the shape of the signal pulse.

In our consideration we disregarded the decay � of the
low-frequency coherence g−m, induced by the signal and
coupling fields in a two-quantum process. It can be shown
that this decay gives an additional drop of the signal field
intensity, which is governed by exp�−d�� /�2�, where d
=�BL is the optical thickness of the EIT medium.

Recently, a paper by Irina Novikova et al. �31� has been
published, where the authors proposed and experimentally
proved a method of circumvention of the pulse broadening in
an EIT medium. The core idea is a gradual rise of the cou-
pling field amplitude in an EIT medium with integrated gain.
According to theoretical proposals �32–35� a linear increase
in time of the coupling field amplitude narrows the pulse
shape. The integrated gain compensates the drop of the pulse
amplitude with propagation distance. However, the pulse
narrowing in such a regime distorts its shape since the lead-
ing edge of the pulse is shortened much less than the trailing
edge. Also, the integrated gain, considered in Ref. �31�, is
applicable only for a degenerate excitation scheme when the
signal and coupling fields have the same frequencies but they
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are different in polarization. Therefore, we believe that our
scheme has some advantages and/or is complementary to the
method proposed in Ref. �31�. Extra pulse distortion is not
present in our proposal and it can be applied not only for a
degenerate excitation scheme. It should be mentioned that
pulse broadening during the retrieval process in stored light
was discussed in Ref. �33�. For write-storage-reading experi-
ments with EIT �17,36� a compensation of this broadening
acquired in the reading regime was considered in Refs.
�33,37�.
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APPENDIX

Assume we have a pulse ��z , t�
=�0��1 /�in�exp�−�1

2�t−z /V1�2 /4� whose propagation in a
medium is described by the equation

	 �

�z
+

1

V1

�

�t

��z,t� = 0, �A1�

where V1 is the group velocity of the pulse. Let at time t0
=0 the group velocity suddenly changes to V2. To find the
pulse behavior after t0 we apply the Laplace transform �11�.
Then for t� t0, the wave equation �A1� is reduced to

�

�z
��z,p� +

1

V2
�p��z,p� − ��z,0�� = 0, �A2�

where ��z , p� is the image function and ��z ,0� is the origi-
nal function for t=0. The solution of this equation is

��z,p� =
1

V2
�

−�

z

e−p�z−z��/V2��z�,0�dz�. �A3�

Substituting the function ��z� , t0�
=�0��1 /�in�exp�−�1

2�t0−z� /V1�2 /4�, where t0=0, into Eq.
�A3� and integrating, we obtain

��z,p� = �0

��V1

�inV2
eA2�p − Bz�2−Cz2

erfc�A�p − Bz�� , �A4�

where A=V1 / ��1V2�, B=�1
2V2 / �2V1

2�, C=�1
2 / �2V1�2, and

erfc�x� is the error function �38�. One can find in Ref. �38�
that the image function exp�A2p2�erfc�Ap� corresponds to the

original function �1 /A���exp�−t2 /4A2�. In addition, there is
a relation showing that the image function f�p−Bz� corre-
sponds to the original function exp�Bzt�F�t�. Taking this into
account, we find the original function for ��z , p�, which is

��z,t� = �0
�1

�in
exp�−

�1
2

4
	V2

V1
t −

z

V1

2� . �A5�

For arbitrary t0, not necessarily equal to 0, we have

��z,t� = �0
�1

�in
exp�− 	�1V2

2V1

2	t − t0 −

z − z0

V2

2� ,

�A6�

where z0=V1t0.
For the pulse ��z , t� with an arbitrary envelope but with a

limited spatial length it is possible to derive a general solu-
tion. Taking by parts the integral in Eq. �A3� for the image
function, one can find that

��z,p� =
1

p
��z�,0��e−p�z−z��/V2�0

z

−
1

p
�

0

z

e−p�z−z��/V2�z�
�1��z�,0�dz�, �A7�

where �z�
�1��z� ,0�=d��z� ,0� /dz�. Without loss of generality

we can extend the lower limit in the integration, z�=0, to
minus infinity, z�=−�. If the pulse has a limited spatial
length, then ��−� ,0�=0. Repeating the integration by parts
in Eq. �A7� iteratively and imposing the condition that
limz�→−�dn��z� ,0� /d�z��n=0, we obtain

��z,p� = �
n=0

�

�− 1�n V2
n

pn+1�z
�n��z,0� , �A8�

where �z
�n��z ,0�=dn��z ,0� /dzn. The original function of the

image function ��z , p� in Eq. �A8� is

��z,t� = �
n=0

�

�− 1�nV2
ntn

n!
�z

�n��z,0� , �A9�

which is the Taylor expansion of ��z−V2t ,0�. If for t	0 the
signal is described by ��z , t�=�0�t−z /V1�, then ��z ,0�
=�0�−z /V1�. According to solution �A9�, for t�0 the signal
is described by the function �0��V2t−z� /V1�=�0��V2 /V1��t
−z /V2��. For t0�0 we have, respectively, ��z , t�=�0�t
−z /V1� if t	 t0 and ��z , t�=�0��V2 /V1��t− t0− �z−z0� /V2�
 if
t� t0, where z0=V1t0.
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