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Adiabatically shape-preserving-wave and solitary-wave solutions for five-level atomic systems are pre-
sented. They give the idealized situations for the shape preserving propagation of optical waves through a
five-level atomic medium, and provide some useful comparisons with the electromagnetically induced trans-
parency experiments performed by Harris and his collaborators on atoms with hyperfine structure.
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The problem of rendering a multilevel optical medium
optically transparent has been a subject of considerable in-
terest for many years. Much theoretical and experimental
study has been done on the problem of sending two optical
waves through an atomic medium that interact coherently
with three levels of the atoms in the “�-type” energy-level
configuration. Experimental work on this study has been pio-
neered by Harris and his collaborators and many references
on their earlier work can be found in Ref. �1�. They suc-
ceeded in getting what they called electromagnetically in-
duced transparency �EIT� in many of their experiments. On
the theoretical front, exact analytical solutions for the so-
called matched optical solitary waves usually require some
very specific wave forms in order for the two optical pulses
to preserve their shapes �2�. However, Grobe et al. �3� found
an exact solution for the two coupled nonlinear Maxwell-
Schrödinger equations under the adiabatic condition, that al-
lows waves of arbitrary shapes that can propagate, after some
initial reshaping, with their shapes relatively unchanged. The
resulting pair of shape-preserving waves are called adiaba-
tons.

Harris and his collaborators �4� have extended their ex-
perimental work on EIT to atoms with hyperfine structure
that essentially have five participating energy levels. Exact
analytic solitary-wave solutions for five-level systems exist
but are somewhat scattered �2,5�, whereas adiabatons for
five-level systems have never been presented, even though
the general conditions for the closely related concept of
population trapping in multilevel system �6� have been given
a long time ago.

In this paper, we shall present a simple case of adiabatons
�when the adiabatic condition applies which will be ex-
plained later� as well as an exact solitary-wave solution for a
specific five-level system. As is the case with many theoret-
ical results, they require conditions �concerning the coupling
strengths between the levels and the relative strengths of the
electric fields used, etc.� that appear to be rather stringent
compared to the experimental situations encountered. This is
understandable because theoretically the wave forms are re-
quired to be completely shape invariant while experimentally
it often suffices for the optical medium to only appear trans-
parent.

We shall confine our attention to a “double lambda ���”
type five-level system as shown in Fig. 1 that arises from a �
type three-level system in which the two upper levels are
doubly split. This is the type of atomic system with the hy-
perfine structure experimentally studied by Xia et al. �4�. The
ground level is numbered as level 1 as usual, but the two
pairs of split upper levels are numbered levels 2, 4 and 3, 5,
and are not numbered in ascending order according to their
energies as Xia et al. did. This is in line with the numbering
system in our previous papers on the adiabatons and solitary
waves for which the nonzero couplings are between odd- and
even-numbered levels only and we can ignore the odd-odd or
even-even connections that are excluded because of the se-
lection rule. One or more odd-even connections may still be
excluded in addition to the exclusion of the odd-odd and
even-even connections, as we shall see. Denoting time and
coordinate by t and z, the wave function of level m by km,
and �mn�z , t��dmnEmn�z , t� /�=�

nm
* �z , t�, where dmn is the di-

pole matrix element and Emn�z , t� is the slowly varying am-
plitude of the electric field connecting levels m and n, the
Schrödinger equation can be written as
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where �’s are the two-photon detunings that are assumed
small and will be ignored in this study. The Maxwell equa-
tions can be written as
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FIG. 1. Five-level system.
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��/�z + c−1�/�t��mn = − i�mnkmk
n
*

for �m,n� = �1,2� and �1,4� �2�

and

��/�z + c−1�/�t��mn = i�mnkmk
n
*

for �m,n� = �2,3�, �4,5�, �2,5�, and �4,3� , �3�

where �mn=2�Ddmn
2 �mn /�c, D is the density of the atoms, c

is the speed of light, and �mn is the laser frequency connect-
ing levels m and n. Note that we have used �mn instead of the
usual Rabi frequency defined by 2dmnEmn /� to eliminate fac-
tors of 2 in the equations.

We now consider the adiabatic approximation for the so-
lutions of Eqs. �1�–�3�. If the Hamiltonian matrix on the
right-hand side of Eq. �1� is denoted by H, and ��t� is the
smallest frequency difference between two distinct eigenfre-
quencies of H at time t, the adiabatic condition generally
states that the rates of change of the detunings and ampli-

tudes of the incident laser fields must satisfy �̇ j�t�, �̇ jk�t�
	��t�2 at all times so that a quasi steady state is maintained
throughout the process. As it was pointed out in Refs. �7,8�,
this adiabatic condition leads to the condition 
effT�1,
where 
eff is some “effective” Rabi frequency that in many
cases can be approximated by ��	� jk	2�1/2, and T is the pulse
duration; and this has a nontrivial consequence, because it
follows that T→� is not required to reach the asymptotic
limit of adiabatic following. Rather, for given T, the limit can
be approached by increasing 
eff, and this is exactly the
point of interest for experiments with intense laser. Another
important result that came from consideration of adiabatic
following was the suggestion of using the counterintuitive
order of incidence for the laser fields �examples of which
will be seen below� and way of adjusting the detunings
�7–9�. The use of this procedure that relies on the initial
creation of a coherence or a population trapping state with
subsequent adiabatic evoluation has been one of the most
successful methods for population transfer among quantum
states of atoms and molecules �7�, and the same principle has
been made use of, often implicitly, in many other atomic
experiments.

We use the pulse-localized coordinates =z and �= t
−z /c. In Eq. �1�, t is replaced by � and in Eqs. �2� and �3�,
the operator � /�z+c−1� /�t is replaced by � /�, �mn� ,�� and
km� ,�� are now functions of  and �. If the 5�5 matrix on
the right-hand side of Eq. �1� is denoted by H� ,��, follow-
ing Hioe and Carroll �6�, the adiabatic solution is given by

H� ,��k�� ,��=0� , giving, for the above five-level system, the
following normalized k�� ,��:

k1 =
1

�
��23�45 − �43�25� ,

k3 = −
1

�
��21�45 − �41�25� ,

k5 = −
1

�
��23�41 − �43�21� , �4�

where

�2�,�� = 	�21�45 − �41�25	2 + 	�23�41 − �43�21	2

+ 	�23�45 − �43�25	2. �5�

The two other components of k�, k2 and k4 are assumed
small but not zero as they are required for the propagation
equations �2� and �3�, and they are given by

k2 = − i
�54�k3/�� − �34�k5/��

�32�54 − �34�52
�

= − i
�54�k1/�� − �14�k5/��

�12�54 − �14�52
�

= − i
�34�k1/�� − �14�k3/��

�12�34 − �14�32
� ,

k4 = − i
�32�k5/�� − �52�k3/��

�32�54 − �34�52
�

= − i
�12�k5/�� − �52�k1/��

�12�54 − �14�52
�

= − i
�12�k3/�� − �32�k1/��

�12�34 − �14�32
� . �6�

The equalities in the expressions for k2 and k3 in Eq. �6�
can be shown to be consistent with the relation ��	k1	2
+ 	k2	2+ 	k3	2� /��=0. Substituting these k’s from Eqs. �4� and
�6� into the propagation equations �2� and �3� gives six
coupled nonlinear differential equations for the �’s, and the
solutions correspond to the adiabatic approximation for the
waves for the coupled Maxwell-Schrödinger equations.

In order to see some basic features of these solutions, we
make the following simplifications that correspond partially
to the situation in the experiments of Xia et al. �4�.

�1� We assume that �mn� ,��=cmnf� ,�� for �m ,n�
= �1,2� and �1,4�, and �mn� ,��=cmng� ,�� for �m ,n�
= �2,3�, �4,5�, �2,5�, and �4,3�, where f� ,�� and g� ,�� are
arbitrary coordinate- and time-varying functions, and the c’s
are constants that depend on the field amplitudes and cou-
plings between the levels. That is, only two laser fields are
used and the fields that connect levels 1↔2 and 1↔4 have
the same dependence on � ,��, and the fields that connect
levels 2,4 and levels 3,5 have the same dependence on � ,��.

�2� We assume that the transition matrix elements for �2,5�
and �4,3� are zero. In the experiment of Xia et al. �4�, the
coupling for �2,5� is zero because of the selection rule but the
coupling for �4,3� is not zero even though it is considerably
smaller than those for �2,3� and �4,5� connected by the same
laser field.

The expressions for the k’s then simplify considerably and
they are given by

k1 =
1


�,��
c23c45g�,�� ,
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k3 = −
1


�,��
c21c45f*�,�� ,

k5 = −
1


�,��
c23c41f*�,�� , �7�

where


2�,�� = Cf
2	f�,��	2 + Cg

2	g�,��	2, �8�

with

Cf
2 = 	c21c45	2 + 	c23c41	2,

Cg
2 = 	c23c45	2,

and

k2 = − i
 �k3/��

c32g*
� = − i
 c54g*�k1/�� − c14f�k5/��

c12c54fg*
� ,

k4 = − i
 �k5/��

c54g*
� = − i
 c12f�k3/�� − c32g*�k1/��

− c14c32fg*
� . �9�

The four propagation equations for �12� ,��
=c12f� ,�� ,�14� ,��=c14f� ,�� ,�23� ,��
=c23g� ,�� ,�45� ,��=c45g� ,��, become two equations for
f� ,�� and g� ,��

�f

�
= −

�12	c45	2




�

��

 f



� , �10�

�g

�
= −

�23	c45	2




�

��

 g



� −

�23	c14	2




f

g*

�

��

 f*



� , �11�

provided that the following three relations are satisfied:

�12	c45	2 = �14	c23	2,

�23	c45	2 = �45	c23	2,

�23	c14	2 = �45	c12	2. �12�

A special case of interest is given by the following set of
�’s and c’s that satisfies the three above conditions:

�23 = �45 = 2�12 = 2�14 �13�

and

	c23	2 = 	c45	2 = 2	c12	2 = 2	c14	2. �14�

These values of �’s and c’s result in Cf
2=Cg

2�C2 for Eq. �8�.
Multiplying Eq. �10� by f* and Eq. �11� by g*, and similarly
for equations of their conjugates, and then adding, we find
that ��	f 	2+ 	g	2� /�=0. It follows that V2� ,���	f� ,��	2
+ 	g� ,��	2 and 
2� ,��=C2�	f� ,��	2+ 	g� ,��	2�=C2V2� ,��
do not depend on  and thus depend only on the input fields,
and they can be written as V2� ,��=V2�0,�� and 
2� ,��
=
2�0,��. Even though the coupled nonlinear equations �10�
and �11� are somewhat different from the corresponding
equations for the three-level case �3�, and the conditions

given by Eqs. �13� are also different from the corresponding
condition for the three-level case �for which it is required
that �12=�23 that was not explicitly stated in Ref. �3��, that
	f� ,��	2+ 	g� ,��	2 is independent of  made the adiabaton
solution possible and similar for the two cases. Here we have
a pair of adiabatons characterized by f� ,�� and g� ,�� that
are given by

f�,�� = 
�0,��F„Z��� − �… , �15�

g�,�� = 
�0,���C−2 − F2
„Z��� − �…1/2, �16�

where

� � �12	c45	2 = 2�12	c12	2, etc. �17�

Z��� = �
−�

�

d��
2�0,��� , �18�

and where F is an arbitrary function of Z���−�. Equations
�15� and �16� can be verified to satisfy Eqs. �10� and �11� by
direct substitutions provided that Eqs. �13� and �14� are sat-
isfied. Note that the two pulse shapes f� ,�� and g� ,�� are
related by 	g� ,��	2=V2�0,��− 	f� ,��	2=C−2
2�0,��
− 	f� ,��	2.

For some specific examples, consider real f and g. After a
sufficient time for the pulse reshaping to complete, the initial
pulse shape f�0,�� evolves into its shape-preserving adiaba-
ton f� ,��=
F�
2�−�+�� and its partner from its initial
form g�0,�� into g� ,��= �V2�0,��− f2� ,���1/2=
�C−2

−F2�
2�−�+��1/2, where 
 ,C and � are constants. Let
x�
2�−�, and let F�x� be a Gaussian shape. We have
presented the plots of y�x�= f�x�= 
 exp�−x2� �solid line� and
y�x�=g�x�=
�C−2−exp�−2x2��1/2 �dash line� for two arbi-
trary sets of �
 ,C�= �1,1� and �1,1 /2� �in some arbitrary
units� in Figs. 2 and 3, respectively. In each case, it has the
two pulses sent in the so-called counterintuitive order �7–9�
such that the fields that connect the initially unpopulated
levels �2,3� and �4,5� preceed the fields that connect the ini-
tially populated ground level 1 to levels �2,4�. The speed v of
the propagation of these adiabatons is given by
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FIG. 2. f�x� �solid� and g�x� �dash� for 
=C=1.
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1/v = 1/c + �/
2 �19�

and it can be much smaller than the vacuum speed c of light.
The evolution to a pair of pulse shapes that eventually be-
come ones shown in Fig. 3, say, is similar to that for the
three-level case shown in Ref. �3�. For the five-level system
considered here, remember that four parameters �12, �14,
�23, and �45 are in play involving two pulse shapes f� ,��
and g� ,��, and that conditions �13� and �14� are necessary
for the eventual shape-preserving propagation.

It is to be noted that I have chosen the simple pulse shapes
f�x� and g�x� �remembering that f2�x� and g2�x� represent
their intensities� that are shown in Figs. 2 and 3 as they are
very similar to the so-called bright and dark solitons, and the
bright and gray solitons, respectively, that have been experi-
mentally created and observed long ago in optical fibers �10�,
even though the nonlinear differential equations governing
the propagation of optical solitons in fibers are the nonlinear
Schrödinger equations �11� rather than the nonlinear
Maxwell-Schödinger equations for the adiabatons here. Al-
though many other examples of pulse shapes can be given,
the principal feature of the pair of pulse shapes for the adia-
batons is clear. It consists of a g2�x� pulse that connects the
initially unpopulated levels �2,4� to �3,5� and that is much
stronger in the beginning than the f2�x� that connects the
initially populated ground state 1 to the initially unpopulated
upper levels �2,4�, where g2�x� and f2�x� are related by the
simple relation given by Eqs. �15� and �16�. For the pair of
pulses to propagate through the atomic medium and emerge
from it with their shapes unchanged from the time they en-
tered, and with all the atoms returned to their ground states,
the g2�x� pulse needs to return to its initial value while the
f2�x� needs to decrease and vanish. The initial turn-on and
final turn-off of the g2�x� pulse are not shown in the figures.

In the EIT experiments of Xia et al. �4�, the pulse shapes
may look very different from the examples we presented
since they did not strictly require the pulse shapes to emerge
completely unchanged; only that the atomic medium would
appear to be transparent. However, the qualitative require-
ment that g2�x�� f2�x� for their pulses at the beginning and
at the end was probably satisfied, and it was possible that the
adiabatic condition 
effT�1 as well as the counterintuitive

order of incidence for the laser fields were partly or fully
utilized.

We now present an exact solitary-wave solution of the
coupled equations �1�–�3� for the five-level system without
assuming the adiabatic condition. This result is one of the
many possible cases given in Ref. �2� but it is not one that
was explicitly presented. We shall present it here in the form
that can be directly compared with the result for the adiaba-
tons just presented.

Assume �2=�4=0, �34=�25=0, and �34=�25=0 in Eqs.
�1� and �2�. If the pulses are shape invariant and propagate
through the medium with velocity v, then they depend on t
and z through ���t−z /v� /�, where ��0 is the pulse length
�a scaling parameter�. The operator � /�z+c−1� /�t is replaced
by � /��. The solitary-wave pair characterized by

f��� = sec h��� ,

g��� = tanh��� , �20�

for the waves are given by

�12��� = �14��� = Bf��� ,

�23��� = �45��� = Ag��� , �21�

while the atomic variables are given by

k1 = − g��� ,

k2 = k4 =
i

2B�
f��� ,

k3 = k5 =
A

2B
f��� , �22�

where the constants A and B that represent the amplitudes of
the waves must satisfy the relation

�2B2 − A2��2 = 1. �23�

In addition, the propagation constants �’s must satisfy the
following condition:

-5 -4 -3 -2 -1 1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

x

y

FIG. 4. sech�x� �solid� and tanh�x� �dash�.

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

x

y

FIG. 3. f�x� �solid� and g�x� for 
=1, C=1 /2.
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�23 = �45 = 2�12 = 2�14. �24�

The speed v of the waves is given by

1

v
=

1

c
+

�12

2B2 . �25�

The atoms of the medium, initially in their ground states
	k1�−��	2=1, k2�−��=k3�−��=k4�−��=k5�−��=0, return to
their ground states 	k1�+��	2=1, k2�+��=k3�+��
=k4�+��=k5�+��=0, after the pulses propagate through the
medium.

This exact analytic solitary-wave solution �Eqs.
�20�–�25�� can be verified by direct substitutions to Eqs. �1�
and �2�. It can be seen that these solitary waves, that can
propagate through the five-level atomic system with their
shapes invariant, bear a great deal of similarity with the the
adiabatons given in Eqs. �13�–�19�. The plots of of the pulse
shapes given by Eq. �20� y�x�=sec h�x� and y�x�=tanh�x� are
shown in Fig. 4, and they are seen to be similar to the pulse
shapes of the adiabatons of Fig. 2 �Remember that we com-

pare the intensities given by y2�x� and that the negative val-
ues of y�x� become positive for y2�x��. However, the pulse
shapes for these exact solitary waves are very specific �Eq.
�20�� and satisfy the relation f2+g2=const independent of �;
whereas for the adiabatons, one of them f� ,�� can be of an
arbitrary shape and the shape of its partner is g� ,��
= �V2�0,��− f2� ,��1/2 for an arbitrary V�0,��.

In summary, we have presented the adiabaton solution
�Eqs. �13�–�19�� and the exact solitary-wave solution �Eqs.
�20�–�25�� for a five-level system whose energy levels are a
double � configuration under some specific conditions �in-
cluding zero coupling between levels 2 and 5, and 3 and 4�.
These solitary waves are quite analogous to the bright-dark
or more generally the bright-gray solitary wave pairs found
in the optical fibers. The difference with and the extra con-
ditions required in addition to those for the corresponding
adiabatons and solitary waves for the three-level systems
have been noted.

I would like to thank Clark Carroll and Joe Eberly for
comments and discussions.
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