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I. INTRODUCTION

Various analogies can be found between quantum-
mechanical and classical systems. For instance, the quantum-
mechanical interaction of a field with a two- or three-level
system has been shown to have a simple electrical circuit
analogy �1�. The purpose of this study is to investigate the
analogy between a two-level system and a mode-locked laser
in which two intracavity pulses circulate. The large variety of
pulsed interrogation techniques of two-level systems �2�, dis-
covered first in nuclear magnetic resonance �3�, and applied
later to optical transitions, may inspire new detection meth-
ods in ring and linear lasers.

A general description of the analogy between a two-level
system and a bidirectional ring laser is presented in Sec. II.
The system to study this analogy is a mode-locked laser, with
two pulses circulating in the cavity, and control over various
types of coupling between the two pulses, as discussed in
Sec. III. The standard two-level system has generally a well-
defined ground state that serves as an initial condition for
most interactions. In Sec. IV, it is shown that the density-
matrix equations of a two-level system apply to the ring
laser, as well as the Bloch vector diagram of Hellwarth-
Vernon-Feynman �4�. The means to establish a preferential
state of rotation in the case of the ring laser are proposed in
Sec. V.

II. RING LASER AND TWO-LEVEL SYSTEM

The atomic or molecular system considered in this anal-
ogy has two quantum states with opposite parity, which can
be coupled by a dipole transition. The two levels are distin-
guished by their energy. In the ring laser under consideration,
the states �1� and �2� are the two senses of rotation of a pulse
in a ring laser. The probability of each direction �clockwise
and counterclockwise� is monitored through the pulse energy
in the corresponding direction. The two levels of the
quantum-mechanical system are coupled by an electromag-
netic wave of frequency � nearly equal to the transition fre-
quency �0. Either situation is treated within the slowly vary-
ing approximation. This means, in the case of the quantum-
mechanical two-level system, that the transition rates and
detuning ��=�0−� are negligible compared to � or �0. In

the case of the ring laser, the transition rate between �1� and
�2�, as well as the difference in cavity resonances for the two
senses of rotation, are negligible compared to the carrier fre-
quencies.

A sketch of a laser with two pulses circulating in the
cavity is presented in Fig. 1�a�, and its two-level analogue in
Fig. 1�b�. A ring laser is taken as an example, but the analogy
applies as well to a linear cavity in which two pulses are
made to circulate. In the Schrödinger description of a dipole
transition �1�→ �2� interacting near resonance with an elec-

tric field E= 1
2 Ẽ exp�i�t�+c.c., the wave function � is written

as a linear combination of the basis: ��t�=a1�t��1�+a2�t��2�.
Slowly varying coefficients, defined by ai=ci exp��i�0t�,
are substituted to the ai in the Schrödinger equation, result-
ing in the set of time-dependent coefficient differential equa-
tions �see, for instance, Ref. �5��,
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where ��Ẽ�= �p /���Ẽ� �p being the dipole moment of the tran-
sition� is the Rabi frequency.

In the analogy of the ring laser, the coefficients ci�t� cor-

respond to the complex field amplitudes Ẽi �the tilde indicat-
ing a complex quantity� of each pulse circulating in the ring
cavity �round-trip time �RT�, as sketched in Fig. 1. The state

of the system is also defined by ��t�= Ẽ1�t��1�+ Ẽ2�t��2�. The
evolution equation of these fields is
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In order to have an equivalence between Eqs. �1� and �2�,
the matrix �R� should be anti-Hermitian, which imposes that
r̃21=−r̃

12
* and that r̃kk be purely imaginary. It can also easily

be verified that this is the only form of interaction matrix for

which energy is conserved, d /dt��Ẽ1�2+ �Ẽ2�2�=0. The general
case in which �R� is neither Hermitian nor anti-Hermitian is
discussed in Sec. III.

PHYSICAL REVIEW A 78, 063802 �2008�

1050-2947/2008/78�6�/063802�6� ©2008 The American Physical Society063802-1

http://dx.doi.org/10.1103/PhysRevA.78.063802


The real parts of the diagonal elements of the matrix �R�
represent gain and loss in the cavity. In steady state, the gain
and loss are in equilibrium, and the real parts of r̃kk are zero.
A gain �or absorber� with a recovery �relaxation� time longer
than �RT /2 will cause transients in population. In the cavity
sketched in Fig. 1�a�, an electro-optic phase modulator im-
posed an opposite phase shift ��	 /2 and −�	 /2� in either
direction, thereby modifying the resonance of the cavity for

the pulse Ẽ1 by �� /2=�	 / �2�RT�, and for pulse Ẽ2 by
−�� /2=−�	 / �2�RT�. These detuning terms contribute to
the diagonal terms of the matrix �R�: r̃11=−r̃22= i�	 /2.

III. CONSERVATIVE VERSUS DISSIPATIVE
COUPLING

A. Symmetric coupling

The mutual coupling terms r̃ij have taken numerous forms
in the ring laser literature �6,7�, which mainly addresses

continuous-wave �cw� lasers. This case is considered here for
completeness, but, as mentioned above, it is not conservative
and does not lead to an equivalence with the two-level equa-
tions. The traditional approach has been to represent the scat-
tering coupling distributed in the whole cavity by an equiva-

lent complex “scattering coefficient” r̃12= r̃21= 
̃=
 exp�i��.
This coefficient couples symmetrically, at each round trip, a
fraction 
 of one beam into the other, with an average phase

factor � �6,8,9�. Writing for the fields Ẽ1=E exp�i�1� and

Ẽ2=E exp�i�2�, substituting in Eqs. �2�, and separating the
real and imaginary parts leads to the standard equations for
the laser gyro. In particular, the real part leads to an expres-
sion for the total intensity change, which is proportional to
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dẼ2
*

dt
+ c.c.�

=
2
 cos �

�RT
Re�Ẽ1Ẽ2
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The derivative of the phase difference �=�2−�1 is calcu-
lated by extracting the imaginary part of the expression for
the derivative of the electric fields,

��

�t/�RT
= �� − �
E1

E2
sin�� − �� +

E2

E1
sin�� + ���� . �4�

It is only for �= /2 that this coupling is conservative, as
can be seen from the equation for conservation of energy �3�.
This particular condition, combined with Ẽ1Ẽ2, is the one for
which the coupling 
 exp�i�� does not introduce any dead
band �10�, as seen in the expression �4� for the derivative of
the differential phase �11�.

Unlike the case of a cw laser, the amplitude and phase of
the coupling coefficients r̃12 and r̃21 can be easily controlled
in the case of the bidirectional mode-locked ring laser. The

type of coupling, with 
̃ purely imaginary, can be created by
a thin dielectric layer normal to the beam, in the limit of
vanishing thickness. Indeed, such a layer can be described by

a polarization P̃=N�p��z�Ẽ, where �p is the polarizability of
the layer of dipoles of density N. Inserting this polarization
into Maxwell’s wave equation, and integrating across the di-
electric layer while taking into account the continuity of the
tangential component of the field, leads to the following ex-
pressions for the complex reflection coefficient r̃d and trans-
mission coefficient t̃d,

r̃d =
− i�

1 + i�
, �5�

t̃d =
1

1 + i�
, �6�

where �= �2�2N�p /�, � being the wavelength of the light.

It can easily be verified that coupling of the two fields Ẽ1 and

Ẽ2 by such a layer conserves the total energy �Ẽ1�2+ �Ẽ2�2

consistent with �rd�2+ �td�2=1 and rdt
d
*+r

d
*td=0, as long as �

is real.

FIG. 1. �Color online� Sketch of the analogy between a ring
laser and a two-level system. �a� The bidirectional mode-locked
ring laser, where two circulating pulses meet in a saturable absorber
jet. An interface, positioned at or near the opposite crossing point of
the two pulses, controls the amplitude of the coupling parameter r̃ij.
The laser with two pulses circulating in its cavity is the analogue of
the two-level system sketched in �b�; the circulating intensities in
the laser, measured for each direction by quadratic detectors, are the
diagonal elements �populations� of the density matrix of the equiva-
lent two-level system. The absence of phase modulation corre-
sponds to the two levels being on resonance, driven at the Rabi
frequency �E by a resonant field �the Rabi frequency �E corre-
sponds to the frequency r12 /�RT in the ring laser analogy�. The
backscattering at the interface thus provides coherent coupling
�Rabi cycling� between the two states, while other noncoherent de-
cays tend to equalize the population in the two directions, and
washes out the phase information. The detuning �� in �b� corre-
sponds to the phase difference per round trip �	 /�RT in �a�, im-
posed by an electro-optic phase modulator driven exactly at the
cavity round-trip time. A beat note detector measuring the interfer-
ence between the two fields records the off-diagonal matrix ele-
ment. A combination of a Pockels cell M and polarizer P controls a
feedback of the clockwise pulse into the counterclockwise one.
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B. Nonsymmetric coupling

The case of mode-locked lasers is particularly interesting,
because the localization of the radiation in the cavity enables
one to select a truly conservative coupling. Instead of a cou-
pling structure of thickness small compared to the wave-
length as considered above, we will consider an interface
�that could include a coating� between two media.

The coupling, localized at the crossing point of the two
circulating pulses, can be produced by the backscattering at a
dielectric interface between two media 1 and 2, for which
r̃12= r̃ and r̃21=−r̃*, which corresponds indeed to an anti-
Hermitian matrix. It can easily be verified that the total in-
tensity change introduced by this coupling is zero, as ex-
pected for a conservative coupling. In fact, the phase relation
between the two reflections at either side of the interface is a
consequence of energy conservation.

Following the approach of Spreeuw et al. �12�, we can
write the matrix �R� in Eq. �2� as a sum of a conservative
�here, anti-Hermitian� matrix �A� and a dissipative matrix
�H�,

�R� = �A� + �H� =	 i
�	

2
r̃12

− r̃12
* − i

�	

2

 + � �1 − g̃

− g̃* �2
� . �7�

In Fig. 1�a�, the phase shifts ��	 /2 imposed on either pulse
1 and 2 by the electro-optic phase modulator, divided by the
round-trip time �RT, correspond to the detuning of the ana-
logue two-level system. The differential frequency �� can
also be caused by rotation, Fresnel drag, Faraday effect, etc.
In the “dissipative matrix” �H�, �1 and �2 are the net gain
�loss� coefficients for the two beams. All phenomena that
involve an energy exchange between pulse �1� and �2� con-
tribute to the real part of g̃. These are, for instance, a mutual
saturation term in the gain, and coupling between forward
and backward pulses in a saturable absorber, because of the
population grating induced by the counterpropagating fields
�13�.

IV. DENSITY-MATRIX EQUATIONS

We can rewrite Eq. �2� in terms of the intensities in either

sense of rotation �22= Ẽ2Ẽ2
* and �11= Ẽ1Ẽ1

*, and the quantities

�12= Ẽ1Ẽ2
* and �21= Ẽ2Ẽ1

*,

d��22 − �11�
dt/�RT

= − 4 Re�r̃12�21� + 2�2�22 − 2�1�11, �8�

d�21

dt/�RT
= − i���RT�21 + r̃12

* ��22 − �11��t�21 + ��1 + �2��21

− g̃*��22 + �11� , �9�

d��22 + �11�
dt/�RT

= 2�2�22 + 2�1�11 − 4 Re�g̃�21� . �10�

For the pure conservative case, �H�=0, this system of equa-
tions reduces to Eqs. �8� and �9� �with d /dt��11+�22�=0�, in

which one recognizes Bloch’s equation for a two-level sys-
tem driven off-resonance by a step-function Rabi frequency
of amplitude r̃ /�RT �4�. The difference in intensities
��22−�11� is the direct analogue of the population difference
between the two levels. The off-diagonal matrix element �21
is the interference signal obtained by beating the two outputs
of the laser on a detector. As in the case of the two-level
system, one can introduce phenomenological relaxation rates
� for the energy relaxation �diagonal matrix element� and �t
for the coherence relaxation �off-diagonal matrix elements�.
The physical meaning of the transverse relaxation time 1 /�t
is the mutual coherence time of the two pulse trains. For a
constant “detuning” ��, �t is related to the beat note band-
width. Combination of the nonconservative coupling g and
the loss � results in energy and coherent relaxation rates �
and �t. A general conservative case may involve the dissipa-
tive matrix, with the condition that �22+�11 is a constant.

The detuning term in Eq. �9� may include a contribution
from the Kerr effect ��Kerr=��SPM+��XPM. The Kerr-
induced self-phase modulation ��SPM takes place in all com-
ponents where the pulses do not cross, such as the gain me-
dium, and the phase modulator in Fig. 1,

��SPM =
1

�RT
�2n2s�s

�
���22 − �11� , �11�

where n2s and �s are the nonlinear index and length of the
nonlinear medium involved in self-phase modulation. The
Kerr-induced cross-phase modulation ��XPM takes place in
all components where the pulses do cross, such as the satu-
rable absorber in the example of Fig. 1,

��XPM =
1

�RT
�4n2x�x

�
���22�11, �12�

where n2x and �x are the nonlinear index and length of the
nonlinear medium involved in cross-phase modulation. The
Kerr effect thus introduces two nonlinear terms of the form
Cs��22−�11��21 and Cx

��22�11�21 in Eq. �9�. In the particular
experimental situation presented here, these terms are
smaller by a factor 105 than other contributions and will be
neglected. There are, however, situations in which these
terms are important and can lead to a determination of the
Kerr coefficient �14�.

There is a contribution to the beat note bandwidth due to
fluctuations in the mirror position �i.e., each pulse sees ran-
dom differences in the cavity length of the order of the mir-
ror motion over a time of �RT /2�. This broadening mecha-
nism can be considered to be the equivalent of
inhomogeneous broadening. The gain �loss� terms �i can be
seen as contributions to the population from other levels. In
an inversion driven laser, �1��2=� is an intensity-
dependent relaxation that exists only in transients, since
�=0 �gain=loss� when the laser is at equilibrium. This situ-
ation occurs also in a two-level system when both levels �1�
and �2� are strongly coupled to a third level �laser medium
pumped to zero inversion�.
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V. INITIAL CONDITION

In order to observe Rabi cycling, the system should be
initially in a “ground state,” i.e., the intensity of one of the
pulses dominates. There are several methods possible to
achieve this goal:

�i� Insertion of a nonsymmetrical coupling in the cavity.
�ii� Use of a directional gain that can be controlled exter-

nally.
�iii� Feedback from one direction into the other outside of

the cavity. One direction is extinguished by feeding the pulse
back into the other direction, in time and space.

A. Nondirectional coupling

Nondirectional coupling can be achieved with a combina-
tion of thin �compared to the wavelength� dielectric or gain
�absorbing� layers �15�. Equation �5� gives an expression for
the reflection coefficient of a dielectric thin layer. In the case
of a gain layer, as in an optically pumped quantum well, �
= ib, where b is a real number, and the expression for the
complex reflection field coefficient of the gain layer is


g =
b

1 − b
. �13�

A combination of a gain �L� and dielectric layer �R�, an
eighth of a wavelength apart �total propagation
exp�−ikz�=exp�−i /2�=−i�, will have a different reflection

coefficient when irradiated from the left �R̃L� or from the

right �R̃R�,

R̃L � i� rd

i
− 
g� � 0,

R̃R � 
g +
rd

i
. �14�

This is definitely not a conservative coupling, since the gain
layer is providing energy to the light field. This type of non-
reciprocal coupling provides an ideal initial condition if it
can be applied as a step function. A structure with a single
gain layer cannot have sufficient gain for laser operation.
Instead, a multiple-quantum-well �MQW� structure with 19
gain layers and 4 dielectric layers was designed and tested in
a ring laser �15,16�. Unidirectional and quasiunidirectional
�depending on the pump power� operation was demonstrated.
Because of the large number of layers, this structure has a
too narrow bandwidth �1 nm� to be used with ultrashort
pulses.

B. Directional gain and Faraday rotation

In a synchronously pumped optical parametric oscillator
�OPO�, the gain is traveling with the pump pulse. By insert-
ing the OPO crystal of a ring laser in a linear pump cavity,
two countercirculating pulses are created �one at each pas-
sage of the pump� �17�. The relative intensity of the pump
pulses determines the relative intensity of the circulating sig-
nal pulses. This is an interesting system in relation to this

analogy, because there is no coupling between the circulating
pulses introduced by the gain element.

Another approach to unidirectionality is directional
losses, such as can be introduced by a Faraday rotator. The
Faraday rotation can be seen as the analogue of fluorescence
decay, which transfers energy from the upper level to the
lower level, while conserving the total population. In the
laser, an approximate conservation of the population results
from the saturation properties of the gain medium.

C. External feedback

This is the approach chosen in this work. In order to de-
fine the initial condition, the output pulse from one direction
is extracted, and fed back ��1% � with a mirror, after appro-
priate optical delay, into the opposite direction. By using a
fast switch �turn-off time of less than the cavity round-trip
time of 10 ns� at the Pockels cell, the coupling can be turned
off to let the countercirculating fields evolve in the cavity.

VI. EXPERIMENTAL RESULTS

A. The laser

The analogy can be tested with a variety of laser systems,
which will differ by the parameters of the gain and loss me-
dia. In the case of a synchronously pumped OPO, the gain is
of the order of a few percent, and the mutual saturation pa-
rameter is zero. In the case of the ring Ti:sapphire-laser cho-
sen for this demonstration, the gain balances the losses for a
coefficient � of approximately 0.08.

The experimental system is a ring Ti:sapphire-laser �pump
power=5 W, 8% loss/round-trip in a 3.1 m cavity with four
prisms �18�� mode-locked with a dye jet as saturable ab-
sorber, resulting in 30 ps pulses at 800 nm. The following
analogies can be tested:

�i� Rabi cycling of the population difference.
�ii� For the resonant case ���=0�, the Rabi frequency is

proportional to the “driving force” that is the backscattering
coefficient �r̃�.

�iii� The Rabi cycling for the population difference
��22−�11� and the off-diagonal element �21 are 90° out of
phase.

�iv� There is a longitudinal and transverse relaxation time.
�v� For the off-resonant case, the Rabi cycling is at fre-

quency ���2+ ��r̃� /�RT�2.

B. Rabi cycling on resonance

In the measurements that follow, the system is “at reso-
nance;” i.e., ��=0. An example of “Rabi cycling” is shown
in Fig. 2. The counterclockwise intensity ��22� is plotted as a
function of time �Fig. 2�a��. The clockwise intensity �11 �not
shown� is complementary. The system is prepared so that the
�11 is initially populated ��11=0.8, �22=0.2�. As the feedback
that creates the initial state is switched off at t=1 ms, there is
a fast �approximately 10 �s� transient. This risetime reflects
combined dynamics of the gain and cavity, as the laser
adapts to the different �now symmetrical� cavity losses. This
risetime corresponds roughly to the fluorescence lifetime of
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the upper state of Ti:sapphire. The “Rabi cycling of the
“population difference” �22−�11 is plotted in Fig. 2�b�. One
can also record the beat note frequency �off-diagonal element
��12�� as sketched in Fig. 1�a�. As can easily be seen from the
Bloch vector model of Feynman, Hellwarth, and Vernon �4�,
the oscillations of the diagonal elements and the off-diagonal
element are 90° out of phase. This property can indeed be
seen in Fig. 3�a�. The Rabi frequency �r̃� /�RT can be varied
by changing the position of the scattering surface, as shown
in Fig. 3�b�. The maximum value measured �18� for this
interface corresponds to a backscattering coefficient of �r̃�
�1�10−6. Note that the Rabi frequency provides a direct
measurement of very minute backscattering coefficients,
without the need to trace a complete gyroscopic response as
in Refs. �18,19�.

In the case of a two-level system, the phenomenological
“longitudinal” and “transverse” relaxation times have been
identified as energy relaxation time �fluorescence decay� and
phase relaxation time �due, for instance, to atomic colli-
sions�. Figure 4 shows a measurement of the decay of the
Rabi oscillation for the diagonal and off-diagonal elements.
The decay is measured by fitting the Fourier transform of the

measurement to a Lorentzian, and measuring its full width at
half-maximum. The values are 27 and 30 Hz. As noted pre-
viously, there are at least two origins to the decay of the
off-diagonal element: vibration of mirrors and coupling
through absorption �gain�. The latter affects equally the di-
agonal and off-diagonal elements. The former can be seen as
a type of “inhomogeneous broadening,” since it has its origin
in random cavity length fluctuation, expressed as random-
ness in the value of ��. The approximately 30 Hz band-
width of both decays is consistent with 0.3 �m amplitude
vibrations at 100 Hz of cavity components, causing differen-
tial cavity fluctuations of 0.3 pm/round trip.

If the radiation of amplitude E �Rabi frequency �E� is
off-resonance with a two-level system by an amount ��, the
Rabi frequency becomes ��2E2+��2. In the case of the ring
laser, we can control the off-resonance amount � with a
Pockels cell �Fig. 1�; the initial condition is set favorable to
the counterclockwise direction as shown in Fig. 2�a�. The
Rabi cycling is measured indeed to correspond to
��r̃�2 /�2+��2. In the resonance case ��=0, measurement of
�12 leads to r /�RT=138�15 Hz. With �� of 171�12 Hz,
the off-resonant measurement is r /�RT=237�21 Hz, which
behaves as a two-level system off-resonance. The analogy
presented here sheds light on previously unexplained obser-
vations on a ring Kerr-lens mode-locked ring laser �20�.
Rather than being bidirectional, the operation was observed
to switch direction at rates �tens of Hz� that did not seem to
correspond to any cavity parameter. The slow switching rate
might be due to similar “Rabi cycling,” caused by the scat-
tering coefficient of the gain crystal, which is where the
pulses meet in the case of pure Kerr-lens mode-locking.

VII. CONCLUSIONS

We have demonstrated analytically and experimentally
the analogy between a two-level system and a bidirectional
mode-locked ring laser. In the latter, the two “quantum
states” �1� and �2� are the sense of circulation of the beams in
the ring. The use of short pulses makes it possible to apply
purely conservative coupling between the two countercircu-
lating pulses. Resonant interaction between a step-function
resonant electromagnetic field and the two-level system leads
to Rabi oscillation between the population of the upper and

FIG. 2. �Color online� The evolution of the intensities are shown
after switching the Pockels cell. �a� The counterclockwise direction
is shown—the intensity at clockwise direction is 180° out of phase
with this graph, with population dropping from the maximum initial
value. The fast initial transient reflects the gain and cavity dynamics
associated with the sudden change in cavity loss at the switching
time. Thereafter, a slow oscillation due to population transfer or
Rabi oscillation between two directions is observed. �b� Population
difference showing the Rabi cycling.

FIG. 3. �Color online� �a� Comparison of the oscillation of the
population difference �22−�11 and the off-diagonal element �beat
note� �12. �b� Rabi frequency as a function of position of the glass at
the meeting point of the two directions. Translation of the glass-air
interface along the beam result in different values of coupling r̃.

FIG. 4. �Color online� �a� Measurement of the decay of the Rabi
oscillations in W and �21. �b� The Fourier transforms of the relative
measurements are shown on the right.
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lower states. Similarly, we observe Rabi oscillation between
the populations of the “upper” �Ẽ2Ẽ2

*� and “lower” �Ẽ1Ẽ1
*�

states of the ring laser. The same density-matrix equations
that describe the evolution of the two-level system apply to
the ring laser, where the diagonal elements represent the in-
tensity of the countercirculating pulses, and the off-diagonal
element the interference of the two beams Ẽ1Ẽ2

* that is re-
corded on a detector. The Rabi oscillations of the off-
diagonal element are 90° out of phase with those of the
population difference. The interaction can be made off-
resonance by the use of a phase modulator. The Rabi oscil-
lation frequency increases as expected, as the interaction is
detuned from resonance. The Rabi oscillations decay with a
time constant that appears to be associated with the mechani-
cal vibrations of the laser support.

The impact of this analogy is in the development of new
sensors. Most spectroscopic techniques involve some mea-
surement of ��12�, as a function of the driving field �measure-
ment of the Rabi frequency �E leading to the determination

of the dipole moment� or detuning ��. The dependence of
the spectrum of ��12� on scattering in the ring laser is a very
sensitive measurement of the backscattering coefficient �r̃�2
= ��Rabi frequency���RT�2 �as small as 0.25�10−12 in the
lower data point of Fig. 3�. The quantity �� in the ring laser
is an intracavity conversion of a minute phase difference
between the two circulating pulses, and results in a modula-
tion observed on �12. Any resolution enhancing technique
that has been devised in spectroscopy, such as Ramsey
fringes �2,3�, could be transposed to a laser phase sensor with
two intracavity pulses. Pulsed coupling r̃ could be applied
�for instance by using a rotating disk� to perform measure-
ments within the beat note bandwidth.
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