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We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from
a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches
various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like
phase, critical values of the transverse frequency exist below which the configuration exhibits transverse
patterns. These critical values are found by means of a classical theory, and are in full agreement with classical
Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo
techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear
in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of
zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of
the zigzag chain.
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I. INTRODUCTION

Ultracold atoms and molecules are an attractive play-
ground for studying fundamental properties of matter. Theo-
retical and experimental investigations pursue a fundamental
understanding of the quantum dynamics of matter at ultralow
temperatures and explore applications for quantum technolo-
gies, such as quantum metrology and information processing
�1,2�. One relevant issue in this context is the realization and
control of strongly correlated systems with cold atoms. In
this respect, ultracold dipolar gases play an important role, as
the nature of the dipolar interaction allows one to observe the
interplay between quantum degeneracy and long-range
forces. For this reason they are also interesting candidates for
studying statistical theories of quantum long-range interact-
ing systems �3�. Dipolar gases of ultracold atoms have been
experimentally realized with chromium atoms �4,5�. In these
experiments the strength of the s-wave scattering interaction
is conveniently controlled by tuning the Feshbach resonance
and can be made vanishing, thus leading to the realization of
purely dipolar systems. Stability against collapse is war-
ranted by polarizing the gas in a two-dimensional geometry,
such that the dipolar interactions are purely repulsive �6,7�.

Different phases of dipolar gases of atoms or polar mol-
ecules have been theoretically predicted as a function of den-
sity and dimensionality. In two dimensions, in the presence
of periodic potentials the effect of long-range forces gives
rise to the appearance of quantum phases �8�. In a bulk sys-
tem, recent theoretical work predicted the creation of self-
organized structures in two dimensions: the ground state may
exhibit the typical features of a crystal or of a quantum fluid
depending on the density �6,7�. In a one-dimensional geom-
etry, Luttinger liquid models describe the long-range proper-
ties of dipolar gases at ultralow temperatures �9�. In this case,
by tuning the density, the phase of the gas undergoes a cross-
over from a Tonks-Girardeau gas to a crystal-like phase �10�.
The effect of transverse quantum correlations in two-
dimensional and one-dimensional systems, arising from the
long-range dipolar force, have been analyzed in stacks of

pancake traps �11� and in planar arrays of one-dimensional
tubes �12�. Quasiordered systems of polar molecules in one
and two dimensions have been recently considered for quan-
tum information processing �13,14�.

One-dimensional systems can be experimentally realized
with highly anisotropic traps �15,16�. Classically, trapped ul-
tracold dipolar systems may exhibit long-range order in one
dimension at vanishing temperatures, such that the equilib-
rium configuration is solely determined by the interplay be-
tween the classical repulsive potential and the external con-
finement. In the quantum regime the effect of zero-point
motion is expected to modify substantially the crystalline
properties. This situation must be compared with trapped ul-
tracold ions, interacting via Coulomb repulsion, where struc-
tural phase transitions in self-organized structures have been
extensively studied �16,17�. Here, the effects of quantum de-
generacy �18� are negligible in typical experimental setups
�19�, and the structures at experimentally accessible low tem-
peratures are essentially determined by the classical
potential.

In this paper we study theoretically the competition of
long-range interactions and quantum fluctuations in the
transverse stability of a one-dimensional ultracold dipolar
gas in a highly anisotropic trap. We determine the properties
of the quantum ground state using quantum Monte Carlo
methods. In particular, we analyze transverse correlations in
the parameter regime in which the gas is in the quasiordered
phase, and where the one-dimensional structure is unstable
with respect to increasing the atomic density and/or to reduc-
ing the transverse potential. We see that transverse patterns
are formed, giving rise to mesoscopic quantum structures,
where the transverse density distribution exhibits first two
peaks, and then, by further opening the trap, multiple peaks.
Differing from ionic Coulomb crystals, here quantum fluc-
tuations smoothen the transition from the single- to the
double-peaked distribution. Nevertheless, we observe a rela-
tively sharp transition to the various transverse structures for
parameter regimes, which can be identified by means of a
classical theory.
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This work is organized as follows. In Sec. II we introduce
the theoretical model for a two-dimensional gas of dipolar
bosons in the presence of tight transverse confinement and
identify the relevant length scales. In Sec. III we discuss the
phase diagram of the system, which we obtain using full
quantum numerical simulations; we identify the parameter
regime where the linear-zigzag chain transition could be ob-
served. In Sec. IV the conclusions are drawn.

II. THEORETICAL MODEL

We consider a system of ultracold bosons �atoms or polar
molecules� of mass m possessing large dipole moments,
which are confined in the x-y plane, while their dipolar mo-
ments are aligned perpendicularly to the plane by an external
field. In this limit the interaction is the repulsive dipolar
potential

V��� =
Cdd

4����3
,

where � is the polar coordinate on the plane and Cdd denotes
the dipolar interaction strength. Here, s-wave scattering is
neglected, assuming that it vanishes due to a properly tuned
Feshbach resonance �see, for instance, Ref. �5��. The gas is
assumed to be homogeneous along the x direction, where it is
characterized by the linear density n, and it is confined along
the y direction by a harmonic potential of frequency �t. This
external potential sets the characteristic length

aho =� �

m�t
,

determining the transverse size of the single-particle wave
packet, and which we choose as unit length. Denoting by
� j =� j /aho= �x̃j , ỹ j� the rescaled coordinates, the correspond-

ing dimensionless Hamiltonian H̃=H /��t reads

H̃ =
1

2�
j
�−

�2

�x̃j
2 −

�2

�ỹ j
2 + ỹ j

2 + �
i�j

r̃0

��i − � j�3
	 , �1�

where the parameter r̃0=r0 /aho is the characteristic length of
quantum coherence in dipolar gases,

r0 =
mCdd

4��2 ,

in units of aho.
The effective one-dimensional Hamiltonian is recovered

from Eq. �1� when the chemical potential � is much smaller
than the level spacing of the transverse oscillator, ����t. In
the quasiordered phase, for nr0�1, this corresponds to the
inequality Ecr

�1D� /N���t, where Ecr
�1D�=N�nr0�3	�3��2 / �mr0

2�
is the potential energy of a classical crystal �10�, and which
leads to the relation n�r0

−1/3. In the quantum gas regime, for
nr0�1, the gas is essentially described by a Tonks-Girardeau
gas �20� and the condition to be fulfilled is ETG

�1D� /N
=�2�2n2 / �6m����t, which is equivalent to the requirement
naho�1. The expression for ETG

�1D� /N does not depend on the
strength of the dipolar interaction, as the interparticle dis-
tance is large and the potential interaction can be neglected.

For later convenience, we introduce the rescaled density

ñ = naho,

such that when ñr0̃�1 the system is in the quasiordered
phase, while for ñ�1 it is a Tonks-Girardeau gas.

III. PHASE DIAGRAM

Using the criteria in Sec. II, we can identify different
phases of the ground state of the dipolar system in a phase
diagram with axes r̃0 and ñ, and which is reported in Fig. 1.
Here, the black dashed line corresponds to the curve
E�1D� /N=��t, where the energy per particle of the one-
dimensional dipolar gas, given in �10�, is equal to the level
spacing of the transverse confinement ��t. This line separates
the two regimes, where the dynamics is essentially one or
two dimensional. The short-dashed line corresponds to the
curve ñr̃0=1, which separates the gas from the quasiordered
phase. These lines are to be intended as indicators, the tran-
sition of the gas from one phase to another �from one-
dimensional to two-dimensional; from gas to quasiordered
phases� being a crossover. The behavior deep below the
black dashed line of this phase diagram has been studied in
Ref. �9�, where it was shown that the dipolar system is es-
sentially a Luttinger liquid with Luttinger parameter K
1.
Although there is only one phase as the thermodynamic
functions are continuous, nevertheless signatures of quasi-
order, due to the dipolar interactions, can be identified in the
energy and in the structure form factor �10�.

FIG. 1. �Color online� Phase diagram as a function of the pa-
rameters r̃0 and ñ. The dashed black line corresponds to the curve
E1D /N=��t and identifies the two regimes, where the dynamics is
essentially one or two dimensional. The Tonks-Girardeau and the
classical crystal limits are explicitly indicated in the plot �dashed-
dotted lines�. The short-dashed gray line, at ñr̃0=1, localizes the
crossover between gas- and solidlike phases. The green solid lines
separate different phases �linear, zigzag, multiple chain� in the clas-
sical system. The red circles are the results of quantum Monte Carlo
calculations and correspond to the appearance of a double-peak
structure in the radial density profile �see the text and Fig. 4�. The
size of the symbols denotes the error bars.
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A. Classical theory at T=0

We now focus on the quasiordered regime, where ñr̃0
�1, and first study the dipolar structure by discarding the
kinetic term in the Hamiltonian �1�. We stress that this ap-
proach gives only a qualitative description, as long-range
order cannot exist in one dimension at finite temperatures in
a dipolar gas, nor at T=0 in a quantum dipolar gas. The
predictions of this classical model are expected to be valid in
the asymptotic limit ñr̃0→� of a quantum system. Keeping
this in mind, we assume that the dipoles are located along the
x axis with interparticle distance a=1 /n, such that their di-
mensionless equilibrium positions are x̃j = j / ñ and yj =0. The
stability of this configuration requires the linear density
being smaller than a critical value, ñ
 ñc, where

ñc = E�r̃0�−1/5,

and hence depends on the trap frequency �t, while E
= 
8 / �93	�5���1/5=0.6078. . . is a constant. For ñ� ñc the
equilibrium positions are distributed in different planar struc-
tures, depending on the value of ñ. The first structure en-
countered is a zigzag configuration, where now ỹ j
= �−1� jb /2 with b fulfilling the equation

�
k=0

�

Fkb
2k =

1

12�ñr̃0�ñ4 ,

Fk =

�− 3/2�	�5 + 2k��1 − 2−5−2k�


�1 + k�
�− 3/2 − k�
ñ2k. �2�

These equations are found by evaluating the stable equilib-
rium points of the potential in Eq. �1� �17�. The expression
for the displacement from the axis of the chain close to the
critical value ñc reduces to the expression

b �
B
ñc

�1 − � ñc

ñ
	5

, B =�8

5

31	�5�
127	�7�

, �3�

which provides the critical exponent of the parameter b for
the classical phase transition. At larger values of n the system
exhibits abrupt transitions to more complex structures. Simi-
lar behaviors are also observed in one-dimensional Wigner
crystals �16,21�. Figure 2 displays the transverse width of the
chain �
y2� as a function of ñ obtained with a classical
Monte Carlo simulation, while the solid line is the solution
of Eq. �2�. The critical value at which the classical second-
order phase transition occurs is indicated by an arrow. The
critical parameters for the linear phase transition in a classi-
cal system are shown in Fig. 1 as straight solid lines.

Thermal and quantum fluctuations modify this behavior,
thereby affecting the form of transverse correlations as a
function of the linear density or of the transverse frequency
�t. Their effect is analyzed below by means of numerical
techniques.

B. Numerical methods

We resort to Monte Carlo techniques to study numerically
the properties of the dipolar many-body system. The classi-

cal �CLS� system at finite temperatures is studied by means
of a classical Monte Carlo calculation, where we sample the
Boltzmann distribution pCLS=exp
−E /kBT� by using the Me-
tropolis algorithm. The quantum ground-state properties are
determined by means of variational and diffusion Monte
Carlo methods �22�. The trial wave function is chosen in a
Bijl-Jastrow form

�T��1, . . . ,�N� = �
i=1

N

f1��i��
j
k

N

f2��� j − �k�� , �4�

where the one-body term is f1���=exp
−�y2 /aho
2 �. If the sys-

tem is in the quasi-one-dimensional regime, where the trans-
verse oscillator is in the ground state, the variational param-
eter is the same as for the ground state of the harmonic
oscillator, �=1 /2. Outside the quasi-one-dimensional re-
gime, the system spreads in the radial direction and accord-
ingly the value of � is reduced. The two-body term is chosen
as in Ref. �6�,

f2��� = �
C1K0�2�r0/���� , 0 
 ��� 
 Rpar

C2 exp�−
C3

���
−

C3

Lx − ���� , Rpar � ��� 
 Lx/2

1, Lx/2 � ��� ,
�
�5�

where K0����� is the modified Bessel function of the second
kind, and coefficients C1 ,C2 ,C3 are fixed by the conditions
of the continuity of the wave function and its first derivative.
The parameter Rpar is free; it varies in the interval 0
Rpar

Lx /2 and is optimized by a variational procedure. When
the distance between two particles is small, the influence of
other particles can be neglected and f2��� is well approxi-
mated by the solution of the two-body scattering problem
�see the short distance behavior of Eq. �5��. In this way the
divergent behavior of the interaction potential does not cause
any numerical instability. At large distances the two-body

FIG. 2. �Color online� Radial width �
y2� /aho as a function of ñ
for the classical dipolar gas at T=0 and ñr̃0=3 close to linear-zigzag
transition. The solid line corresponds to the solution of Eq. �2�,
which describes the transition from a linear chain to a zigzag con-
figuration, the symbols to the results of a classical Monte Carlo
simulation, the dashed line is an expansion close to transition point,
Eq. �3�, and the arrow shows the transition point.
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term is written in a symmetric way. This ensures that
f��Lx /2�=0 and periodic boundary conditions are properly
satisfied.

The results of classical simulations are obtained using an
annealing procedure. This means that the classical simulation
is started at a large temperature, kBT /��t�1, and then the
temperature is gradually reduced to very small values, where
the classical system is frozen. By starting the simulation at a
high temperature one is able to explore more effectively the
phase space and this helps to avoid the system finding a local
minimum instead of a global one. We repeat the annealing
procedure several times for each set of parameters ñ and r̃0,
thus choosing the lowest energy.

C. Numerical results

In the quantum system we study the transition from a
linear to a planar configuration by considering the radial
spreading 
y2� as a function of density and trap frequency. In
particular, when the chain is in the ground state of the trans-
verse harmonic oscillator, then 
y2�=aho

2 /2, while it becomes
larger as the transverse potential is excited. In Fig. 3 the
radial spreading for the quantum-mechanical case is shown
as a function of ñ and compared with the classical result at
T=0. Quantum fluctuations clearly smoothen the transition,
and in particular, introduce a basic uncertainty related to the
oscillator length aho. Similarly, the transition is smoothened
in the classical system at finite temperatures. It is interesting
to notice that the second value, at which one observes an-
other discontinuity of the classical radial spreading, is a tran-
sition to multiple chains and it is expected to be of first order
�21�. The quantum-mechanical behavior at this point will be
the object of future studies. The results of the quantum MC
simulations correspond to the circles in Fig. 1 and have been

determined by the critical value of the parameters for which
two maxima are formed in the radial density profile. We note
that the position of the transition in a quantum system is
close to the predictions of a classical theory with the agree-
ment being even better as r̃0 is increased. Oppositely, for
small values of r̃0 the two-peak structure, characteristic for a
zigzag chain, disappears due to an increased role of quantum
fluctuations and the crystal gets completely melted.

Figure 4 displays the radial density profile at fixed nr0 for
various values of ñ, which are distributed across the value
ñc=0.408. . . at which the classical phase transition linear-
zigzag occurs for the chosen value of nr0. For ñ
 ñc the
radial density profile is a single-peaked curve, a Gaussian of
width aho, centered at y=0. This is the situation we expect
for the quantum linear chain. For ñ� ñc, the density distri-
bution becomes double peaked, the peaks being symmetrical
about y=0. The density in the center is, however, signifi-
cantly different from zero: this effect originates from zero-
point quantum fluctuations, which prevent the particles from
being localized at the minima of the potential energy, which
for ñ� ñc is a double-well potential. At larger values of nr0,
nevertheless, one recovers the expected zigzag configuration
for values of ñ closer to ñc: in this regime the size of zigzag
spreading is comparable to the oscillator length. The size of
the region, where quantum fluctuations are relevant, shrinks
as the interaction strength, here represented by the parameter
r̃0, is increased. These planar structures are of mesoscopic
nature as the number of chains is small. Here, the radial
density profile cannot be described by the local density ap-
proximation, which, instead, is generally applicable in a
macroscopic system. Figure 5 displays characteristic ex-
amples of the pair-correlation function, showing that for suf-
ficiently large values of the interaction a zigzag distribution
of dipoles is observed.

Thermal fluctuations in the classical systems give rise to a
qualitatively similar behavior. The curves here obtained for

FIG. 3. �Color online� Radial width �
y2� /aho as a function of ñ
for ñr̃0=3 in the classical and quantum dipolar gases at T=0.
Circles correspond to the results of a classical Monte Carlo simu-
lation; the blue solid line corresponds to the solution of Eq. �2�. For
ñ
1.2 �i.e., for linear and zigzag configurations� both results coin-
cide. A sudden transition to another, broader, planar structure is
observed at larger values of ñ�1.2. Squares �the connecting line is
drawn as a guide to the eye� correspond to the results of quantum
Monte Carlo calculations; the dashed line corresponds to the radial
width of the transverse harmonic oscillator, �
y2�=aho /�2.

FIG. 4. �Color online� Radial density profile n�y� for fixed ñr̃0

=3 and at ñ=0.2,0.4,0.5,0.6,0.8 �decreasing the height at y=0�.
This choice of the parameters corresponds to effectively changing
the frequency of the harmonic confinement. The radial confinement
is normalized to unity, �−�

� n�y�dy=1. The solid line corresponds to
the single-particle wave packet of the transverse harmonic oscillator
and is plotted for comparison. For these parameters, the value at
which the classical phase transition occurs is ñc�0.408.
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the quantum system are qualitatively reproduced by using a
classical system at the effective temperature Teff=��t /2�B.

D. Discussion

The phase diagram in Fig. 1 can be experimentally ex-
plored by changing the density ñ, thereby moving vertically,
and by varying the transverse frequency �t, thereby moving
parallel to the straight short-dashed line. Typical parameters
of 1D experiments �15�, with aho�35 nm and 60–400 atoms
per tube of length 15–50 �m, are r̃0�0.07, ñ�0.04–0.3.
While 52Cr has the largest value of r0=2.4 nm among all
atom species with which condensation has been reached �5�,
the use of polar molecules such as CO, ND3, HCN, and CsCl
with r0=5 nm–340 �m would permit one to cover regions
of the phase diagram up to the classical region �ñr̃0�1�.

The formation of the zigzag structure can be experimen-
tally revealed in the structure form factor. The latter, in fact,
exhibits an additional peak at the y component of the wave
vector ky =2� /b, where b is the distance between the two
chains forming the zigzag structure.

An important question is whether the system under con-
sideration is superfluid or not. The problem of superfluidity
is very delicate when treating �quasi-� one-dimensional sys-
tems. While different definitions of the superfluidity coincide
in homogeneous two- and three-dimensional systems, they
lead to contradictive conclusions when applied to a one-
dimensional system. Indeed, the excitation spectrum of one-
dimensional Luttinger liquids touches zero for a nonzero
value of momentum, k=2�n. Thus, such systems are always
normal from the point of view of the Landau criterion. Al-
ternatively, one can use the winding number technique �24�
to calculate the superfluid fraction. Applied to the exactly
known ground-state wave function �for example, the
Calogero-Sutherland system� it predicts a completely super-

fluid system. In the mean-field limit a system with short-
range interactions is well described by the Gross-Pitaevskii
equation. It is natural to think that in this regime, where the
description of a pure condensate applies, the system is
superfluid.

A possible way out, proposed in Ref. �25�, is based on the
calculation of the energy dissipation caused by dragging a
small probe through the system. The conclusion is that there
is always some dissipation, which ranges from negligibly
small �in the Gross-Pitaevskii limit� to the same as in a nor-
mal system �in the Tonks-Girardeau limit�. There is a con-
tinuous crossover from a �quasi�superfluid to a normal sys-
tem. In our case, the limit of small density ñ→0 corresponds
to the Tonks-Girardeau regime, where the system is normal.
Indeed, in this regime the wave function of the system can be
mapped onto a wave function of an ideal normal Fermi gas.
At larger values of ñ the dipolar system corresponds to a
Luttinger liquid with even stronger interactions than in the
Tonks-Girardeau regime. As a result our system remains nor-
mal for all densities.

IV. CONCLUSIONS

To conclude, we have studied the ground state of a dipolar
gas of bosons at T=0 in low dimensions starting from quasi-
one-dimensional geometry and opening the radial trap, so
that a two-dimensional structure develops. We do an analyti-
cal study of the system in the classical limit close to the
transition to the zigzag configuration by applying Landau
theory and compare these predictions with numerical simu-
lations using classical Monte Carlo methods. We determine
the phase diagram numerically using quantum Monte Carlo
methods, and study in detail the effect of quantum fluctua-
tions on the linear-zigzag transition. The transition from a
one-dimensional to a planar configuration occurs with the
creation of a mesoscopic structure in the transverse direction,
which exhibits the main features of the transition from a
single to a double and then a multiple chain distribution of
dipoles, while quasiorder is observed also in the transverse
pair correlation function at large densities. Such patterns are
characterized by nonlocal correlations, which arise from
zero-point fluctuations, and which may be important re-
sources for the realization of quantum simulators �1,23�.
Moreover, the control of atomic patterns has potential appli-
cations for nanostructuring processes �26�.

ACKNOWLEDGMENTS

We acknowledge discussions with E. Demler and Sh.
Fishman. Support by the ESF �EUROQUAM “CMMC”�, the
European Commission �EMALI, Contract No. MRTN-CT-
2006-035369 and SCALA, Contract No. 015714� and the
Spanish Ministerio de Educación y Ciencia �Consolider In-
genio 2010 “QOIT,” Contract No. FIS2005-04181, Contract
No. FIS2007-66944, Ramon-y-Cajal, and Juan de la Cierva�
are acknowledged.

FIG. 5. �Color online� Two-dimensional contour plot of a pair
distribution function 
n�0�n�x ,y�� in a quantum system for a fixed
value of one-dimensional density ñr̃0=40. Bright colors correspond
to high values of the pair distribution function. Upper plot, r̃0

=100 �linear chain�; lower plot, r̃0=200 �zigzag chain�.
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