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We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same
hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the
lifetime of a three-dimensional superfluid, in particular, we show that it decays at the same rate as its interac-
tion energy, which may preclude its equilibration before it decays. Then we proceed to study its stability in the
case when the superfluid is confined to two dimension �2D� by means of an optical harmonic potential. We find
that the relative stability is improved in 2D in the BCS regime, such that the decay rate is now parametrically
slower than the appropriate interaction energy scale, leading to the possibility of an equilibrated p-wave
superfluid in 2D.
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I. INTRODUCTION

Recent success of BEC-BCS crossover experiments in
atomic fermionic gases with s-wave Feshbach resonances
�1–3� inspired studies towards creating p-wave fermionic su-
perfluids using p-wave Feshbach resonances �4–7�. A num-
ber of features made the p-wave superfluids attractive, as
discussed at length in Ref. �8�. First of all, it is sufficient to
put atoms into identical hyperfine states to suppress their
s-wave scattering, leaving p-wave scattering as the strongest
scattering channel. Indeed, p-wave Feshbach resonances be-
tween atoms in identical hyperfine states were identified and
studied some time ago �9,10�. Next, the p-wave superfluids
display a number of features distinguishing them from their
s-wave counterparts. A richer p-wave order parameter allows
for a possibility of observing different phases of the p-wave
superfluids, some of which are akin to the phases of super-
fluid Helium III �11�. Chiral and polar phases of the p-wave
condensates are possible, differing by the projection of the
angular momentum of the Cooper pairs �or molecules� of the
condensate onto the chosen axis. If this projection is �1, the
condensate is called chiral, while if it is 0 the condensate is
called polar. Another important feature is that as the system
is tuned from BCS to BEC, it does not go through a cross-
over as in the s-wave case, rather it goes through a phase
transition as first discussed by Volovik in Ref. �12�, long
before current experiments on the BCS-BEC systems be-
came possible. Thus the BCS and Bose-Einstein condensate
�BEC� are two distinct phases of p-wave condensates �with
either of them possibly being chiral or polar, bringing the
total number of phases to four�. Finally, when confined to
two dimensions �2D�, the chiral BCS phase of the p-wave
superfluids is topological and its vortices have trapped qua-
siparticles which obey non-Abelian statistics �13,14�. Such
quasiparticles have been suggested to be used as topologi-
cally protected qubits to construct decoherence free quantum
computers �15�.

However, the program to create these superfluids suffered
a setback when experimental studies of the p-wave Feshbach
molecules showed they were unstable, with the lifetime vary-

ing between 2 and 20 ms �16–19�. Although some of these
studies were done with molecules made of atoms of 40K,
which are inherently unstable due to dipolar relaxation �17�,
the rest of the studies used atoms of 6Li, whose p-wave
molecules should not, by themselves, exhibit any instability.

A common mechanism which can lead to instability in
atomic gases is the atom-molecule and molecule-molecule
relaxation �20�. This is the process which, for example, in-
volves one of the atoms approaching a molecule, with the
result being that the molecule collapses into one of its
strongly bound states, while the excess energy is carried
away by the atom. Such processes are suppressed in the
s-wave superfluid due to the Pauli principle, as was convinc-
ingly demonstrated in Refs. �20,21�. However, the Pauli prin-
ciple does not protect the p-wave superfluids, potentially
leading to much shorter lifetimes.

References �22,23� examined the stability of the p-wave
condensates due to these relaxation processes, as well as due
to a possible recombination into trimers �22–24�. In �22�, we
established that the decay rate of a condensate of p-wave
molecules close to Feshbach resonance is given by

�3D �
�

m�2

Re

�
, �1�

where � is the typical interatomic spacing and Re is the
van der Waals length �the interaction range�, typically
estimated to be �50 a.u. �so the ratio � /Re, assuming that
��10 000 a.u., is of order 200�. �2 / �m�2� is the Fermi
energy of the gas. Thus for a gas of Fermi energy about
10 KHz, this gives an estimated lifetime of 1 /��20 ms,
which is not far from what is measured experimentally. This
should be compared with the corresponding expression for
the decay rate of the s-wave condensate,

�s-wave �
�

m�2�Re

�
�3.55

, �2�

which is orders of magnitude slower than the p-wave rate,
leading to a stable condensate.
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The calculations leading to the expression, Eq. �1�, were
done solely in three-dimensional �3D� space. Yet the most
interesting p-wave condensate, the one with non-Abelian
quasiparticles, must be confined to two dimensions. The con-
finement may affect the lifetime of the condensate. In the
absence of any experiments in which the p-wave resonant
gases are confined to 2D, it is imperative that a theoretical
calculation is done estimating this lifetime.

In this paper we estimate the lifetime of the p-wave con-
densates close to Feshbach resonance confined to 2D. For
purely 2D condensates we find that their decay rate is given
by

�2D �
�

m�2 . �3�

This is even faster than the 3D case, Eq. �1�. However, for
the quasi-2D condensates, the ones which are confined to a
“pancake” of width d, where d�� and at the same time d
�Re, we find that the decay rate is given by

�quasi-2D �
�

m�2

Re

d
. �4�

Notice that this expression interpolates between Eqs. �1� and
�3�. Indeed, as d becomes smaller than �, Eq. �1� gets re-
placed by Eq. �4�. As d is decreased, it eventually becomes
smaller than Re, at which point Eq. �4� gets replaced by Eq.
�3�.

The rate in the quasi-2D geometry, given by Eq. �4� is
somewhat faster than the 3D rate, Eq. �1�. So one may jump
to the conclusion that the quasi-2D geometry in fact de-
creases the lifetime of the condensate. This however must be
contrasted with the fact that in 2D the interactions are stron-
ger. Indeed, the typical interaction energy per particle of the
3D condensate �assuming that it is in the “strong” resonance
regime �22� and concentrating, for simplicity, on the BCS
regime only� is

E3D �
�2

m�2

Re

�
, �5�

which is of the same order as �3D from Eq. �1�. Thus, the
condensate decays in 3D as fast as it interacts. On the other
hand, in 2D the interaction energy is given by

E2D �
�2

m�2

1

ln� �

Re
� . �6�

Comparing this result with �2D from Eq. �3�, we see that the
interaction energy is weaker than the decay rate, by a loga-
rithmic factor.

However, the case we are interested in is quasi-2D, when
the condensate is confined to a pancake of width d. Under
these conditions, the decay rate is given by Eq. �4�, while the
interaction strength is still given by Eq. �6�, with d substi-
tuted for Re. Provided that

1

ln��

d
� �

Re

d
, �7�

the interaction energy in quasi-2D can be larger than the
decay rate, thus creating a situation where the condensate
might have sufficient time to form. In turn, since d�Re and
logarithms, even of large arguments, are typically not very
large, Eq. �7� may indeed hold. The fact that the quasi-2D
BCS p-wave condensates are more stable than their 3D
counterparts is the main conclusion of this paper.

The rest of the paper is organized as follows.
In Sec. II we go over the analysis of the stability of the 3D

p-wave superfluid, mostly following discussions in Ref. �22�.
In particular, in Sec. II A we study the two-channel model
describing the superfluid and explain the difference between
strong and weak resonances, as well as narrow and wide
ones, while in Sec. II B we go over the stability analysis.

In Sec. III we present the analysis of the stability in 2D.
First, in Sec. III A we set up a 2D p-wave gas. Next, in Sec.
III B we discuss the stability of the condensates when the
molecules are large, relevant in 3D s-wave and 2D p-wave
cases. In the next Sec. III C we set up the three-body prob-
lem which needs to be solved to compute the decay rate. In
Sec. III D this problem is solved. Finally, in Sec. III E the
implications of the solution are discussed and the decay rate
is derived. Sections III A and III D are the most technically
involved parts of the paper and can be safely omitted at first
reading.

In Sec. IV, we go over the analysis in quasi-2D, where the
condensate is confined to a pancake geometry. This section is
followed by Conclusions and two Appendixes.

Our final remark concerns the usage of the Planck con-
stant �. It generally helps to omit it in calculations because it
clutters the expressions and makes them harder to manipu-
late, while it can always be restored everywhere by dimen-
sional analysis. So we adopt notations where �=1 every-
where in this paper from here on.

II. STABILITY OF THE 3D p-WAVE
FERMIONIC SUPERFLUID

A. Two-channel model

To describe the 3D p-wave resonantly coupled superfluid
we employ a two-channel model with Hamiltonian
�6–8,25–27�

H = �
p

p2

2m
âp

†âp + �
q,�

��0 +
q2

4m
�b̂�q

† b̂�q

+ �
p,q,�

g�	p	�

V

�b̂�qp�âq/2+p
† âq/2−p

† + H.c.� . �8�

Here â† and â are creation and annihilation operators of a
�spinless� fermion with mass m, while the bare spin 1

bosonic diatomic molecule is created and annihilated by b̂�
†

and b̂�. The vector index � represents the projection of spin
on some axis.
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The superfluid described by the Hamiltonian �8� depends
on four parameters. Of these, �0 is the bare detuning, con-
trolling the position of the Feshbach resonance, while the
particle number N is the expectation value of the operator

N̂ = �
p

âp
†âp + 2�

�,q
b̂�q

† b̂�q. �9�

Often it is convenient to trade the particle number for the
Fermi energy �F. This is defined as the Fermi energy of a free
Fermi gas whose particle number coincides with N above,
and is explicitly given by

�F =
�6	2N�2/3

2mV2/3 . �10�

Another way to represent the particle number is by the inter-
particle spacing

� = �V

N
�1/3

=
1

n1/3 , �11�

where n denotes the density of particles n=N /V.
The interaction term of the Hamiltonian turns two fermi-

ons into a boson and vice versa. It is described by the inter-
action strength g�	p	�, the momentum dependence of which
originates in the fact that the interaction is not pointlike,
rather the interaction strength is proportional to the momen-
tum space wave function of the molecule. As such, the inter-
action needs to be supplemented with a cutoff of order

�1 /Re where Re is the physical size of the molecule, or
the interaction range as discussed in the Introduction. We
will write the interaction strength as

g�	p	� = g��	p	/
� , �12�

where g is the asymptotic value of the interaction strength
for small momenta and the dimensionless function � de-
scribes the quick fall-off of the interaction strength for mo-
menta 	p	�
. In this paper, for simplicity we will let

��x� = ��1 − x� = �1, x  1,

0, x � 1
� �13�

with � the usual step function. The precise shape of the
cutoff function does not affect the conclusions of this paper,
see the discussion in Sec. III. The parameters �0 ,�F ,g ,

completely characterize the p-wave superfluid.

Two important dimensionless combinations can be con-
structed out of these parameters. One is given by

� �
m2g2

�
. �14�

If this parameter is small, ��1, then mean-field theory can
safely be employed to analyze the Hamiltonian equation �8�.
In a typical experiment � is indeed small, being on the order
of ��1 /10 �6,8�. By analogy with s-wave Feshbach reso-
nances, the case of small � can be termed that of narrow
resonance �while the experimentally irrelevant case of
��1 can be termed broad p-wave resonance�.

The second parameter

c2 =
m2g2


3	2 �15�

can also be formed. Following Ref. �22� we term the super-
fluid with large c2 the case of strong p-wave resonance, and
correspondingly the case with small c2 weak resonance. In
current experiments, c2 is typically large, thus the resonances
studied so far were strong �8�.

It should be emphasized that under the condition c2�1, it
is possible �8� to trade the two-channel model �8� for the
one-channel model

H1−c = �
p

p2

2m
âp

†âp − �
p,p�,q,�

g�	p	�g�	p�	�
V�0

p�p��

�âq/2+p
† âq/2−p

† âq/2−p�âq/2+p�. �16�

While c2 is indeed large in current experiments, we prefer to
utilize for our analysis the two-channel Hamiltonian, Eq. �8�.
Indeed, to analyze �16�, one typically needs to employ a
Hubbard-Stratonovich transformation to turn it into a form
similar to Eq. �8� first, and proceed from there. We find it
more straightforward to work directly with Eq. �8�.

To further elucidate the meaning of the model, Eq. �8� and
its relation to real phenomena, we consider the elastic scat-
tering of two atoms with momenta k and −k into momenta
k� and −k�. This scattering proceeds via the p-wave channel
and its scattering amplitude is given by �28� �we emphasize
that this is a partial scattering amplitude, while the full am-
plitude is given by the standard expression 3f1�k�P1�cos ��
where � is the angle between the incoming and outgoing
momenta�

f1�k� =
k2

−
1

v
+

k0

2
k2 − ik3

. �17�

Here v is called the scattering volume. In terms of the pa-
rameters of Eq. �8� it is given by �8�

v−1 = −
6	�0�1 + c2�

mg2 , �0 =

�0 −
m
3g2

9	2

1 + c2
. �18�

In an experiment, �0 �and thus �0� is tuned by varying the
magnetic field. This induces a change in v, with 1 /v crossing
zero as �0 is decreased �in this regard, the behavior of the
scattering volume v is completely equivalent to the behavior
of the scattering length a in an s-wave Feshbach resonant
scattering�.

The parameter k0 replaces the “effective range” parameter
r0 of the s-wave resonances and is given by

k0 = −
12	

m2g2 �1 + c2� . �19�

The poles of the scattering amplitudes describe resonant scat-
tering at positive �0 and bound states �molecules� at negative
�0. These occur at �neglecting the ik3 term in the denomina-
tor of Eq. �17�, small at small �0�
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k2

m
 �0. �20�

This elucidates the meaning of �0 introduced in Eq. �18�.
One can also remark that the total scattering cross section,
for the p-wave scattering, is given by �28�

� = 12		f1�k�	2. �21�

�0, as long as it is positive, can be measured in an experi-
ment by looking at the energy of colliding particles at which
the scattering cross section � has a maximum. At the same
time �0, and thus �0, is varied by the magnetic field accord-
ing to

�0 �
�B�B − B0�

1 + c2
, �22�

where B0 is the magnetic field corresponding to the reso-
nance and �B is the effective Bohr magneton. Thus measur-
ing �0 and B−B0 simultaneously allows as to determine
whether the resonance is weak or strong �c2�1 or c2�1�.
Strong resonances will appear as the ones where the slope of
the curve �0 vs �B �B−B0� is small.

The dependence of the scattering volume v on the mag-
netic field B is given by

v = −
mg2

6	�B�B − B0�
, �23�

reminiscent of the magnetic field dependence of the scatter-
ing length in an s-wave Feshbach resonance experiment. We
notice that if one tunes the magnetic field B off resonance by
the amount such that �B �B−B0� is equal to thse Fermi en-
ergy of the gas, then the scattering volume will be much
smaller than the cube of the interparticle spacing �3 if the
resonance is narrow ���1�, and much larger than the cube
of the spacing if the resonance is broad ���1�. This justifies
the name “narrow” vs “broad.” Indeed, in the case of a broad
resonance, a v vs B−B0 graph will appear much broader than
in the case of a narrow resonance. Notice the complete
equivalence of the parameter � with its s-wave counterpart
�6,8,29–33�.

We emphasize that other authors, such as the ones of Ref.
�23�, prefer to restrict the usage of the term “broad” vs “nar-
row” for c2 being large or small. While the concrete termi-
nology is a matter of taste, � is a parameter which more
accurately reflects the notion of “broad” vs “narrow,” as
these terms are used in the s-wave resonance context.

B. Analysis of the stability of the 3D p-wave condensate

Here we reproduce the analysis of the stability of the 3D
p-wave condensate from Ref. �22�. Suppose, at some nega-
tive �0, p-wave molecules form whose binding energy is �0.
The radial part of their wave function, at distances much
larger than the interaction range Re�1 /
, is given by
�18,28�

��r� �
e−�r

r
�1 +

1

�r
� , �24�

where �=
m	�0	. At distances much smaller than 1 /� but
still much larger than Re, Re�r�1 /�, the wave function can
be well approximated by

��r� �
1

r2 . �25�

Since

�
Re

1/�

r2dr	��r�	2 �
1

Re
, �26�

the normalization condition of the wave function leads to the
normalized expression

��r� =

Re

r2 , �27�

independent of �0. In other words, most of the weight of the
wave function is concentrated at distances Re, or the mol-
ecules are small.

Suppose two such molecules collide. It is possible that the
collision will lead to one molecule forming a strongly bound
state, while the atoms of the other molecule absorb the en-
ergy and fly apart. It is also possible that three of the atoms
form a strongly bound trimer, while the remaining atom flies
away �22,23�. The rate of this process can be estimated as
follows. The total rate is given by

� � n�inu , �28�

where n=1 /�3 is the density of particles, u is their relative
velocity, and �in is the inelastic cross section for this process.
In turn, �in can be estimated as a product of the elastic cross
section of two small objects size Re each, or Re

2, times the
time they spend in the vicinity of each other, Re /u, times the
rate of the decay. That rate may be difficult to calculate, but
it must be of order 1 / �mRe

2� by dimensional analysis. Gath-
ering terms we find

� �
1

�3Re
2Re

u

1

mRe
2u =

1

m�2

Re

�
, �29�

which matches Eq. �1� given in the Introduction.
Another simple way to derive � proceeds as follows. Any

transition amplitude, elastic or inelastic, between some states
of two molecules or a molecule and an atom, must go as Re.
This result holds true independently of the details of the
interaction potential, and is due to the ultraviolet divergences
in the p-wave two-channel model, Eq. �8�, as explicitly dem-
onstrated for the molecule-atom scattering in Ref. �22�. The
inelastic cross section may then be estimated as �28�

�in � Re
2kf

ki
, �30�

where kf =1 /Re is the final momentum of the particle, and
ki=mu, with u the incident velocity. This leads to
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� � �innu �
1

m�2

Re

�
, �31�

which coincides with Eq. �29�. This derivation makes it clear
that Eq. �29� applies not only to molecule-molecule colli-
sions, but also to molecule-atom collisions. We emphasize
that the rate given in Eq. �29� is an estimate, and the precise
numerical prefactor depends on the details of the interaction
potential.

On the BCS side of the resonance, one could argue that
the atoms spend some fraction of their time virtually forming
molecules. Those will also undergo atom-molecule relax-
ation so the decay rate, Eq. �29�, applies here as well. One
can also consider direct three-body recombination of atoms.
Experimental and theoretical studies �9,34� lead to a rate
numerically close to the one estimated here for the molecule-
molecule and molecule-atom relaxation, at the relevant den-
sities.

Is the decay rate given by Eq. �29� too fast, or sufficiently
slow? Obviously it must be slow enough for the condensate
to form and equilibrate before it decays. In order to deter-
mine whether or not equilibration is possible, we estimate
the interaction rate between the atoms in the BCS phase and
between the molecules in the BEC phase. This rate corre-
sponds to a time scale which clearly does not exceed the
equilibration time. Thus, if this energy scale is larger than the
decay rate, there is a chance that the condensate would have
time to equilibrate.

In the BCS regime, the molecules have positive energy
and if left in vacuum decay into atoms. The molecular decay
rate, computed at the Fermi energy, corresponds to the time
scale at which atoms interact. This rate can be read off the
scattering amplitude Eq. �17�. For that, we find the pole of
this scattering amplitude, not just the real part as in Eq. �20�,
but also with its imaginary part. It is given by

k2

m
 �0 −

i

6	

m5/2g2

1 + c2
�0

3/2. �32�

The imaginary part is the decay rate.
We estimate it in case of strong resonances, or c2�1.

Substituting c2 from its definition, Eq. �15�, and choosing �0
to be the Fermi energy of the gas, or �0�1 / �m�2�, we find
the interaction energy

E3D �
1

m�2

Re

�
. �33�

Note that the ratio g2 / �1+c2� is an increasing function of c2.
Thus for weak resonances when c2�1, the interaction en-
ergy would be even weaker than the one given by Eq. �33�.
So the case of the strong resonance corresponds to the stron-
gest possible interactions. This, combined with the fact that
the p-wave Feshbach resonances experimentally studied so
far appear to be strong, prompts us to concentrate in this
paper mostly on strong resonances.

Yet, as we see, this interaction has the same functional
form as the decay rate, Eq. �29�. Of course, these are esti-
mates of these quantities and perhaps numerical coefficients
omitted in Eqs. �33� and �29� conspire to make one larger

than the other. But typically we expect that the decay rate
and the interaction energy are of the same order, precluding
the formation of the condensate before it decays even in the
case of strong resonance.

Another way to estimate the interaction rate is in the BEC
regime. With the elastic scattering cross section being Re

2, the
elastic scattering rate is

E3D,BEC � Re
2nu � E3DmuRe � E3D

Re

�
, �34�

since mu is the characteristic momentum of the molecules,
which is roughly equal to 1 /�. Obviously Re /��1, and thus
the interaction rate between the molecules in the BEC regime
is even slower than the interaction rate between the atoms in
the BCS regime. In particular, it is slower than the decay rate
of the molecules, thus making the observation of the 3D
BEC p-wave condensate even less likely than its BCS coun-
terpart.

We can compare the estimates derived here with the mea-
sured decay constants from Ref. �19� �see their Table I�. The
decay constant is defined as

K = �/n , �35�

and for the estimate, Eq. �29� gives �for once, we explicitly
reintroduce the constant ��

K =
�Re

m
 3 � 10−11 cm3 s−1. �36�

Here we take Re=50 a.u and take m to be the mass of 6Li.
This is very close to the measured atom-molecule decay con-
stant and is one order of magnitude smaller than the mea-
sured molecule-molecule decay constant. We do not know
why the measured molecule-molecule decay constant is
faster by a factor of 10, but note that the derivation presented
here ignores the details of the short-range physics and could
easily be off by a factor of 10.

We also note that Ref. �19� quotes that the elastic scatter-
ing rate between the molecules is faster than the inelastic
rate, while the estimates presented here point towards the
elastic rate being slower than the inelastic rate. We do not
know the reason for this discrepancy.

The conclusion is, the 3D p-wave superfluids decay as
fast as they interact and do not have time to form before they
decay.

III. p-WAVE SUPERFLUID IN TWO DIMENSIONS

A. Two-channel model

We now consider the case of the 2D p-wave superfluid,
governed by the same two-channel model, Eq. �8�, but in
two-dimensional space. Reducing the space dimensionality
changes the dimension of the coupling. In fact, the p-wave
two-channel model’s upper critical dimension is 2 �35,36�.
The coupling constant g is now a dimensionless quantity.
The linear divergence which led to the appearance of c2 in
the 3D calculations is now replaced by a logarithmic diver-
gence.
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As in 3D, it is instructive to compute the scattering am-
plitude of two atoms. Since to our knowledge this was not
done before in the literature for the two-channel model, here
we provide its derivation.

According to the Hamiltonian �8� the propagator of fer-
mionic atoms is the free propagator

G�p� =
1

p0 − p2/2m + i0
. �37�

For simplicity of notation, p is used both as the three-vector
�p , p0� and as the absolute value of the momentum 	p	. The
bare propagator of the bosonic spin-1 molecules is equal to

D��
0 �p� =

���

p0 − p2/2m − �0 + i0
� D0�p����. �38�

The molecular propagator should be renormalized by the
presence of fermionic loops as depicted in Fig. 1. The fermi-
onic loop separating molecules of spin � and � is diagonal in
spin indices and is denoted ��������. The full propagator
is then given by

D���p� =
���

D0�p� − ��p�
� D�p����, �39�

with the fermionic loop taking the value �a factor 2 appears
from indistinguishability of the fermions�

����p� = 2ig2� d2qdq0

�2	�3 q�q��2� 	q	


�G� p

2
+ q�G� p

2
− q�

= − ���

m2g2

4	 �
2

m
+ �p0 −

p2

4m
�ln�1 +


2/m
p2

4m
− p0�� .

�40�

All singularities in the complex p0 plane lie slightly below
the real axis. The molecular propagator becomes

D�p� =
1

p0 −
p2

4m
− �0� + c�p0 −

p2

4m
�ln�1 +


2/m
q2

4m
− p0�

.

�41�

Here,

�0� = �0 −
mg2
2

4	
, �42�

is a renormalized detuning, while

c =
m2g2

4	
�43�

is the constant controlling the strength of the Feshbach reso-
nance, equivalent to c2 in the 3D calculations.

Just as in 3D, the molecular propagator has a pole at p
=0 and when p0 is taken to an appropriate value. We denote
the real part of the value of p0 at the pole as �0. The pole
corresponds to the binding energy of the molecule if �00
�in which case the pole occurs at p0=�0� and to the reso-
nance if �0�0 �in which case only the real part of p0 is
equal to �0 at the pole, while the imaginary part of p0 de-
scribes the decay rate of positive binding energy molecules
in free space�. The value of �0 is controlled by tuning �0.

We can calculate �0 from the condition that it is the real
part of p0 at the pole of the molecular propagator. This gives

�0� = �0 + c�0 ln�1 −

2

m�0
� . �44�

Then the �physical� molecular propagator is

D�p,p0 + �0� =
1

�p0 −
p2

4m
��1 + c ln�1 +


2/m
p2/4m − p0 − �0

+ i0�� + c�0�ln�1 +

2/m

p2/4m − p0 − �0
+ i0� − ln�1 −


2

m�0
�� .

�45�

Notice that for future convenience we shift the energy p0 by
�0 so that p0 in Eq. �45� measures energy from the binding
energy.

Now we can compute the scattering amplitude of two at-
oms in 2D, just like we did it in 3D in Eq. �18�. The elastic
scattering of two atoms with incoming momenta k and −k

into momenta k� and −k� proceeds via formation of a mol-
ecule, see Fig. 2. Thus the scattering two-atom T-matrix co-
incides with the propagator D�� computed at momentum
p=0, and at energy p0+�0=k2 /m, contracted with the in-
coming momentum k� and the outgoing momentum k��. The
relationship between the scattering T-matrix and the scatter-

= +

+ +...

FIG. 1. The renormalized propagator of spin-1 molecules. Here
the standard notations for the two-channel model Eq. �9� are used:
The thin straight lines are fermionic propagators, the thin wavy
lines are bare bosonic propagators, and the thick wavy lines are full
bosonic propagators.

LEVINSEN, COOPER, AND GURARIE PHYSICAL REVIEW A 78, 063616 �2008�

063616-6



ing amplitude depends on the dimensionality of space. In 2D
it is given by �see Appendix A for a derivation�

f = −
m

2
2	k
T . �46�

This gives for the partial amplitude of p-wave scattering,
defined in Eq. �B2�,

f1�k� = � m
k

c
2	
� �0�

k2 −
1

m
�c ln


2

k2 + 1�� − i
	k

2 �−1

.

�47�

Here �0� can be substituted in terms of �0 using Eq. �44�, and
it is assumed that 
2 /k2�1. This expression conforms to the
general form of the 2D scattering amplitude Eq. �B4�. We
emphasize that even though it was derived from the 2D ver-
sion of the two-channel model Eq. �8�, only the parameters
�0� and c follow from that model. Other than that, any p-wave
two-dimensional scattering amplitude at low energy must
take this form, regardless of the model used �a similar point
for the 3D scattering was emphasized in Ref. �8��. This ar-
gument will become important in Sec. IV.

The scattering amplitude Eq. �47� has a pole at k2 /m
=�0 at negative �0 and at real part of k2 /m equal to �0 at
positive �0, just as its 3D counterpart and as follows from
the properties of the molecular propagator.

B. Stability of condensates with large molecules

The radial part of the wave function of a 2D p-wave mol-
ecule with energy close to zero is given by

��r� �
1

r
. �48�

To see this, compare with the 3D case described by Eqs. �24�
and �25� and recall that the zero energy solutions of the
Schrödinger equation go as 1 /rl+1 in 3D and 1 /rl in 2D,
where l is the angular momentum. The normalization condi-
tion now follows from

�
Re

1/�

rdr	��r�	2 � ln� 1

�Re
� , �49�

where �=
m	�0	, and where, as before, �00 is the binding
energy of the molecule. This integral is now divergent loga-
rithmically at both lower and upper limits, so the molecular
weight is equally distributed between Re and 1 /�. Thus, the
size of the molecule is no longer Re, as it was in 3D, but
rather 1 /�.

To compute the rate of the atom-molecule relaxation, we
go through the same steps as we did in Sec. II B. However,
we need to take into account that the molecules no longer
have size Re, but rather 1 /�. Let us do it, for generality
reasons, in an arbitrary number of dimensions d.

The decay rate is still given by

� � n�inu , �50�

where n is the density, �in is the inelastic cross section, and u
is the velocity, just as in 3D, Eq. �28�. However, the meaning
of the inelastic scattering cross section �in is now different.
We now have two objects of the size 1 /� colliding inelasti-
cally. The inelastic cross section is given by the product of
their elastic cross section, proportional to 1 /�d−1, the time
the molecules spent together, given by 1 / ��u�, and the col-
lapse rate during that time, 1 / �mRe

2�. This should still be
multiplied by the probability that the three atoms out of four
which constitute two molecules find themselves at distance
Re from each other, so that they were all at distances of the
order of the force range between them. To find this probabil-
ity is not a simple problem. We have three fermions, each
pair interacting strongly since they are close to a p-wave
Feshbach resonance.

Suppose their three-body wave function is given by the
following scaling ansatz:

��r� � r�. �51�

Here r denotes a collective coordinate of the three particles,
such as, for example, a hyperspherical radius. Equation �52�
serves as a definition of a scaling exponent �. Then, the
probability that three fermions find themselves at a distance
Re from each other is given by

P � �Re��2d+2�. �52�

The power of 2d comes about because of the phase volume
of setting two fermions at a distance Re from the third one,
while 2� arises from the behavior of the square of the wave
function, 	�	2�r2�. Setting all these factors together gives

� � n� 1

�
�d−1 1

mRe
2

1

�u
�Re��2d+2�u =

1

m�d�d−2 �Re��2d+2�−2.

�53�

Finally, close to Feshbach resonance, the size of the mol-
ecules is close to their separation, or 1 /���. Then Eq. �53�
simplifies to give

� �
1

m�2�Re

�
�2d+2�−2

. �54�

This is the final answer for the decay rate of large molecules.
Let us check that this expression indeed gives the correct

answer in the case of 3D s-wave molecules �which are large�.
In this case, d=3, and �−0.22 �20,21�. Then

� �
1

m�2�Re

�
�3.55

, �55�

as was indeed derived in Ref. �20�, and as was discussed in
the Introduction, Eq. �2�. For easier comparison with Ref.

FIG. 2. The diagram corresponding to the scattering of two
atoms.
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�20�, recall that it is sometimes beneficial to introduce the
decay constant K=� /n as in Eq. �35�. Recall also that in the
3D s-wave problem, �=1 /a, where a is the scattering length.
This gives

K �
Re

m
�Re

a
�2.55

, �56�

the form discussed in Ref. �20�.
We also briefly examine the case of 3D s-wave bosons

close to Feshbach resonance. Then �=−2 �as a consequence
of the presence of Efimov states� and Eq. �54� gives

� �
1

m�2 . �57�

A decay constant for the boson problem is defined as K
=� /n2. Substituting the scattering length a for � we find

K �
a4

m
, �58�

a well-known form for the boson problem �37–40�.
When applied to the 2D p-wave problem, Eq. �54� gives

� �
1

m�2�Re

�
�2+2�

. �59�

At issue now is calculating the exponent �. This calculation
is the subject of the next two sections.

C. Three-body problem

We need to compute the three-body wave function close
to Feshbach resonance. This can be done in either co-
ordinate or momentum space. We are going to present the
momentum space derivation, since it can be done using the
standard techniques of many-body theory.

First, let us show that the scaling of the three-body wave
function is related to the behavior of the three-body scatter-
ing amplitude. Suppose a three-body scattering matrix T, de-
picted in Fig. 3, is known. It is a function of the incoming
momenta and energy, and the outgoing momenta and energy.
To arrive at the wave function of three particles, we fix the
incoming momenta and energy to be on shell. Then we mul-
tiply the T matrix by the four outgoing Green’s functions,
one bosonic and three fermionic. Finally we Fourier trans-
form with respect to the fermionic outgoing momenta, re-
specting the momentum-energy conservation. For the illus-

tration of this procedure, see Eq. �A1� which represents this
in case of just one particle scattering off a potential.

Suppose the T-matrix scales as p��, where p represents the
overall momentum scale. Then it is easy to figure out the
scaling of the wave function. There are three outgoing ener-
gies and momenta, corresponding to the three outgoing fer-
mionic lines. However, the energy-momentum conservation
restricts the number of linear independent energies and mo-
menta to two. Hence there are two integrals over energy and
momentum, contributing the power 2�d+2� �energy is
counted as momentum squared�. There are four outgoing
propagators, one bosonic Eq. �45� and three fermionic Eq.
�37�, contributing the power −8 �the bosonic propagator in-
cludes logarithms, but these are irrelevant for the purpose of
power counting�. Finally there is a vertex where a bosonic
line splits into two fermions, contributing a power 1 due to
the p-wave momentum-dependent factor. Taking all of these
factors into account, and remembering that the coordinate
scaling is opposite in sign to the momentum scaling, we find
that the scaling of the wave function is given by

� = − ��� + 2�d + 2� − 8 + 1� , �60�

or in two dimensions,

� = − �� − 1. �61�

To proceed, we need to know the scaling of the T-matrix,
representing the scattering of a fermion and a
spin-1 molecule.

D. Solution of the three-body problem

In the scattering problem, let the incoming molecule have
spin � and the outgoing spin �. The T-matrix will then in
general be a tensor T��. In the center-of-mass frame, with the
incoming molecule having momentum k and the outgoing p,
the tensor T�� consists of five terms proportional to ���,
p�p�, p�k�, k�p�, and k�k�. However, we are interested in the
wave function at short range r�1 /�, which corresponds to
large p, or p�k��. Then it is sufficient to set k=0. Thus
we write �24�

T���p,p0� � T1�p,p0���� + T2�p,p0�p�p�/p2

� �
i=1,2

Ti�p,p0�u��
i �p� , �62�

which defines the set of basis tensors �u��
1,2�p��

= ���� , p�p� / p2�.
The scattering T-matrix is the sum of the series of dia-

grams indicated in Fig. 4. These diagrams appear the same as
those studied in the s-wave three-body problem �41,42�,
however the Feynman rules are of course different in the
present problem. For weak resonances, the diagrams form a
perturbative series in which only the first few diagrams may
be kept. However, for the strong resonances studied in the
present paper the diagrams are all of the same order and the
sum of the series of diagrams is needed. The summation may
be attained by constructing a Lippmann-Schwinger-type in-
tegral equation for the scattering amplitude. This summation
was performed in a similar manner in the three-dimensional

FIG. 3. The diagram corresponding to the wave function of free
fermions. The square block represents the atom-molecule T-matrix,
and the three outgoing fermionic lines represent the three fermions
whose wave function we would like to compute.
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problem studied in Ref. �22� �see also Ref. �23��. The kine-
matics are chosen as follows: The incoming molecule is on-
shell with three-momentum �0 ,�0� while the incoming atom
has three-momentum �0 ,0�. The outgoing molecule has
�p , p0+�0� and the outgoing fermion �−p ,−p0�. The scatter-
ing matrix does not include external lines. Then the integral
equation takes the form

T���p,p0� = − 2Zg�p�g�p/2�G�p,p0 + �0�p�p�

− 4i� d2qdq0

�2	�3 T���q,q0�G�q,− q0�

�G�p + q,p0 + q0 + �0�D�q,q0 + �0�

��p +
q

2
�

�
�q +

p

2
�

�

g��p +
q

2
��g��q +

p

2
�� .

�63�

Repeated indices are summed over. Z is the residue of the
molecular propagator at the pole and is needed for correct
normalization of the scattering matrix. It is a function of �0
and c whose precise value will not be needed in the follow-
ing.

The integral over q0 in Eq. �63� may be performed by
closing the contour in the upper half-plane, setting
q0→−q2 /2m. In order to solve the integral equation it is then
convenient to let p0→−p2 /2m. This ensures that the fre-
quency dependence of T�� is the same on both sides of the
integral equation. The integral equation is then solved for
Ti�p��Ti�p ,−p2 /2m�. Subsequently, this solution can then
be used to find Ti�p , p0� at any p0�0.

To project onto the functions T1 and T2 defined in Eq. �62�
multiply the integral equation �63� by u��

k �p�. The left-hand
side will then contain the matrix

Uki = u��
k �p�u��

i �p� = �2 1

1 1
�

ki
. �64�

This matrix is invertible and it is thus possible to find a set of
coupled integral equations for the functions T1�p� and T2�p�.
Upon multiplying Eq. �63� by Ujk

−1u��
k �p� it becomes

Tj�p� = − 2Zg�	p	�g�	p	/2�G�p,− p2/2m + �0�p2�2j

−
mg2

	2 � qdqD�q,− q2/2m + �0�bji�p,q�Ti�q,

− q2/2m� . �65�

The dimensionless matrix b is given by

bji�p,q� �
1

m
Ujk

−1�
0

2	

d�
��	p + q/2	/
���	q + p/2	/
�
�0 − p2/m − q2/2 − p · q/m

�u��
k �p�u��

i �q��p + q/2���q + p/2��, �66�

with � the angle between p and q.
To further simplify, assume that both p and q are cut off at


 using the usual step function. Then the matrix b may be
calculated with the result

b11 =
	

p2 �
�� − p2 − q2�2 − p2q2 + � − p2 − q2� , �67�

b12 = − 	 + 	
�2� − 2p2 − q2��� − p2 − q2�

p2q2

+
	


�� − p2 − q2�2 − p2q2

�� �2� − 2p2 − q2��� − p2 − q2�2

p2q2 − 2� + 2p2 + q2� ,

�68�

b21 = −
5	

2
+

	

2

3p2 + 3q2 − 5�


�� − p2 − q2�2 − p2q2

−
2	

p2 �
�� − p2 − q2�2 − p2q2 + � − p2 − q2� , �69�

b22 = −
	

2
− 	

�4� − 3p2 − 2q2��� − p2 − q2�
p2q2

+
	/2


�� − p2 − q2�2 − p2q2

��− 2
�4� − 3p2 − 2q2��� − p2 − q2�2

p2q2

+ 3� − 3p2 − q2� . �70�

Here a dimensionless detuning is defined as ���0
m

2 .

According to Eq. �51�, in order to determine the behavior
of the three-body wave function, the functions T1�p� and
T2�p� are needed for momenta 
−m�0� p�
. We now pro-
ceed to solve Eq. �65� analytically in this range of momenta.
In the following, the limit c→� will be taken to ensure that
the Feshbach resonances studied are strong. For momenta in
the range of interest the integral equation reduces to

+...++

FIG. 4. The series of diagrams which sum to give the scattering T-matrix of a spin-1 molecule and a fermionic atom.
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Tj�p� = 2Zg2m�2,j +
8

3	
�

�


 dq

q

bji�p/q�

ln�


q
� Ti�q� . �71�

The matrix b takes the limiting forms

� � p � q � 
:b =�−
	

2
+

3	

8

p2

q2 −
	

2
+

5	

8

p2

q2

−
9	

16

p4

q4 −
3	

16

p4

q4
� ,

�72�

� � q � p � 
:b =� −
	

2

q2

p2 −
	

4

q2

p2

− 	 +
7	

4

q2

p2 −
	

2
+

7	

8

q2

p2
� .

�73�

Equation �71� suggests a solution of the form

T1�p� = C1 ln��


p
�, T2�p� = C2 ln��


p
� . �74�

Substituting into Eq. �71� and keeping leading terms results
in the set of linear equations for the coefficients C1 and C2,

C1 ln��


p
� = −

4

3�
�C1 ln��


p
� + C2 ln��


p
�� ,

C2 ln��


p
� = −

4

3�
�2C1�ln��


�
� − ln��


p
��

+ C2�ln��


�
� − ln��


p
��� + 2Zg2m .

�75�

This set of equations has solutions only if �= �
4
3 i. Matching

coefficients finally results in the solutions

T1�p� = � cos�4

3
ln ln�


p
� + � +

3	

4
� ,

T2�p� = 
2� cos�4

3
ln ln�


p
� + �� , �76�

with the amplitude satisfying

� =

2Zg2m

cos�4

3
ln ln�
/��� . �77�

This solution contains a free parameter, as it does not allow
for the determination of both � and � independently.

In solving Eq. �65� numerically, it is found that the overall
amplitude of the solutions T1�p� and T2�p� converges very
slowly. We attribute this slow convergence to the logarithmic
behavior of the solutions; in the numerical study it is impor-
tant to keep ln�
 /���1 while simultaneously the configu-

ration space must contain a large number of momenta p for
which ln�� / p��1. Having this in mind, we therefore write
the solutions as

Ti�p� = �i cos�4

3
ln ln�


p
� + �i�, i = 1,2 �78�

and determine the ratio �2 /�1 rather than the separate values
of these amplitudes.

The solutions T1�p� and T2�p� of the coupled integral
equations �65� are shown in Fig. 5 for a large value of c2.
Also shown are the analytical solutions �78� with the param-
eters

�1 = 2.80, �2 = 0.56,

�1 = 0.71 �2 = 0.96. �79�

We observe that �1−�23	 /4 and �2 /�1
2, both with a
5% error. Thus we conclude that the analytical expressions
given in Eq. �76� are correct.

E. Lifetime and the interaction energy of the 2D p-wave
condensates

We are now in a position to finish the calculation of the
lifetime of the 2D p-wave condensate. The scattering ampli-
tude is given by Eq. �62�, where in turn T1 and T2 are given
by Eq. �76�. These expressions do not scale at all, corre-
sponding to ��=0. Thus, according to Eq. �61�,

� = − �� − 1 = − 1. �80�

Substituting this into Eq. �59� we find

� �
1

m�2 , �81�

which gives the decay rate of the 2D p-wave superfluid as
discussed in the Introduction, in Eq. �3�.
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0.5
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1
(p
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(m
g
2

Z
)
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p/�

-1

-0.5
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0.5

1

1.5

2

T
2
(p
)/
(m
g
2

Z
)

FIG. 5. �Color online� T1�p� and T2�p� obtained by solving Eq.
�65� for �0=−10−6 
2

m and c2=106 �blue, solid�. The solution uses
Gaussian-Legendre quadrature for the numerical integration �43�
with 2000 grid points. Also shown are the analytical solutions �78�
with parameters chosen as in Eq. �79� �black, dashed�.
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This should be compared with the interaction rate for the
2D p-wave atoms at the Fermi energy of the gas. We find this
energy first in the BCS regime by examining the scattering
amplitude of two atoms at positive �0, as found earlier in Eq.
�47�. The imaginary part of the pole of this scattering ampli-
tude, computed at �0=�F, gives us the needed interaction
rate, quite analogously with Eq. �32� which we employed in
3D. The answer crucially depends on whether the parameter

c ln� �

Re
� �82�

is large or small �as before, � is the interparticle separation
and Re=1 /
 is the interaction length scale�. As in the 3D
case, we can term the case when this parameter is large as
strong resonance, although unlike in 3D, any resonance
when the gas is sufficiently dilute becomes strong. If the
resonance is weak, then c�1, since the logarithm in Eq. �82�
is always large.

Assuming that the resonance is strong, we find the pole of
Eq. �47� to be at

k2

m
 �0 − i

	�0

ln� 
2

m�0
� . �83�

In the opposite case of weak resonance, we find

k2

m
 �0 − i	c�0. �84�

Substituting �0=�F, we estimate from here the atomic inter-
action energy as

E2D �
1

m�2

1

ln� �

Re
� �85�

in the case when the resonance is strong and

E2D �
c

m�2 �86�

when the resonance is weak. We expect that in a typical
experiment the gas will be dilute so the resonance will be
strong, which is why we quoted Eq. �85� in the Introduction,
Eq. �6�. In either of these two cases, we see that the interac-
tion energy is much smaller than the decay rate, given by Eq.
�81�, so we expect purely 2D p-wave gases to be unstable.

Likewise, in the BEC regime, we need to estimate the
elastic scattering rate of two molecules. The molecules �un-
like atoms� scatter in the s-wave channel. The scattering of
two molecules in 2D must proceed according to the standard
rules of quantum mechanics, which predicts that the s-wave
scattering cross section of particles at sufficiently low mo-
mentum k goes as �28�

�el =
	2

k

1

ln2� �

kRe
� +

	2

4

, �87�

where the unknown constant � depends on the details of the
interactions. This gives for the elastic collision rate �taking k
of the order of 1 /��

E2D,BEC = �elnu �
	2

m�2

1

ln2��
�

Re
� +

	2

4

. �88�

This energy is somewhat smaller than the BCS estimate, Eq.
�85�, but since the logarithmic factor is not very large, we
can think of it as being of the same order as Eq. �85�. Thus
the BEC 2D superfluid is as unstable as its BCS counterpart.

IV. QUASI-2D SUPERFLUID

Now let us consider the last remaining question, the sta-
bility of a 2D p-wave superfluid confined to a pancake of
width d. Such a superfluid is still described by Eq. �8�, but
with the additional presence of a confining potential in the
third direction, which we denote z,

V�z� = 1
2m�z

2z2, �89�

where �z is the confining frequency. The width of the pan-
cake d is related to the oscillator frequency via

d �
1


m�z

. �90�

The quasi-2D regime is

Re � d � � . �91�

Re�d because otherwise the physics of the Feshbach reso-
nance is modified by the confinement �also, Re is very short
so that the confinement to the scale below Re is not currently
technologically possible�, while d�� in order for the gas to
be truly confined to 2D.

The scattering of identical fermions close to a p-wave
Feshbach resonance follows from this Hamiltonian. Calculat-
ing it in the confined geometry is an involved problem, first
solved for the case of s-wave resonance confined to 2D in
Refs. �44,45� �see also the first calculation of this type, done
for the s-wave gas confined to 1D, in Ref. �46��. For the case
of p-wave resonances, this problem was studied in Ref. �47�
in both 1D and 2D. Yet, for our purposes, we do not need to
know the answer. It is enough to know that the scattering is
still described by Eq. �47�, albeit with coefficients c and �0�
no longer related to the parameters of the Hamiltonian equa-
tion �8� the way they were before, but rather being some
more complicated functions, which also depend on d among
other parameters. This is because any low-energy p-wave
scattering in two dimensions must be described by the ex-
pression �B4�, with the function g1�k� having the low k ex-
pansion as in Eq. �47�.

Thus the interaction energy of the two atoms confined to
this geometry, derived in the preceding section by using Eq.
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�47� only, is still given by Eq. �85� or Eq. �86�. The only
difference is that Re in these relations should be traded for d,
as d is now the smallest length scale at which the 2D physics
is still at work.

Yet the interaction rate of the molecules in the BEC re-
gime will actually be given by the 3D formula �34�. This is
related to the fact that in a quasi-2D geometry, the coefficient
� in Eq. �88� is typically anomalously large, and leads to
�45�

Equasi-2D,BEC �
1

m�2

Re
2

d2 . �92�

This energy scale is very small, thus there is no hope to
observe the BEC of p-wave molecules, even in the quasi-2D
geometry. So we concentrate on the case of the BCS phase.

Now the decay rate in quasi-2D can be deduced in the
following way. Atoms decay when three of them approach
each other at distance Re. This distance is much shorter than
d, so that the 3D decay physics must take over. So we should
not use Eq. �81� to compute the decay rate. Rather, we need
to revert back to the appropriate expression in 3D, given by
Eq. �29�, with one modification. In Eq. �29�, � denotes aver-
age distance between the particles in three dimensions, while
Eq. �85� and Eq. �86� are written in terms of average distance
between particles in two dimensions. These are related by the
obvious

�3D
3 = �2D

2 d . �93�

This leads to the decay rate

�quasi-2D �
1

m�2

Re

d
, �94�

where � is now the two-dimensional distance. This concludes
the derivation of Eq. �4�.

We therefore see that the necessary condition for the ex-
istence of a stable superfluid in the quasi-2D geometry is
given by E2D��quasi-2D or

max�ln��

d
�,

1

c
� �

d

Re
. �95�

Since logarithms, even of large arguments, are typically not
very large �we assume c is a constant generally of the order
of 1, although its value is controlled purely by a particular
Feshbach resonance and it can be calculated from its physics
on a case by case basis�, it is possible that this condition will
be satisfied in experiments.

Indeed, a typical value for d would be, perhaps, one-half a
wavelength of the light used to create a confining potential.
This gives d�250 nm, or 5�103 a.u. With ��104 a.u., the
ratio � /d�2, and its logarithm is basically 1. At the same
time d /Re can be kept just marginally smaller than 200. So
Eq. �95� is satisfied with a large margin.

Yet we must remember that Eq. �95� is but a necessary
condition for the decay being slow enough to allow for
equilibration of the superfluid. In practice, the equilibration
involves many collisions between atoms and may go much
slower than E2D. In truth we have only one example of a
decay slow enough that we know from experiment that there

is sufficient time for equilibration and meaningful experi-
ments in the superfluid phase, that of the 3D s-wave case. In
that case, the ratio of the Fermi energy �as a crude estimate
of the characteristic energy of the condensate� to the decay
rate is an impressive �� /Re�3.55�108. The p-wave superflu-
ids confined to 2D are far from being that stable.

V. CONCLUSIONS

This concludes our studies of the stability of the fermionic
paired superfluids close to p-wave Feshbach resonance.
From the analysis of this paper, it is clear that the 3D p-wave
gases are inherently unstable. The situation improves if they
are confined to 2D. Yet it is nowhere near the case of 3D
s-wave superfluids, which are stable for all practical pur-
poses due to a very high scaling power in their decay rate,
Eq. �55�. A promising route to increase stability further in a
quasi-2D setting seems to be a creative application of the
optical lattice, similar to what was recently done in Ref. �48�
for a different problem. This should be a subject of further
work.
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APPENDIX A: RELATIONSHIP BETWEEN THE
T-MATRIX AND THE SCATTERING AMPLITUDE IN 2D

Consider a particle of mass m scattering in a potential in
2D. Its wave function is given by

��r� = eikr +� d2p

�2	�2

1

E −
p2

2m
+ i0

T�k,p�eipr, �A1�

where T�k ,p� is the scattering T-matrix computed between
momenta k and p at energy E=k2 / �2m�. We compare this
expression with the definition of the scattering amplitude in
2D, given by the large r expression of the wave function �28�

��r� = eikr + f�k,��
eikr


− ir
, 
− i = exp�− i	/4� , �A2�

where � is the angle between the incoming momentum k and
the position vector r. Doing the angular part of the integral in
Eq. �A1� at large r by the steepest descent method we find

��r� = eikr + �
0

� pdp

4	2

��T�k,pr�
2	

ipr
eipr + T�k,− pr�
 2	

− ipr
e−ipr�

�
1

k2

2m
−

p2

2m
+ i0

, �A3�
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where pr denotes a vector whose length is p, but which is
directed along r. Change variables in the second integral to
get

�
−�

� p dp

4	2 T�k,pr�
2	

ipr
eipr 1

k2

2m
−

p2

2m
+ i0

, �A4�

where the contour of integration goes above the p=0 singu-
larity. Performing the integral by residues gives

��r� = eikr −
mi


2	ikr
T�k,kr�eikr. �A5�

Comparing with Eq. �A2� gives

f = −
m


2	k
T�k,k�� . �A6�

When comparing this expression with the one used in the
text, Eq. �46�, one needs to remember that m in Eq. �A6� is
the reduced mass of two fermions and should be replaced
according to m→m /2.

APPENDIX B: CONSTRAINTS PLACED ON THE
SCATTERING AMPLITUDE IN 2D BY UNITARITY

The scattering amplitude in 2D is constrained by unitary,
just like its 3D counterpart. Here we reproduce the appropri-
ate derivation from Ref. �28�.

Consider the scattering of a particle of mass m with mo-
mentum k into the momentum k� such that k=k�, but the
angle between these two vectors is �. The scattering ampli-
tude can be expressed in terms of the phase shifts �l accord-
ing to �28�

f�k,�� =
1

i
2	k
�

l=−�

l=�

�e2i�l − 1�eil�. �B1�

Introduce the partial scattering amplitudes

f l�k� =
1

i
2	k
�e2i�l − 1� . �B2�

Since

	e2i�l	2 = 1, �B3�

a constraint on the form f l�k� can be as follows:

f l�k� =
1

gl�k� − i
	k

2

. �B4�

Here gl�k� are real functions of k.
Thus only the functions gl�k� remain undetermined in an

arbitrary scattering process. Yet their low k expansions take a
universal form, up to the coefficients of the expansion �28�.
It is these coefficients which need to be calculated on a case
by case basis �see Eq. �47� for the low k expansion of
g1�k�=g−1�k��.

�1� C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 �2004�.

�2� M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
�2004�.

�3� G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and
R. G. Hulet, Phys. Rev. Lett. 95, 020404 �2005�.

�4� S. S. Botelho and C. A. R. Sá de Melo, J. Low Temp. Phys.
140, 409 �2005�.

�5� T.-L. Ho and R. B. Diener, Phys. Rev. Lett. 94, 090402
�2005�.

�6� V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev.
Lett. 94, 230403 �2005�.

�7� C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404
�2005�.

�8� V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 �2007�.
�9� C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev.

Lett. 90, 053201 �2003�.
�10� C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev.

A 69, 042712 �2004�.
�11� D. Vollhardt and P. Wolfe, The Superfluid Phases Of Helium 3

�Taylor and Francis, New York, 2002�.
�12� G. E. Volovik, Exotic Properties of Superfluid 3He �World Sci-

entific, Singapore, 1992�.
�13� N. Read and D. Green, Phys. Rev. B 61, 10267 �2000�.
�14� D. A. Ivanov, Phys. Rev. Lett. 86, 268 �2001�.

�15� A. Yu. Kitaev, Ann. Phys. 303, 2 �2003�.
�16� J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J.

Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F.
Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702�R�
�2004�.

�17� J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, Phys.
Rev. Lett. 98, 200403 �2007�.

�18� J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W.
Rowlands, P. Hannaford, and C. J. Vale, Phys. Rev. A 77,
053616 �2008�.

�19� Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami,
M. Ueda, and T. Mukaiyama, Phys. Rev. Lett. 101, 100401
�2008�.

�20� D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. A
71, 012708 �2005�.

�21� D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev.
Lett. 93, 090404 �2004�.

�22� J. Levinsen, N. R. Cooper, and V. Gurarie, Phys. Rev. Lett. 99,
210402 �2007�.

�23� M. Jona-Lasinio, L. Pricoupenko, and Y. Castin, Phys. Rev. A
77, 043611 �2008�.

�24� J. Levinsen, Ph.D. thesis, University of Colorado, Boulder,
Colorado, 2007.

�25� E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Phys. Rep. 315, 199 �1999�.

�26� E. Timmermans, K. Furuya, P. W. Milonni, and A. K. Kerman,

STABILITY OF FERMIONIC GASES CLOSE TO A p-… PHYSICAL REVIEW A 78, 063616 �2008�

063616-13



Phys. Lett. A 285, 228 �2001�.
�27� M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R.

Walser, Phys. Rev. Lett. 87, 120406 �2001�.
�28� L. D. Landau and E. M. Lifshitz, Quantum Mechanics

�Butterworth-Heinemann, Oxford, UK, 1981�.
�29� G. M. Bruun and C. J. Pethick, Phys. Rev. Lett. 92, 140404

�2004�.
�30� E. Cornell, http://online.itp.ucsb.edu/online/gases_c04/

discussion2
�31� R. Diener and T.-L. Ho, e-print, arXiv:cond-mat/0405174.
�32� A. V. Andreev, V. Gurarie, and L. Radzihovsky, Phys. Rev.

Lett. 93, 130402 �2004�.
�33� D. S. Petrov, Phys. Rev. Lett. 93, 143201 �2004�.
�34� H. Suno, B. D. Esry, and C. H. Greene, Phys. Rev. Lett. 90,

053202 �2003�.
�35� P. Nikolić and S. Sachdev, Phys. Rev. A 75, 033608 �2007�.
�36� The p-wave two channel model has an additional factor of

momentum in its interactions compared to its s-wave counter-
part. This changes the power counting effectively replacing d
with d−2, so that whereas the s-wave two channel model has
upper critical dimension d=4, the p-wave two channel model’s
upper critical dimension is d=2.

�37� P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys.

Rev. Lett. 77, 2921 �1996�.
�38� E. Nielsen and J. H. Macek, Phys. Rev. Lett. 83, 1566 �1999�.
�39� B. D. Esry, C. H. Greene, and J. P. Burke, Phys. Rev. Lett. 83,

1751 �1999�.
�40� P. F. Bedaque, E. Braaten, and H.-W. Hammer, Phys. Rev. Lett.

85, 908 �2000�.
�41� G. V. Skorniakov and K. A. Ter-Martirosian, Zh. Eksp. Teor.

Fiz. 31, 775 �1956� �Sov. Phys. JETP 4, 648 �1957��.
�42� P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys.

A 646, 444 �1999�.
�43� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in Fortran 77: The Art of Scientific
Computing �Cambridge University Press, Cambridge, 1996�.

�44� D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev.
Lett. 84, 2551 �2000�.

�45� D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706
�2001�.

�46� M. Olshanii, Phys. Rev. Lett. 81, 938 �1998�.
�47� L. Pricoupenko, Phys. Rev. Lett. 100, 170404 �2008�.
�48� N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J.

Garcia-Ripoll, J. I. Cirac, G. Rempe, and S. Dürr, Science
320, 1329 �2008�.

LEVINSEN, COOPER, AND GURARIE PHYSICAL REVIEW A 78, 063616 �2008�

063616-14


