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We study the properties of Bose-Einstein condensates with the realistic van der Waals two-body interaction
for large numbers of trapped atoms, solving the many-body Schrödinger equation by the potential harmonic
expansion method. The effect of different C6 parameters has been critically examined, starting from very few
to 14 000 atoms to analyze and justify the idea of a shape-independent approximation. It is found that the
condensate properties almost remain unchanged when the number of atoms are quite small ��100�, in good
agreement with earlier results of Blume and Greene �Phys. Rev. A 63, 063601 �2001��, but we observe the
appreciable effect of a long attractive tail when N is large, even in the low-density limit. The above reference
considered only 20 atoms which is far from a real experimental situation. Our calculation gives a realistic
scenario which justifies the use of a shape-dependent two-body interaction in many-body theories.
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I. INTRODUCTION

Most of the theoretical studies of inhomogeneous Bose
gases use the shape-independent approximation �SIA�, re-
placing the atom-atom interaction by a contact � potential
�1�. Dilute Bose-Einstein condensates �BEC� are known to
possess the shape independence �SI� property, viz. observ-
ables of such condensates are independent of the functional
shape of the two-body potential �2BP�, corresponding to a
particular value of the s-wave scattering length �as�. This
approximation is intuitively justified, since in a typical BEC,
the atomic cloud is extremely dilute and the interparticle
separation ��100 nm� is much larger than �as� �typically
�1 nm�. The validity criterion for this approximation is usu-
ally taken as n�as�3�1, where n is the number density. Cal-
culations testing SIA reported in the literature �2,3� deal
mostly with condensates containing a relatively small num-
ber of atoms and standard short-ranged 2BP. Several math-
ematical shapes of 2BP have been tested. They range from a
singular contact interaction �which corresponds to the Gross-
Pitaevskii equation �GPE�� to the other extreme of smooth
Gaussian-type potentials. The parameters of such potentials
are so chosen as to result in the chosen value of as. Usually
the potentials are chosen to be attractive or repulsive accord-
ing to whether as is negative or positive, respectively. In the
pseudopotential approximation the actual atom-atom poten-
tial is approximated by a � function.

The actual interatomic potential has a strong repulsive
core at a small separation and a deep attractive tail at large
atomic separations. This is appropriately represented by the
van der Waals potential with a hard core of radius rc
�HCvdW�. In this paper, we critically examine SIA for a
widely varying long-range tail of the 2BP, while as and the
functional shape of the 2BP are kept unchanged. We choose
the realistic HCvdW potential, for which the value of rc has
been adjusted to give the chosen value of as. We also inves-
tigate the effect of increasing particle number on the SIA.

The validity of the shape-independent approximation was
first established by Bohn et al. �2�, but it was only for three

trapped bosons, which is far from reality. By comparing the
total ground-state energy in the Hartree-Fock theory with the
exact ground-state energy, it has been shown �2� that the SIA
is qualitatively good in the low-density limit. However the �
function interaction is not suitable as the correct two-body
interaction in the configuration space. In another nice ap-
proach Blume and Greene �3� tested the validity of SIA using
the essentially exact diffusion Monte Carlo �DMC� method.
At the low-density limit, they established the SI picture con-
vincingly, but deviations occur in high densities. They used
only model short-range potentials and handled only up to 20
bosons.

The recent progress in creating atomic clouds with large
dipole moment �4–7� initiates a growing interest with longer
range interactions instead of taking only contact interaction.
Even in the low-density limit the use of realistic interatomic
potential in the many-body calculation has been emphasized
by several authors �8,9�. The van der Waals potential is a
good choice, as it properly takes care of the effect of electric
dipole-dipole interaction due to induced polarization. Neces-
sity of taking even longer range interactions such as 1

r , 1
r3 or

1
r4 have also been pointed out �10–13�.

In the present work, we consider pairs of neutral atoms
�separation rij� interacting through

V�rij� = � for rij � rc

= − C6/rij
6 for rij � rc, �1�

where C6 is the strength of the van der Waals interaction. Its
value changes widely, by three orders of magnitude, from a
small value for H atoms to a high value for Cs atoms �14�. It
raises some important questions. First, will the shape-
independence property be still valid for the wide range of C6
parameters for a large number of bosons, even in the dilute
regime? Second, how well the condensate properties will be
reproduced in the GPE approach, for very large values of C6.
Third, can we reconcile the realistic many-body result with
the mean-field result?
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So, in spite of some existing calculations with van der
Waals potential �10,15�, there remains a necessity of explicit
and detailed study of actual condensates of alkali-metal at-
oms over a wide range of C6 parameter and particle number.
By calculating the ground-state energy and low-lying excita-
tions, we find that the SI structure is still valid for the entire
range of C6 values chosen, when the number of bosons is
quite small ��100�. In such cases, the condensate properties
are in good agreement with both GPE and DMC results. As
we increase the number of bosons in the trap, the results are
significantly affected by the attractive tail �for the same as�.
Hence, for a larger number of atoms in the trap, we observe
that the condensate energy does not strictly follow the SI
property. Increasing C6 gradually while keeping as fixed, we
find that the condensate becomes gradually more attractive,
although it remains quite stable even when particle number
�A� is fairly large ��14 000�. The relative change in energy
compared to the GPE value, defined as R= �EGPE
−EPHEM� /EPHEM, gradually converges as A increases, for the
entire range of C6 values investigated.

We use our recently formulated many-body approach,
called correlated potential harmonics expansion method
�CPHEM� �16–19� to solve the A-body Schrödinger equa-
tion. For a particular chosen value of the C6 parameter, we
adjust �using an analytic relation �14�� the hard core radius,
rc, which will reproduce an experimental value of the s-wave
scattering length, as=0.004 33 oscillator unit �o.u.�, corre-
sponding to the original JILA experiment with 87Rb atoms.
Our calculation definitely makes a bridge between the shape-
dependent interatomic potential used in the many-body pic-
ture with the shape-independent pseudopotential used in the
GP equation.

In Sec. II, we introduce the methodology and the numeri-
cal techniques to tackle large number of trapped interacting
bosons. Section III contains the results and discussions. Con-
clusions are drawn in Sec. IV.

II. METHODOLOGY

The Schrödinger equation in relative coordinates for a
system of A=N+1 identical bosons, each of mass m, con-
fined by an external isotropic harmonic oscillator of fre-
quency �, is

�−
�2

m
�
i=1

N

�	i

2 + �
i=1

N
1

2
m�2	i

2

+ Vint�	�1, . . . ,	�N� − E	
�	1
� , ¯ ,	N

� � = 0, �2�

where 
	�1 , . . . ,	�N� is the set of N Jacobi vectors and Vint is
the sum of all pairwise interactions. Hyperspherical harmon-
ics expansion method �HHEM� is an essentially exact tool
for many-body systems �20�. However, due to the very large
degeneracy of the hyperspherical harmonics �HH� basis and
complexity in the symmetrization of the wave function for
large A �20,16�, HHEM is practically restricted to A=3 only.
Recently, we adopted the potential harmonics expansion
method �PHEM� �21�, which takes two-body correlations

into account, disregarding higher-body correlations. This is
quite appropriate for dilute BEC, but convergence of the ex-
pansion basis is slow and the method is restricted to A�50
�16,17�. We further developed it by including appropriate
short-range correlations �CPHEM� in each Faddeev compo-
nent �18,19�. It has already been established in our earlier
works �18,19�, that CPHEM is quite a powerful tool, espe-
cially for dilute condensates, and can handle a fairly large
number �A�14 000� of bosons in a straightforward way. The
method can also incorporate any realistic two-body interac-
tion. The method is quite promising as we have successfully
reproduced the experimental results, both for attractive and
repulsive condensates, with good accuracy. In the following,
we present a skeletal outline, which is needed for a clear
reading. For the interested reader, we refer to our earlier
works �16,18�.

The many-body wave function is decomposed in Faddeev
components,


 = �
ij�i

N+1


ij . �3�

The Faddeev component 
ij, corresponding to �ij� interact-
ing pair, is a function of the pair separation r�ij and the global
length r �called hyperradius� only. We expand it in the po-
tential harmonics �PH� �21� basis as


ij�r�ij,r� = r−��3N−1�/2��
K

P2K+l
lm ��N

�ij����r�ij�uK
l �r� . �4�

Here P2K+l
lm ��N

�ij�� is a PH �defined as the subset of hyper-
spherical harmonics �HH� basis needed for the expansion of
V�r�ij�� and �N

�ij� denotes the full set of hyperangles in

3N-dimensional space for the choice 	�N=r�ij, corresponding
to the �ij� partition. The orbital angular momenta of the con-
densate and its projection are denoted by l and m, respec-
tively. A short-range correlation function, ��rij� is included,
which simulates the short interacting pair separation behav-
ior of the �ij�-Faddeev component, thereby enhancing the
convergence rate of the expansion. It is obtained as the zero
energy solution of the �ij�-pair relative motion in the chosen
two-body potential

−
�2

m

1

rij
2

d

drij
�rij

2 d��rij�
drij

	 + V�rij���rij� = 0. �5�

Substitution of Eqs. �3� and �4� in the many-body equation,
Eq. �2� and projection on a PH for the �ij� partition gives rise
to a set of coupled differential equations �CDE� in r,

�−
�2

m

d2

dr2 + Vtrap +
�2

mr2 �L̄�L̄ + 1� + 4K�K +  + � + 1��

− E	UKl�r� + �
K�

V̄KK��r�UK�l�r� = 0, �6�

where L̄= l+ 3A−6
2 , = 3A−8

2 , �= l+ 1
2 , and r dependence of

V̄KK��r� is given by
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V̄KK��r� � �
−1

+1

PK
��z�V�r1 + z

2
	

�PK�
��z���r1 + z

2
	wl�z�dz , �7�

where wl�z� is the weight function of the Jacobi polynomial
PK

��z� �22�. The partial wave UKl�r� is proportional to uK
l �r�

�16�.
Equation �6� is solved by the hyperspherical adiabatic ap-

proximation �HAA� �23�, which assumes hyperradial motion
to be slow compared to the hyperangular motion. The latter
is solved by diagonalizing the potential matrix together with
the diagonal hypercentrifugal repulsion for a particular value
of r, whose lowest eigenvalue �0�r� is the effective potential
in the hyperradial space, in which the collective motion of
the condensate takes place. The energy and wave function of
the condensate is obtained by solving the adiabatically sepa-
rated hyperradial equation

�−
�2

m

d2

dr2 + �0�r� + �
K=0

Kmax �d�K0�r�
dr

�2

− E		0�r� = 0. �8�

Here �K0�r� is the Kth component of the column vector cor-
responding to the eigenvalue �0�r� and K values are trun-
cated to Kmax subject to convergence in energy. Energy and
wave function of the system are obtained by solving Eq. �8�

numerically. Partial wave UKl�r� is given in HAA by
UKl�r��	0�r��K0�r� �23�.

III. RESULTS AND DISCUSSION

For the rubidium atoms the experimental value of C6 is
6.489 755�10−11 o.u. �where “oscillator unit” �o.u.� corre-
sponds to the JILA experiment �24��. We vary C6, taking
values both smaller and larger than the experimental one.
When C6→0, the potential becomes a hard core one and rc
coincides with as. For a given value of rc, as can be calcu-
lated by analytically solving Eq. �5� �14�. Figure 1 shows a
plot of as versus ln�rc�, for the experimental C6. As rc de-
creases from a large value, as decreases monotonically, until
it passes through an infinite discontinuity �going from −� to
+�� at a particular value of rc, with the potential just sup-
porting a two-body bound state. Then the pattern repeats as
rc decreases further, with the appearance of an extra node
�2BP supporting an extra bound state� in the zero-energy
two-body wave function, for each additional infinite discon-
tinuity. Similarly, for a fixed rc, if C6 is gradually increased,
as will pass through infinite discontinuities, each time an
extra node will appear in a two-body wave function.

To see how the condensate properties are affected by the
strength of the long-range tail of the 2BP, we select three
additional values of C6, in addition to the actual experimental
value, one below and two above that value. They are �in

TABLE I. Ground-state energies by CPHEM �EPHEM� in o.u. for four different values of C6 for 3�A�100 atoms in Rb condensate
�as=0.004 33�. Values of C6 are presented at the top of columns 3–6. For comparison GPE and available DMC results �from Ref. �3�� are
also included.

A C6

ECPHEM

EGPE EDMC8�10−10 8.5�10−11 6.489755�10−11 5�10−11

3 4.5103 4.5108 4.5103 4.5104 4.51032 4.51037

5 7.5342 7.5343 7.5345 7.5347 7.53432 7.53439

10 15.1530 15.1533 15.1544 15.1554 15.1534 15.1539

20 30.6385 30.6396 30.6438 30.6481 30.638 30.639

100 165.1177 165.1384 165.2272 165.3171 165.196

-0.04

-0.02

0

0.02

0.04

-6.98 -6.9 -6.82 -6.74 -6.66 -6.58

a s
c
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FIG. 1. �Color online� Plot of as against rc �both in oscillator
unit� for C6=6.489 755�10−11 oscillator unit.
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FIG. 2. Plots of two-body van der Waals potential for different
C6 parameters which give the same value of as

= �0.004 33 oscillator unit�. Value of C6 �in oscillator unit� gradu-
ally increases towards the right-hand side: 5�10−11, 6.489 755
�10−11, 8.5�10−11, 8�10−10.
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o.u.�: 5�10−11, 6.489 755�10−11, 8�10−11, and 8�10−10,
respectively. For each value of C6, we calculate correspond-
ing rc, such that as has the experimental value, viz.
0.004 33 o.u. For each set of �C6 ,rc�, we solve the many-
body equation for A=3,5 ,20, . . . ,14 000 bosons. In the
present picture, the condensate moves as a single quantum
entity in the effective many-body potential �0�r� in the hy-
perradial space, corresponding to the collective motion of the
condensate. �0�r� has the expected behavior, qualitatively
similar to the noninteracting case; only it is shifted upward
or downward depending whether the overall effect is repul-
sive or attractive. Also �0�r� is stiffer for smaller values of r.
In the many-body picture, the effective potential behaves just
like a one-dimensional potential in the hyperradial space,
giving a tangible feeling for the experimental scenario of a
trapped cloud. This differs from the picture presented by the
GPE approach, which lacks the concept of an effective po-
tential and one fails to visualize the physical picture.

To visualize the effect of different C6 values on depth and
range of the two-body potential, we plot V�rij� against rij for
a few representative sets in Fig. 2. As C6 increases, the at-
tractive tail becomes more attractive, but simultaneously rc
also increases, although by a small amount, such that the net
two-body attraction �volume integral� increases gradually. To
quantify the effect of attraction we calculate the quantity
4��rc

�V�r�r2dr. It’s value changes from −0.01779 to −0.4541,
as we increase C6 from 5�10−11 to 8�10−10. Note, this

change occurs in each two-body pair. But kinetic and trap
energies largely compensate this. Consequently the conden-
sate energy decreases by a very small amount for small A. In
the third through sixth columns of Table I we present the
condensate ground-state energy for a small number of
trapped bosons, viz. A=3,5 ,10,20,100. In the seventh col-
umn, we present the results obtained by solving the GP equa-
tion numerically �25�. Available DMC results from Ref. �3�
are presented in the last column. One notices from Table I,
that although increasing C6, the interatomic potential be-
comes more attractive, still the ground-state energies of the
condensate are practically the same, for all the sets and also
in very good agreement with both the GPE and the DMC
results, for each value of A. Thus the many-body ground-
state energy remains almost indistinguishable, indicating the
validity of the SIA.

In the many-body calculation, the total condensate energy
depends on the depth of the lowest eigenpotential, �0�r�, and
to a lesser extent on its stiffness near the minimum. In Table
II, we present the position �rm� and the value ��0m� of the
minimum of �0�r� for selected values of A and for the cho-
sen values of C6. The �0�r� curve changes very little, as C6
changes by 16 times—�0m decreasing from
12.6411 o.u. to 12.6387 o.u. as C6 increases from 5�10−11

to 8�10−10, the position of the minimum remaining un-
changed for A=10. Corresponding change in the minimum
of �0�r� is 0.20 o.u. for A=100, while the position of the
minimum still remains nearly unchanged. This small change

TABLE III. Total ground-state energy for four different C6 parameters for 500�A�14 000 atoms. For comparison the GPE results are
also presented.

A C6

ECPHEM

EGPE8�10−10 8.5�10−11 6.489755�10−11 5�10−11

500 995.964 996.267 997.570 998.893 1033.70

1000 2319.86 2323.61 2327.60 2328.83 2424.36

2000 5619.45 5622.15 5633.73 5645.49 5880.76

4000 14030.9 14038.5 14071.0 14103.9 14653.6

6000 24211.8 24225.5 24284.1 24343.5 25233.0

8000 35780.7 35801.5 35890.2 35995.5 37236.2

10000 48520.4 48549.0 48671.3 48795.3 50414.1

12000 62286.9 62323.3 62482.1 62651.4 64648.8

14000 76973.4 77019.5 77217.4 77418.0 79823.8

TABLE II. Dependence of �0m and rm on C6 for selected values of A.

A

C6=5�10−11 C6=6.489755�10−11 C6=8.5�10−11 C6=8�10−10

rm �0m rm �0m rm �0m rm �0m

10 5.04 12.6411 5.04 12.6400 5.04 12.6309 5.04 12.6387

100 18.40 162.792 18.40 162.702 18.39 162.613 18.39 162.590

500 46.74 996.329 46.70 995.060 46.66 993.700 46.65 993.400

2000 113.97 5642.89 113.84 5631.14 113.71 5619.55 113.68 5616.85

10000 339.92 48792.7 339.47 48668.7 339.04 48546.3 338.93 48517.8

14000 428.81 77415.4 428.24 77214.8 427.68 77016.9 427.55 76970.8
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vis-à-vis a larger change in the two-body attraction is under-
stood as follows. As C6 increases, the total attractive inter-
action energy increases as A�A−1� /2, due to the shift of the
2BP �see Fig. 2�, while trap energy and the kinetic energy
increase as A. For smaller A, these two nearly balance.
Hence, the effect of increasing C6 on the ground-state energy
of the condensate is negligible for small number of particles
and the shape independence is well obeyed. The results for
small A are also in good agreement with our earlier results
using Gaussian-type model potentials �17,18�. However, the
change in the minimum of �0�r� is quite appreciable when A
increases. As A increases, the number of pairs, A�A−1� /2
increases rapidly and the net contribution from all pairs be-
comes appreciably negative and deviations from shape-
independent property occurs. The results for larger A �500
�A�14 000� are presented in Table III. The ground-state
energy gradually decreases with increase of C6, and strict
shape independence is vitiated. In all cases, the many-body
energy is lower than that by GPE. This is the effect of deep
negative two-body potential and also the effect of two-body
correlation, which lowers the ground-state energy, as dis-
cussed above. Although our results are lower than those of
GPE, Table III shows the right limiting direction, as we
gradually decrease the effect of the attractive tail, results are
closer to the GPE values.

In Fig. 3, we plot the lowest eigenpotential ��0�r�� of
1000 bosons for two extreme values of C6, viz. 5
�10−11 o.u. and 8�10−10 o.u. The qualitative nature of

�0�r� remains unchanged, but it is pushed downwards, mak-
ing the condensate more attractive as C6 increases. In Fig. 4,
we plot the ground-state energy per particle against A for
several C6 values. The energy per particle is quite stable and
shows the correct behavior. Making C6 16 times larger, con-
densate energy per particle changes by 0.23% �for A=500� to
0.57% �for A=14 000�. In the same figure, we give GPE
results, where energy par particle gradually increases with A,
as in our case. In Fig. 5, the low-lying excitation frequencies
for radial breathing modes f1= �E1−E0� and f2= �E2−E0� are
plotted against A for C6=5�10−11. In Table IV, we show the
dependence of excitation frequencies on the C6 parameter for
several values of A. The results are seen to be fairly indepen-
dent of C6. This means that as �0�r� becomes deeper, all the
energy levels shift by approximately the same amount. Thus
the “effective condensate potential” shifts as a whole without
altering its shape.

Last, to compare the many-body results with those of
GPE we define the quantity R= �EGPE−EPHEM� /EPHEM as the
relative change in energy. In Fig. 6, we plot this quantity
against A, for A ranging from 2000 to 14 000, where the
effect of C6 is prominent. The lowest curve is for C6=5
�10−11. This implies that we belong to the correct C6 limit.
As one increases the C6 parameter �making the condensate
more attractive�, the deviation from shape independence also
increases as the curves are shifted upwards. However, they
approach convergence as A increases. This is expected intu-
itively. By making the C6 larger, the effect in the total
ground-state energy is significant, however, this change will
be distributed to all A, giving converging results when A is
high. It has also been reflected in Fig. 4, where we see that
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results.
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TABLE IV. Low-lying excitation frequencies for two extreme
values of C6 parameters for A=20,100,10 000.

A C6 5�10−11 8�10−10

20 2.026 2.0157

4.031 4.0312

100 2.0479 2.0484

4.0955 4.0962

10000 2.2209 2.2207

4.4419 4.4415
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is close to GP value. It indicates that although the condensate
becomes less repulsive as C6 is increased, it remains quite
stable �i.e., there is no collapse� even in the limit of large C6.

However, a close look at Fig. 6 shows that the quantity R
converges for large A. So in the usual BEC experiments
which consider a large number of bosons �few millions� in
the trap it is hard to detect the above correction to the
ground-state energy. But in the recent experiments it is now
possible to create a few-boson system. The alkali-metal at-
oms from a BEC reservoir are subjected to quantum tweezers
and then further experiments are conducted in a number of
squeezed states. The number-squeezed BEC is also created
by “culling” atoms from a trapped condensate. Under such
situation the effect of the many body can be observed experi-
mentally where we see significant deviation in R.

IV. CONCLUSION

In this work, we have critically examined the limits of
validity of the shape independence approximation, used
commonly in the study of dilute Bose-Einstein condensation.
We have adopted the standard van der Waals interatomic
potential and investigated the effect of increasing the

strength of the potential �i.e., the C6 parameter�, while the
s-wave scattering length �as� is held constant to 0.00433 o.u..
It is found that the shape independent structure is well
obeyed when the particle number �A� is less than about 100.
For larger particle number, increase of C6 reduces the
ground-state energy by a small and asymptotically constant
fraction. Our numerical results are in good agreement with
earlier DMC calculations for a very few number of atoms in
the trap, however substantial deviation occurs when A is
quite high. As the previous calculations were restricted to
only model type of potentials and also for very few atoms
which is quite far from the experimental situation, it was
necessary to study the universality of the shape-independent
property in the aspect of a real experimental scenario. So our
calculation is quite justified. Another important finding is
how to make a bridge between the mean-field theory which
used purely contact interaction and the many-body theory
which uses realistic two-body interaction with finite range.
The �-function pseudopotential discusses the atomic interac-
tion at the longest length scale, naturally the detailed descrip-
tion with shorter length scale ��6= �

2�C6

�2 �1/4�, which basically

characterizes the long-range atomic interaction with −
C6

r6 tail
was necessary. Our results reflect the necessity of taking the
shape-dependent two-body interaction in many-body calcu-
lations for a large number of bosons in the trap. The present
experiments consider BEC with a large dipole moment,
where one must include much longer range �compared to van
der Waals� potential. Our present work definitely shows the
way to handle finite range two-body interaction in many-
body theory. The work in this direction is in progress.
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FIG. 6. Plot of the relative energy against particle number for
different choices of C6 parameters.
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