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We consider a two-dimensional �2D� model of a rotating attractive Bose-Einstein condensate �BEC�, trapped
in an external potential. First, a harmonic potential with the critical strength is considered, which generates
quasisolitons at the lowest Landau level �LLL�. We describe a family of the LLL quasisolitons using both
numerical method and a variational approximation �VA�, which are in good agreement with each other. We
demonstrate that kicking the LLL mode or applying a ramp potential sets it in the Larmor �cyclotron� motion
that can also be accurately modeled by the VA. Collisions between two such moving modes may be elastic or
inelastic depending on their total norm. If an additional confining potential is applied along with the ramp, it
creates a stationary edge state. Applying a kick to the edge state in the direction of the ramp gives rise to a
skipping motion in the perpendicular direction. These regimes may be interpreted as the Hall effect for the
quasisolitons. Next, we consider the condensate trapped in an axisymmetric quartic potential. Three species of
localized states and their stability regions are identified, viz., vortices with arbitrary topological charge m,
“crescents” �mixed-vorticity states�, and strongly localized center-of-mass �c.m.� states, alias quasisolitons,
shifted off the rotation pivot. These results are similar to those reported before for the model with a combined
quadratic-quartic trap. Stable pairs of c.m. states set at diametrically opposite points are found, too. We present
a VA which provides for an accurate description of vortices with all values of m, and of the c.m. states. We also
demonstrate that kicking them in the azimuthal direction sets the quasisolitons in epitrochoidal motion �which
is also accurately predicted by the VA�, collisions between them being elastic.
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I. INTRODUCTION

Formation of vortices is a well-known manifestation of
superfluidity in Bose-Einstein condensates �BECs�—in par-
ticular, in those which form effectively two-dimensional
�“pancake”� configurations in appropriately designed trap-
ping potentials �1�. If a condensate with repulsive interac-
tions between atoms, which is confined in a nearly two-
dimensional �2D� layer by a 2D harmonic �quadratic�
potential with trapping frequency �, is set in rotation with
frequency �, formation of a multivortex lattice is observed
in the experiment �2�. The stability of such lattices is limited
to ���, as otherwise the centrifugal force empties the re-
gion in the center of the trap �3�. Close to the instability
threshold, formation of a metastable state in the form of a
giant vortex, with topological charge m�50, was observed
�4�. On the other hand, it was proposed theoretically �5� and
implemented in the experiment �6� that the instability at �
�� can be eliminated if the trapping potential is steeper than
harmonic, the simplest possibility being to add a quartic term
to it �in the critical case of �=�, the linearized version of
the respective 2D Gross-Pitaevskii equation �GPE� is tanta-
mount to the Schrödinger equation for a charged particle in
the uniform magnetic field, which gives rise to the Landau
levels, see Eq. �6� below�. In many theoretical works, it has
been demonstrated that self-repulsive condensates can form
stable vortices with a multiple topological charge m�1 in
2D anharmonic traps �7�.

Dynamics of vortices in BEC with attraction between at-
oms is different—in particular, due to the possibility of the
collapse in self-attractive media �8�. The stability of 2D vor-

tices confined by the harmonic potential was studied in detail
�9�. It was demonstrated that, prior to the onset of the col-
lapse, the vortex with m=1 is destabilized by azimuthal per-
turbations that split it into mobile localized objects resem-
bling fundamental solitons, if the norm of the vortex exceeds
a certain critical value. Vortices with m�2 are completely
unstable in the same setting.

It was also predicted that, under the action of the rotation,
BEC with the intrinsic attraction can break the 2D axial sym-
metry by self-trapping into quasisoliton objects, alias
“center-of-mass” �c.m.� states, characterized by an offset of
the c.m. from the rotation pivot �10�. It was concluded that
the anharmonicity of the trapping potential is necessary for
the stability of the c.m. states �11�. Therefore, the theoretical
study of rotating attractive condensates trapped in quadratic-
quartic radial potentials has drawn attention. Phase diagrams
of this model were investigated in detail, both in the mean-
field approximation �i.e., using the GPE and its linearization
for small perturbations, in the form of the Bogoliubov-de
Gennes equations� �12�, and by means of a numerical diago-
nalization of the many-body bosonic Hamiltonian �13�, both
approaches producing similar results. Three types of stable
localized patterns were identified in these studies: vortices
with topological charge m=0,1 ,2 ,3 , . . .; crescent-shaped
states with a broken axial symmetry, that may be realized, for
instance, as a superposition of vortices with m=2,3 ,4; and
the c.m. states shifted from the rotation pivot. The transition
between the crescents and c.m. states which feature stronger
localization is gradual. It is also relevant to mention that
crescents built similar to those reported in Refs. �11,12� can
be made stable in a completely different model, viz., a qua-
silinear 2D equation with the harmonic trap whose strength
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is proportional to the total norm of the configuration �14�
�the so-called “accessible-soliton” model, which is relevant
to nonlinear optics �15��.

The previous analysis of these states was carried out, in
the framework of the GPE, in numerical form only. One of
purposes of the present work is to demonstrate that the entire
family of vortices, with all values of m, and the well-
localized c.m. states can be predicted in an accurate form by
a simple variational approximation �VA� �this method was
applied to BEC in Ref. �16�; for a general review of varia-
tional techniques for solitons, see Ref. �17��. In addition, we
find stable pairs of c.m. states set at diametrically opposite
points. Another objective of this work is to consider the mo-
tion of c.m. states and collisions between them �which turn
out to be elastic�. The motion is also accurately described by
the VA. To focus on effects of anharmonic traps, in that part
of the work we consider the GPE with the quartic radial
potential only, which may be implemented in the experiment
�6�.

Another setting considered in this work is the above-
mentioned critical case of the quadratic axisymmetric trap
with �=�. In this case, we demonstrate that quasisolitons
can be found in the lowest Landau level �LLL�. Both quies-
cent and moving LLL modes are very accurately described
by an appropriately modified VA. The motion of the Larmor
�cyclotron� type is imposed on them by the application of a
kick, or by the action of a 1D ramp potential. In addition, we
consider the situation when the ramp acts in a combination
with a 1D quartic potential. In the latter case, we find edge
states of the nonlinear LLL modes, and also study their mo-
tion induced by the kick, which may be interpreted as an
effective Hall effect for the quasisolitons. To the best of our
knowledge, the Larmor motion and the drift motion are not
reported before for the Bose-Einstein condensates. We hope
that these types of analogs of Hall effect will be experimen-
tally observed.

The paper is structured as follows. The underlying two-
dimensional GPE and a brief description of the numerical
method employed to look for stationary solutions �which is
based on the integration in imaginary time� are presented in
Sec. II. In Sec. III, we consider the quasisolitons of the LLL
type in the critical model with the quadratic axisymmetric
confining potential, while the model with the quartic poten-
tial is dealt with in Sec. IV. The paper is concluded in Sec. V.

II. THE MODEL AND NUMERICAL METHODS

The mean-field approximation for the 2D condensate
trapped in potential U�x ,y� and rotating at angular velocity
� is based on the GPE for the single-atom wave function,
��x ,y , t�. In the scaled form, the equation, written in rotating
coordinates x and y, takes the well-known form �10–12�

i
��

�t
= �−

1

2
� �2

�x2 +
�2

�y2� − g	�	2 + U�x,y� − �L̂z
� . �1�

Here g�−4�Nas / �Ma���0 is the effective self-attraction
coefficient, with N the total number of atoms, as�0 the
scattering length of the attractive interatomic interactions,
a� the transverse-trapping length, and M =��	��x ,y�	2dxdy

the norm of the 2D wave function, which is a dynamical

invariant of Eq. �1�. The orbital-momentum operator is L̂z
= i�y�x−x�y�. In addition to M, Eq. �1� conserves the energy,

E = �1

2
	��	2 −

g

2
	�	4 + U	�	2 − ��*L̂z��dr , �2�

and the total angular momentum, L=��*L̂z�dr, if the poten-
tial is axisymmetric, U=U�r�, with r2�x2+y2.

Steady-state solutions to Eq. �1� are looked for in the
ordinary form, ��x ,y , t�=e−i�t	�x ,y�, where � is the real
chemical potential, while stationary wave function 	�x ,y�
remains complex. To find configurations realizing a mini-
mum of the energy, we used a modification of the known
numerical method based on the integration of the GPE in
imaginary time �18� �in Ref. �19�, a similar method was used
to generate vortex lattices in a 2D model with the repulsive
nonlinearity and harmonic confining potential�. To this end,
we substitute real time t in Eq. �1� by −i
, introduce addi-

tional real variable M̃�
�, and replace Eq. �1� by the follow-
ing system of the Ginzburg-Landau �GL� type,

�	

�

= �1

2
�2 + g			2 − U�x,y� + �L̂z + �1�M̃ − M�
	 , �3�

dM̃

d

= �2�M0 − M� . �4�

Here, M is the same 2D norm as defined above, but it is not
a dynamical invariant of the GL equations, and M0 is the
target constant value of the norm in the stationary state to be
found, while �1 and �2 are auxiliary positive constants.

Equation �4� acts as a negative feedback, which provides
for the relaxation of the variable norm, M�
�, to M0. Obvi-
ously, stationary states, into which solutions to Eqs. �3� and
�4� relax at 
→�, also yield stationary solutions to GPE �1�,
with chemical potential �=�1�M̃�
→��−M0�.

Coupled equations �3� and �4� can be presented in the
gradient form as

�	

�

= −

Ẽ

	*
,

dM̃

d

=

�2

�1

�Ẽ

�M̃
, �5�

where Ẽ=E− �1 /2��1�M̃ −M0�2+ �1 /2��1�M −M̃�2. This rep-
resentation demonstrates that Eqs. �3� and �4� may be re-
garded as equations generated by the minimization of func-
tional E, under the constraint �Lagrangian condition� that the
total norm is fixed, M =M0. Fast convergence of numerical
solutions of Eqs. �3� and �4� was achieved, for instance, with
the choice of auxiliary parameters �1=3 and �2=5. On the
other hand, if the convergence is achieved, the results do not
depend on the choice of �1 and �2, which was verified by
varying these constant in a broad range. The numerical inte-
gration was performed by means of the split-step 2D Fourier
method with 256�256 modes.
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We use Eq. �3� and Eq. �4� to obtain stationary solutions
such as quasisolitons and vortices in several external poten-
tials U�x ,y� in the following sections. The motion and the
collision of the quasisolitons are simulated with the Gross-
Pitaevskii equation �1�.

III. LOWEST-LANDAU-LEVEL STATES

A. Quiescent modes

In the critical case when the confining potential is har-
monic, with the respective frequency equal to the rotation
velocity, U= �1 /2��r2, Eq. �1� and respective energy �2� re-
duce to

i
��

�t
= �1

2
�i

�

�x
− �y�2

+
1

2
�i

�

�y
+ �x�2

− g	�	2
� , �6�

E = �1

2
	��− iA��	2 −

g

2
	�	4�dr , �7�

where A= �−�y ,�x�. As said above, this system with g=0 is
equivalent to the 2D Schrödinger equation for a charged par-
ticle in uniform magnetic field � directed perpendicular to
plane �x ,y�. The wave function of the corresponding ground
state, i.e., the lowest Landau level �LLL�, is

� = Ae−i�t exp�− ��/2��x2 + y2�� , �8�

where A is an arbitrary amplitude.
For g�0, a localized �quasisoliton� solution to nonlinear

equation �6� may be approximated as an ansatz suggested by
exact solution �8� for the linear equation,

� = Ae−i�t exp�− ��x2 + y2�� , �9�

where A, � and � are treated as variational parameters. Ear-
lier, an ansatz using a product of the LLL wave function and
an appropriate function in the perpendicular direction was
used in Ref. �20� for the description of 3D vortices in rotat-
ing confined BECs.

The norm of ansatz �9� is

M = A2�/�2�� . �10�

Using this expression, we eliminate A in favor of M, and
then calculate energy �7� corresponding to the ansatz,

E = M�� +
�2

4�
−

gM�

2�
� , �11�

which does not contain �. To predict the inverse-width pa-
rameter � of the localized state, we minimize the energy with
respect to �, by setting �E /��=0. This yields

� =
�

2

1
�1 − gM/�2��

. �12�

Then, the substitution of this result into Eq. �10� yields the
respective expression for the amplitude,

A2 =
�M

��1 − gM/�2��
. �13�

The energy is calculated as

E = M� �

2�1 − gM/�2��
+

��1 − gM/�2��
2

−
gM�

4��1 − gM/�2��
� , �14�

which is approximated as E�M��−gM� / �4��� near g=0.
Note that expression �13� diverges at gM =2�, which implies
the collapse in the 2D setting due to the self-attraction. This
collapse threshold is a well-known prediction of the VA �21�,
which does not depend on the presence of the external po-
tential or rotation.

Figure 1�a� displays a numerically found profile of the
central cross section of ��x ,y� for g=1 and M =5. The
dashed curve in the same figure is the Gaussian fitting to the
numerical profile, �fit�x ,y�=Afit exp�−�fit�x−L /2�2�, with
Afit=1.62 and �fit=0.824. Note that the central part of the 2D
mode is slightly narrower than the Gaussian, because M is
rather large, inducing self-compression of the mode. The
solid curve in Fig. 1�b� displays the prediction of the VA for
inverse-width parameter �, given by Eq. �12�, while the
chain of circles represent numerical values of the same pa-
rameter, which were found from an integral expression,
M / �2���x2+y2�	��x ,y�	2dxdy�. Indeed, if ansatz �9� is sub-
stituted into this expression, it will yield exactly �.

Modes with the intrinsic angular momentum, i.e., local-
ized vortices, can also be constructed in this setting. An an-
satz for the localized vortex is

� = Ae−i�t�x + iy�exp�− ��x2 + y2�� . �15�

The norm of ansatz �15� is M =�A2 / �4�2� and the energy E
is given by

E = M�2� − � +
�2

2�
−

gM�

4�
� . �16�

The inverse-width parameter � is similarly obtained by the
minimization of the energy as

0

0.5

1

1.5

10 12 14 16 18 20

x

0

0.5

1

1.5

2

0 1 2 3 4 5 6

M

FIG. 1. �a� A typical shape of the nonlinear localized mode
supported by the LLL �lowest Landau level� for M =5. �b� Com-
parison of the numerically found inverse-width parameter � with
the approximation provided by the variational method. Other pa-
rameters in this figure are g=1 and �=0.5.
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� =
�

2

1
�1 − gM/�4��

. �17�

The inverse-width parameter � is equal to � /2 at g=0, and
the divergence occurs at gM =4�. The energy E is calculated
as

E = M� �

�1 − gM/�4��
− � + ��1 − gM/�4��

−
gM�

8��1 − gM/�4��
� , �18�

which is approximated as E�M��−gM� / �8��� near g=0.
The vortex and the quasisoliton have the same energy at g
=0. The quasisoliton has a lower energy in the case of at-
tractive interaction g�0 than the localized vortex, however,
the energy of the localized vortex is lower that the quasisoli-
ton in the case of the repulsive interaction g�0. This is a
reason why vortex states appear in the case of repulsive in-
teraction. The Gaussian type wave function � was numeri-
cally obtained near the lowest-Landau-level regime in the
previous paper �19�.

B. The Larmor motion

If the localized state placed at �x0 ,y0�= �0,0� is kicked by
lending it wave number ky in the y direction, ��x ,y�
→��x ,y�exp�ikyy�, the quasisoliton exhibits rotating Larmor
�cyclotron� motion, as shown in Fig. 2�a�. If a ramp �constant
external force� is applied in the x direction, by adding the
extra potential term, Uextra�x�=−Fx, to energy �7�, the quasi-
soliton becomes engaged in a drift motion, as shown in Fig.
2�b�. These scenarios of the Larmor motion of the quasisoli-
ton are qualitatively the same as exhibited by the LLL local-
ized state in the limit of the linear Schrödinger equation �g
=0�, as shown in Fig. 2�c�. One can check, by means of
direct simulations, that a localized vortex with vorticity m
=1 also exhibits the Larmor motion in the same linear
Schrödinger equation.

The Larmor motion induced by the additional potential
can also be explained via the variational method. The La-

grangian corresponding to Eq. �6�, with the addition of the
extra potential, is

L = � i

2
��t�* − �

t
*�� −

1

2
	��− iA��	2

+
g

2
	�	4 − Uextra�x,y�	�	2�dr . �19�

If ��x ,y , t� is approximated by a generalization of ansatz �9�,
viz.,

� = Ae−i�t exp„− ���x − x0�t��2 + �y − y0�t��2�…

�exp�ipx�x − x0�t�� + ipy�y − y0�t��� , �20�

the corresponding effective Lagrangian takes the following
form, after a straightforward calculation,

Leff

M
= pxẋ0 + pyẏ0 − � −

�2

2
�x0

2 + y0
2� −

1

2
�px

2 + py
2� −

1

4�
�2

+
gM�

2�
− ��pxy0 − pyx0� − Ueff�x0,y0� , �21�

where the overdot stands for the time derivative, and

Ueff�x0,y0,�� �
A2

M
  Uextra�x,y�exp„− ���x − x0�t��2

+ �y − y0�t��2�…dxdy . �22�

The system of the Euler-Lagrange variational equations is
then derived from the effective Lagrangian,

dpx

dt
= �py −

�Ueff

�x0
,

dpy

dt
= − �px −

�Ueff

�y0
,

dx0

dt
= px + �y0,
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FIG. 2. �a� The Larmor motion of the c.m. of the LLL quasisoliton initiated by the application of kick ky =2 in the y direction, for g
=1 and M =5. �b� The drift of the c.m. in the ramp potential, Uextra=−0.1x, again for g=1 and M =5. �c� The drift of the c.m. under the action
of the same tilted potential, but for for g=0 �in the linear Schrödinger equation�.
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dy0

dt
= py − �x0,

− 1 +
gM

2�
+

�2

4�2 −
�Ueff

��
= 0. �23�

In the simplest case of the uniform ramp, corresponding
to Uextra=−Fx, i.e., �Ueff /��=0, the last equation in system
�23� yields the same constant expression for � as given
above by Eq. �12�. With constant � �i.e., constant width of
the LLL mode�, the remaining part of system �23� amounts to
coupled equations of motion of the second order,

d2x0

dt2 = 2�
dy0

dt
−

�Ueff

�x0
,

d2y0

dt2 = − 2�
dx0

dt
−

�Ueff

�y0
. �24�

With Ueff=0, this system describes the Larmor �cyclotron�
motion, and for Ueff=−Fx0, Eqs. �24� predict an overlap of
the Larmor rotation and drift in the y direction. The drift
motion, in the direction perpendicular to the ramp, is an ana-
log of the ordinary Hall effect in solid-state physics �simi-
larities between the soliton dynamics in BEC and the quan-
tum Hall effect were discussed in various contexts, see, e.g.,
Ref. �22� and references therein�. Additional analogies to the
Hall effect are considered below.

If two LLL quasisolitons are kicked in opposite direc-
tions, by imparting wave numbers �ky to them, the Larmor
motion of the solitons eventually results in a collision. If the
norm of each quasisoliton is not too large, the collision
seems completely elastic, and the two objects keep moving
in closed trajectories which together form a “figure of eight,”
surviving multiple collisions, as shown in Fig. 3�a� for M
=1, g=1, and ky =2. On the other hand, if the norm of each
LLL mode is larger, the collision is inelastic, reducing the
wave numbers of the quasisolitons, and thus making the ra-
dius of the Larmor motion smaller. This case is illustrated by
Fig. 3�b� for M =5. Inelastic collisions between 2D solitons
which are too “heavy” and can also suffer the merger and
collapse were reported in different settings, such as quasi-1D
guiding channels �23�.

C. The Hall effect and edge states for the quasisolitons

As mentioned above, the analog of the Hall effect for
matter-wave solitons is a subject of considerable interest
�22�. To study it in the present context, i.e., as a matter of
fact, to consider the corresponding edge states of the LLL
quasisolitons, we combine the ramp with a weak holding
quartic potential in the x direction, by taking Uextra=−Fx
+bx4, with small b�0. Here, the edge state is a state which
represents the Hall effect near the sample edge �24�. Usually
a sharp potential wall is assumed to confine an electron in-
side of the sample, but we have used a quartic potential in
this section because it is a milder potential and the varia-
tional method is more easily applied, and the model is
closely related to the axisymmetric quartic model discussed
in the next section.

The VA can be used in this setting too. To this end, we
approximate � by an anisotropic Gaussian ansatz,

� = Ae−i�t exp�− ��x − x0�2 − ��y − y0�2�exp�ipx�x − x0�t��

+ ipy�y − y0�t��� , �25�

cf. expression �20�. The substitution of ansatz �25� in La-
grangian �19� yields

Leff

M
= pxẋ0 + pyẏ0 −

1

2
�� + �� −

�2

2
�x0

2 + y0
2� −

1

2
�px

2 + py
2�

−
�2

8
� 1

�
+

1

�
� +

gM

2�
��� − ��pxy0 − pyx0�

− Ueff�x0,y0� , �26�

where, this time, the norm is M =A2� / �2����, and

Ueff�x0,y0� = − Fx0 + b�x0
2 + y0

2�2

+
b

2�
�3x0

2 + y0
2� +

b

2�
�x0

2 + 3y0
2� , �27�

cf. Eqs. �21� and �22�. The respective equations of motion
are written as

d2x0

dt2 = 2�
dy0

dt
−

�Ueff

�x0
,

d2y0

dt2 = − 2�
dx0

dt
−

�Ueff

�y0
,

−
1

2
+

gM

4�
��

�
+

�2

8�2 −
�Ueff

��
= 0,

−
1

2
+

gM

4�
��

�
+

�2

8�2 −
�Ueff

��
= 0. �28�

Stationary solutions to Eqs. �28� are determined by algebraic
relations

ẏ0 = 0, 4bx0
3 + b�3/� + 1/��x0 = F , �29�

− �1/2� + gM/�4����/� + �2/�8�2� + 3bx0
2/�2�2� = 0,

�30�
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2

x-L/2

-3
-2
-1
0
1
2
3

-4 -2 0 2 4

y-
L/

2

x-L/2

FIG. 3. �a� Trajectories of points of maxima of 	��x ,y�	 in half
planes x�L /2 and x�L /2 for a pair of LLL quasisolitons with
norm M =1, kicked by ky = �2. The solitons survive multiple elastic
solutions. The arrows shows the initial positions and velocities of
the two solitons. �b� The same for M =5. In this case, the collision
results in the fusion and collapse of the LLL quasisolitons.
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− �1/2� + gM/�4����/� + �2/�8�2� + bx0
2/�2�2� = 0.

�31�

In the linear limit �g=0�, these relations yield �
=��2 /4+3bx0

2 and �=��2 /4+bx0
2, with the wave number

in the y direction being py =�x0�0.
As an example, we refer to the LLL mode in the edge

state that was found in the numerical form for M =5, F
=0.5, b=0.0005, g=1, and �=0.5. Fitting this mode to
Gaussian ansatz �25�, the corresponding parameters were nu-
merically evaluated as x0=6.225, �=0.724, �=0.679, A
��4�� /��1/4�M =1.99, and py =�x0. Figures 4�a� and 4�b�
display, respectively, the contour plot of Re���x ,y�� and
cross-section profile 	��x ,y�	 at y=L /2, which is compared
to its counterpart predicted by the VA through Eqs. �25� and
�30�. In addition, Fig. 4�c� displays Re���x ,y�� at x=21.2,
which is compared to the respective approximation provided
by ansatz �25�, A exp�−��y−L /2�2�cos�pyy�.

If the edge state is kicked with wave number ky, the qua-
sisoliton exhibits drift motion. For parameters identical to
those in Fig. 4, in Fig. 5 we display the trajectory of its c.m.,
initiated by the kick with ky =1, and the same trajectory as

predicted by variational equations �28�. These results dem-
onstrate that the VA provides quite a reasonable accuracy for
the description of dynamical states, as well as for static ones.

IV. THE AXISYMMETRIC QUARTIC POTENTIAL

In the rest of the paper, we focus on a different situation,
namely, the setting with the quartic axisymmetric potential
U�x ,y�=br4, where b is a small positive constant. The pur-
pose of the consideration of this model is to highlight the
dynamics on vortices and quasisolitons under the anhar-
monic confinement. The confinement potential is not a criti-
cal harmonic potential U= �1 /2��r2 assumed in the previous
section, and the system is deviated from the lowest-Landau-
level regime. The respective variant of the GPE is �cf. Eq.
�6��

i
��

�

= �−

1

2
�2 − �L̂z − g			2 + br4�	 , �32�

where �2 is the 2D Laplacian, and the angular-momentum

operator is L̂z= i�x�y −y�x�.
Similar to Eqs. �3� and �4�, steady-state solutions to Eq.

�1� are looked for through the simulations of relaxation in the
following modified system of the GL type:

�	

�

= �1

2
�2 + g			2 − br4 + �L̂z + �1�M̃ − M��	 , �33�

dM̃

d

= �2�M0 − M� . �34�

Here, M is the same 2D norm as defined above, and M0 is
the target constant value of the norm in the stationary state to
be found.

Using the remaining scaling invariance of Eq. �1�, we fix
normalizations by choosing b=0.002 �a small value of trap-
ping coefficient b is necessary to allow the condensate
enough room to evolve�, and M0=4. Axisymmetric vortex
solutions to Eqs. �33� and �34� with topological charge m are
sought for as 	=rmeim�Rm�r ,
�, where the reduced ampli-
tude function Rm satisfies the following equations:

0

0.5

1

1.5

2

0 5 10 15 20 25 30

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 12 14 16 18 20

R
e

y

FIG. 4. �a� The contour plot of Re���x ,y�� of the edge state, for g=1, M =5, F=0.5, and b=0.0005. �b� The profile of 	��x ,y�	 at y
=L /2. �c� Re���x ,y�� at x=21.2. The two latter panels include comparison with profiles predicted by the variational approximation.
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FIG. 5. The trajectory of the drift motion of an edge LLL mode,
kicked with ky =1, for g=1, F=0.5, b=0.0005, and M =5, as ob-
tained from direct numerical simulations of the GPE �the solid
curve�, and the counterpart of the same trajectory, predicted by the
variational approximation �the dashed curve�.
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�Rm

�

=

1

2
� �2

�r2 +
2m + 1

r

�

�r
− 2br4�Rm + gr2mRm

3 + m�Rm

+ ��M̃ − M�Rm, �35�

dM̃

d

= ��M0 − M�, M�
� = 2�

0

�

r2m+1Rm
2 dr . �36�

Once stationary solutions were found, their stability was ex-
amined by means of computation of the respective eigenval-
ues, using the Bogoliubov-de Gennes equations, i.e., the lin-
earization of Eq. �1�, for small perturbations built �for given
m� as superpositions of components with vorticities m�1
�such perturbation modes turn out to be most dangerous in
terms of the instability�.

The results, in the form of a stability diagram in the plane
of �� ,g� for m=0,1 ,2 ,3 ,4 ,5, are presented in Fig. 6�a�.
Each stability domain for m�1 is bounded by two curves,
which are generated by critical perturbation eigenmodes that
are found to be, respectively, real and imaginary, with respect
to unperturbed amplitude functions Rm�r�. This stability dia-
gram is qualitatively similar to those reported in the model
with a mixed quadratic-quartic radial trap �12,13�. For given
��0, vortices with m�0 can be found, too, but they all are
unstable. This instability can be readily explained by the fact
that the Coriolis term in the vortex’ energy, which is propor-
tional to −m�, is positive for m�0, see Eq. �38� below.

While the increase of � at fixed self-attraction coefficient
g leads to the transition to vortices with larger m, the vortex
states become unstable with the increase of g, being replaced
by crescent-shaped ones, as shown in Fig. 7. In Refs.
�12,14�, similar patterns were interpreted �in models with the
local and nonlocal nonlinearity, respectively� as superposi-
tions of vortices with three different values of the topological
charge, viz., given m and m�1. This fact agrees with the
above-mentioned finding that perturbation modes which can
destabilize a given vortex carry vorticities m�1. Further in-
crease of g leads to a reduction of the crescent’s length and
its gradual compression into a strongly localized c.m. state,
alias quasisoliton, which carries an intrinsic phase gradient
along the azimuthal direction, see Fig. 7�c�; note that the
value of g corresponding to the quasisoliton falls below the
collapse threshold. The shift of the c.m. state from the rota-
tion pivot increases with �. This quasisoliton is similar to
the edge state of the LLL type shown above in Fig. 4.

In the limit of large m, the stationary version of Eqs. �35�
and �36� give rise to a simple asymptotically exact solution,
which does not depend on g and b,

Rm�r� = �M0�m+1/��m!�exp�− �r2/2� �37�

�recall we here fix the norm as M0=4�. This solution, and
numerical results obtained for finite m, suggest to approxi-
mate the stationary solution for vortices by ansatz 	
=Aeim�rm exp�−�r2�, whose norm is M0=�m!�2��−�m+1�A2.
The substitution of the ansatz in Eq. �2� yields the corre-
sponding expression for the energy,

E

M0
= − m� +

�m + 2��m + 1�b
4�2 + ��m + 1�

− �2m�!M0g�/�22m+1�m!�2�� . �38�

Then, width parameter � for the solution sought for is deter-
mined by the minimization of the energy, �E /��=0, which
yields

�−3 =
2

b�m + 2��m + 1��m + 1 −
�2m�!M0g

22m+1�m!�2�
� . �39�

On the other hand, a quasisoliton with the c.m. located at
distance x0 from the pivot, see Fig. 7�c�, may be approxi-
mated by the anisotropic ansatz, which is similar to the one
used above in Eq. �25�,

0

0.02

0.04

0.06

0.08

0.1

0.22 0.26 0.3 0.34 0.38
0

0.1

0.2

0.3

0.4

0.2 0.25 0.3 0.35 0.4

gg

FIG. 6. �a� The numerically generated stability diagram for vor-
tices with different values of topological charge m, in the plane of
the rotation frequency and strength of the attractive interaction, �
and g, in the model with the quartic confining potential. �b� Regions
where the variational approximation predicts that vortices with
charge m or c.m. states, alias quasisolitons �the black area�, provide
for a minimum of the energy.

FIG. 7. Generic examples of
stable matter-wave patterns in the
rotating condensate confined by
the quartic potential are shown by
means of contour plots of
	Re�	�x ,y��	: �a� a vortex with m
=4, for g=0.01, �=0.35; �b� a
crescent, for g=0.001, �=0.5; �c�
a strongly compressed c.m. state
�quasisoliton�, for g=0.5, �=0.5.
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� = A exp�iky − ���x − x0�2 + �y2�� , �40�

with norm M0=�A2 / �2����. If this c.m. state was generated
by an unstable vortex with charge m, comparison of the azi-
muthal phase gradients suggests that k=m /x0. When substi-
tuted in Eq. �2�, ansatz �40� yields

E

M0
=

� + � + k2

2
− �kx0 −

g���M0

2�

+
b�3�2 + 2���1 + 12�x0

2� + �2�3 + 8�x0
2 + 16�2x0

4��
16�2�2 .

�41�

Values of the variational parameters are predicted by equa-
tions �E /�x0=�E /�k=�E /��=�E /��=0, which yield, in
particular,

k = �x0, x0
2 = ��2�� − b�3� + ���/�4b��� , �42�

if x0�0. Another solution, with x0=0 �an isotropic soliton
sitting at the center, which is stable for small �� has k=0 and
�=�= ��2�b� / �2�−M0��1/3. Further analysis of the VA so-
lutions �without fixing M0=4� demonstrates that they predict
the collapse �nonexistence of solutions� at M0�2�, in ac-
cordance with the known variational result �21�.

Using the VA solutions and expressions �38� and �41�, we
have identified, as shown in Fig. 6�b�, regions in parameter
plane �� ,g� where vortices with particular integer values of
m, or the c.m. state provide for the minimum of the energy,
i.e., determine the ground state. Comparison with the nu-
merically identified stability regions for vortices in Fig. 6�a�
demonstrates that the VA predicts transitions between differ-
ent values of m with the increase of � quite accurately. The
discrepancy in Fig. 6 between the numerical and variational
plots in the direction of g has an obvious reason: the VA does
not take into regard the other species of the localized states,
viz., crescents, alias mixed-vorticity states �see Fig. 7�b��. In
fact, crescents have their own domain of the energy domi-
nance, between those of the vortices and c.m. states. Note
that solution �37�, which is asymptotically exact for m→�,
and expression �38� predict the equality between energies of
vortices with m and m+1, i.e., borders between the energy-
dominance areas of these states �for g→0�, at �m
��4bm�1/3. To directly test the accuracy of the VA, in Fig. 8

we display a comparison between characteristics of the qua-
sisolitons, viz., c.m. offset x0, amplitude A, and wave number
k, as found from numerical results and predicted by the VA.

The variational results presented above suggest that the
model may also support a pair of c.m. states placed at dia-
metrically opposite points. Indeed, Eq. �42� gives rise to two
roots, x0= ����2��−b�3�+��� / �4b���, which correspond
to opposite values of y wave number k. Such stable qua-
sisoliton pairs can be readily found from the numerical solu-
tion, see a typical example in Fig. 9. In the experiment, the
pair can be created, for instance, by originally adding a
strong blue-detuned �repulsive� light sheet which cuts the
circular trap into semicircles. After two c.m. states have self-
trapped, the sheet may be turned off, to restore the axial
symmetry of the trap.

V. THE MOTION AND COLLISIONS OF QUASISOLITONS

Although they were obtained above as quiescent solu-
tions, the localized c.m. states can be readily set in motion by
the application of tangential kick exp�iqy� with wave number
q, similar to how this was done above for the LLL localized
modes. As a result, the quasisoliton exhibits rotary motion,
following a trajectory in the form of an epitrochoid, see a
typical example in Fig. 10.
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FIG. 8. Parameters of stable quasisolitons trapped in the quartic axisymmetric potential, as found from the numerical computations
�circles� and predicted by the variational approximation �curves� for g=1: �a� the shift from the rotation pivot; �b� amplitude; �c� intrinsic
wave number.

FIG. 9. A generic example of a stable pair of two strongly com-
pressed c.m. states found for g=0.5, �=0.5.
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Following the approach elaborated above for the moving
LLL modes, we present a similar analytical description of the
kicked quasisoliton in the model with the quartic confine-
ment. To this end, we adopt the same ansatz �20� as used
above, and use the Lagrangian corresponding to Eq. �32�,

L = � i

2
��t�* − �

t
*�� −

1

2
	��	2 + ��*L̂z� +

g

2
	�	4

− br4	�	2�dr , �43�

cf. Eq. �19�. The substitution of the ansatz in this Lagrangian
and straightforward calculations lead to the following equa-
tions of motion for the c.m. mode:

d2x0

dt2 = 2�
dy0

dt
−

�Ueff

�x0
,

d2y0

dt2 = − 2�
dx0

dt
−

�Ueff

�y0
, �44�

with Ueff�r�=−�1 /2��2r2+br4+ �2b /��r2. Figure 10�b� dis-
plays a counterpart of the numerically found trajectory from
Fig. 10�a�, as produced by Eqs. �44� for g=1, b=0.002, and
�=0.532. The initial velocity is dx0 /dt=0, dy0 /dt=1. It is
seen that the VA matches the numerical findings very well in
this case, too.

The possibility of the motion of the c.m. states suggests to
consider collisions between them, also in analogy with what
was done above for the LLL modes. In Fig. 11, we display a
typical example of the collision, which is generated by ap-
plying kicks with q= �0.5 to identical quasisolitons with
their c.m. placed, originally, at diametrically opposite points
�in the experiment, such an initial configuration can be cre-
ated as outlined at the end of the previous section�. The

kicked solitons are no longer identical because term �L̂z in
Eq. �32� breaks the symmetry between the clockwise and
counterclockwise directions of the rotation. Nevertheless, the
collisions are elastic, with the quasisolitons recovering their
shapes after the collision.

VI. CONCLUSION

We have revisited the 2D model of rotating BEC with
attraction between atoms. Two different situations of special
physical interest were considered: the one with the critical
strength of the quadratic confining potential, and the purely
quartic axisymmetric trap. In the former case, the linear limit
of the GPE �Gross-Pitaevskii equation� is tantamount to the
Schrödinger equation for a charged particle moving in the
uniform magnetic field. We have demonstrated that the ac-
tion of the self-focusing nonlinearity on the localized state
corresponding to the wave function at the LLL �lowest Lan-
dau level� gives rise to stable quasisolitons. These states,
both quiescent ones and those set in motion by the kick, or
under the action of the ramp potential, are very accurately
described by the VA �variational approximation�. We have
also considered the situation when an external weak 1D
quartic potential acts in combination with the ramp, which
gives rise to edge states emulating the Hall effect in terms of
the matter-wave quasisolitons.

In the case when the axisymmetric trap is represented by
the quartic potential, we have developed the VA which pro-
vides for an accurate description of two species of stable
localized states in the model, namely, vortices with an arbi-
trary value of the topological charge, and c.m. modes shifted
off the rotation pivot, alias quasisolitons. Stable states in the
form of two c.m. modes placed at diametrically opposite
sites were found too. The other species, crescents, was ob-
tained in the numerical form. It was also demonstrated that
kicking the c.m. state in the tangential direction sets it in
motion along an epitrochoidal trajectory, and collisions be-
tween such solitons are elastic. The motion of the kicked
quasisoliton in the latter situation is also accurately predicted
by the VA.
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FIG. 10. �a� The trajectory of the c.m. motion of a quasisoliton
kicked with wave number q=1, for g=1, �=0.5, in the model with
the quartic axisymmetric trap. �b� Its counterpart predicted by the
variational approximation.

(a) (b) (c)

FIG. 11. Snapshots of 	Re���x ,y , t��	, at �a� t=10, �b� t=50, and
�c� t=90 illustrating an elastic collision between counter-rotating
c.m. states kicked by q= �0.5, at g=0.5, �=0.5.
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