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We discuss the effect of an adiabatic rotation on the phase separation between the superfluid and normal
component of a trapped polarized Fermi gas at unitarity and zero temperature, under the assumption that
quantized vortices are not formed. We show that the Chandrasekhar-Clogston limit n↓ /n↑ characterizing the
local polarization in the normal phase at the interface is enhanced by the rotation as a consequence of the
centrifugal effect. The density profiles �local and column integral� of the two spin species are calculated as a
function of the angular velocity for different values of the polarization. The critical value of the angular
velocity at which the superfluid exhibits a spontaneous quadrupole deformation is also calculated for the
unpolarized case.
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I. INTRODUCTION

Recent experiments �1–5� have shown that a polarized
Fermi gas at unitarity and zero temperature undergoes a
phase separation between a central unpolarized superfluid
component and an external polarized normal gas. Experi-
ments, where surface tension effects are not important and
the local density approximation �LDA� is applicable, have
revealed the occurrence of a critical value of the polarization

P =
N↑ − N↓

N↑ + N↓
�1�

of the gas above which the superfluid component disappears.
It is found that such a critical value is Pc�77%.

The study of spin-polarized Fermi gases has been the ob-
ject of several theoretical papers. In �6,7� the equations of
state of uniform matter for the superfluid and for the polar-
ized normal phases, calculated with ab initio Monte Carlo
simulations, have been employed within a local density ap-
proximation to treat the effect of the harmonic trapping in the
unitary regime �8�. These calculations were proven to be
very efficient not only in reproducing the experimental value
of the critical polarization, but also the density profiles of the
two separate spin components. Therefore, they provide an
accurate and consistent description of the phase separation
exhibited by the unitary Fermi gas at zero temperature. In
particular, the discontinuity characterizing the spin-down
density at the interface between the superfluid and normal
components, as well as the typical knee revealed by the col-
umn density of the same spin-down component, are dramatic
features reproduced with high accuracy by theory. These cal-
culations have pointed out the crucial role played by the
interactions in the normal phase �7�.

The purpose of this paper is to explore the rotational prop-
erties of these polarized Fermi gases �see the sketch in Fig.
1�. It is well known that the response to a transverse probe,
like the rotation, is a crucial tool to test the superfluidity of a
system. In a trap, this can be achieved by rotating the con-

fining potential. While a normal gas rotates in a classical
rigid way, a superfluid features a different behavior. The phe-
nomena exhibited by superfluids include the quenching of
the moment of inertia at small angular velocities and the
appearance of quantized vortices at higher velocities. Vorti-
ces have already been observed in these polarized configu-
rations and shown to disappear for high polarizations. In a
recent paper �9� we have predicted that a trapped rotating
Fermi gas at unitarity exhibits a further interesting phenom-
enon, associated with the breaking of superfluidity in the
external region. Indeed atoms prefer to be in the normal
phase because of the energy gain associated with the rota-
tion. This mechanism of the depletion of the superfluid due
to the rotation has also been recently confirmed within BCS
mean-field theory �10�. The occurrence of this phenomenon
requires proper conditions of adiabaticity in the ramping of
the rotation of the trap in order to avoid the formation of
vortices, a condition that has been already successfully real-
ized in rotating Bose-Einstein condensates �11�.

In a polarized Fermi gas the phase separation between the
superfluid and the normal component is already present in
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FIG. 1. �Color online� The typical shell structure of the trapped
system consisting of a superfluid core �red� surrounded by a par-
tially �green� and fully polarized �blue� normal shell for a polariza-
tion P=44% and �=0.5��. The superfluid is squeezed in the radial
direction while the normal part exhibits the bulge effect of the
rotation.
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the absence of rotation, so that the effect of the rotation is
expected to further enhance the mechanism of depletion of
the superfluid with new visible consequences on the density
profiles of the two spin components. The explicit investiga-
tion of these features represents the main goal of the present
paper.

This paper is organized as follows. In Sec. II we introduce
our model and investigate the effect of rotation on the phase
separation between normal and superfluid within the LDA.
The results are discussed in Sec. III. In Sec. IV we calculate
the critical frequency for the breaking of axisymmetry of the
superfluid core and finally in Sec. V we draw our conclu-
sions.

II. POLARIZED FERMI GAS IN A ROTATING TRAP

As already mentioned throughout the paper we assume
that only two homogeneous phases are possible: A polarized
normal phase and an unpolarized superfluid one �12�.

The normal state of a polarized Fermi gas at unitarity has
been first introduced and discussed in �6,13,14�. Figuratively
it can be understood as a sea of spin-↑ atoms to which con-
stantly spin-↓ atoms are added. Since at unitarity there are no
interaction length scales, the energy of the system at zero
temperature can be written in terms of the Fermi momentum
kF↑ of the majority component and the concentration x
=n↓ /n↑ of the minority atoms. As soon as the concentration
reaches the critical value xc=0.44 the system starts to nucle-
ate a superfluid region.

In the unitary limit of infinite scattering length the depen-
dence of the energy of the normal phase on the concentration
x can be written as �6,7�

EN�x�
N↑

=
3

5
EF↑�1 − Ax +

m

m*
x5/3 + Bx2� =

3

5
EF↑g�x� � �N�x� ,

�2�

where N↑ is the total number of ↑ atoms, EF↑
=�2 /2m�6�2n↑�2/3 is the ideal gas Fermi energy, and m the
atomic mass. The values of the spin-down single-particle en-
ergy A and of the effective mass m* have been calculated
both analytically and numerically �6,15,16�, the parameter B
is known by fitting Monte Carlo results. The most recent
Monte Carlo calculations give A=0.99�1�, m*=1.09�2�, and
B=0.14 �17�. The parametrization �2� reproduces the Monte
Carlo results for the energy of the normal state not only in
the low x regime, but also for large values of the concentra-
tion parameter.

On the other hand, the equation of state for the superfluid
phase is simply given by

ES

NS
= �S

3

5

�2

2m
�6�2nS�2/3 � �S�nS� , �3�

where NS is the number of atoms in the superfluid phase, nS
the superfluid density �equal to the spin-up and spin-down
density� and the interaction parameter �S=0.42 is known
from ab initio quantum Monte Carlo simulations �18,19�.

We consider a polarized Fermi gas at unitarity confined by
a harmonic potential V�r�=m��x

2x2+�y
2y2+�z

2z2� /2, rotating

with angular velocity � along the z axis. We study the prob-
lem in the rotating frame of the trap, where the potential is
static and the Hamiltonian contains the additional term
−�LZ. We stress once again that the response of a superfluid
to an external rotation is multifaceted and can depend on
whether one ramps up the angular velocity very fast or in an
adiabatic way. In the following we will not take into account
the formation of vortices. This is best ensured by assuming
that the angular velocity is ramped up adiabatically.

In the LDA the grand canonical energy of the rotating
configuration at zero temperature takes the form

E =	 dr��„n↑�r�,n↓�r�… + V�r� +
1

2
mv2 − m��r � v�Z�n�r�

−	 dr�	↑
0n↑�r� + 	↓

0n↓�r�� , �4�

where �(n↑�r� ,n↓�r�) is the energy density per particle de-
pending on the n↑,↓�r� densities of the two spin species, v is
the velocity field, 	↑

0 and 	↓
0 are the chemical potentials of

the ↑ and ↓ particles, and n�r�=n↑�r�+n↓�r� is the total den-
sity.

We assume that the phase separation in the trap manifests
as the formation of an inner unpolarized superfluid core oc-
cupying the region r
RS�� ,�� surrounded by an external
normal shell, which is confined to RS�� ,��
r
RN�� ,��.
Here, we term RS�� ,�� the interface separating the super-
fluid from the normal phase and RN�� ,�� the Thomas-Fermi
radius of the gas where the density vanishes. Thus, the inte-
gral �4� splits into two parts

E = 2	
r
RS

dr

���S„nS�r�… − 	S
0 + V�r� +

1

2
mvS

2 − m��r � vS�Z�nS�r�

+ 	
RS
r
RN

dr��N„x�r�…n↑�r� − 	↑
0n↑�r� − 	↓

0n↓�r��

+ �V�r� +
1

2
mvN

2 − m��r � vN�Z�n�r� , �5�

where 	S
0 = �	↑

0+	↓
0� /2 is the superfluid chemical potential

and n↑,↓�r� the ↑ and ↓ densities in the normal phase. In the
above equation we have distinguished between the velocity
fields vS and vN in the superfluid and normal phases, respec-
tively.

To find the equilibrium conditions, we minimize the en-
ergy with respect to the densities, to the velocity fields as
well as with respect to the border surface. In the case of the
superfluid the velocity field obeys the irrotationality con-
straint and can thus be written as vS=�. Variation of the
energy with respect to the velocity potential  yields the
continuity equation

� · nS�� − � � r� = 0, �6�

while the variation with respect to the superfluid density nS
yields the LDA relationship
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	S
0 = �S

�2

2m
�6�2nS�2/3 + VS�r� , �7�

where VS�r�=V�r�+ 1
2mv2−m��r�vS�Z is the effective har-

monic potential felt by the superfluid.
Using the same procedure for the normal part �without the

irrotationality constraint� we get vN=��r, i.e., it rotates
rigidly. The variation with respect to the densities gives the
LDA expressions

	↑
0 = �g�x� −

3

5
xg��x�� �2

2m
�6�2n↑�2/3 + VN�r� , �8�

	↓
0 =

3

5
g��x�

�2

2m
�6�2n↑�2/3 + VN�r� , �9�

where the effective potential VN�r� felt by the particles in the
normal phase is now squeezed due to the rigid rotation ac-
cording to ��x

N�2=�x
2−�2, ��y

N�2=�y
2−�2.

By varying the energy �5� with respect to RS�� ,�� we
eventually find the equilibrium condition for the coexistence
of the two phases in the trap. This is equivalent to implying
that the pressure of the two phases be the same

�nS
2 ��S

�nS
�

r=RS

=
1

2
�n↑

2��N�x�
�n↑

+ n↓n↑
��N�x�

�n↓
�

r=RS

. �10�

Using the expressions for the energy densities �2� and �3� we
obtain an equation for the density discontinuity in the trap
given by

n↑�RS�
nS�RS�

= � 2�S

g„x�RS�…
�3/5

� �„x�RS�… , �11�

where x�RS� is the local concentration at the interface. Com-
bining the above equation with Eqs. �7� and �8� we find the
useful relationship

�	S
0 − VS�RS�� = �„x�RS�…�	↑

0 − VN�RS�� , �12�

determining the surface RS�� ,�� separating the superfluid
and the normal part.

Eventually using also Eq. �9� we find an expression which
implicitly defines the concentration as a function of the po-
sition at the interface

g„x�RS�… +
3

5
�1 − x�RS��g�„x�RS�… − �2�S�3/5�g„x�RS�…�2/5

=
2�VS�RS� − VN�RS��

EF↑�RS�
. �13�

In absence of rotation VS=VN�V the solution of Eq. �13�
yields the value x�RS�=0.44 �6�. This value coincides with
the maximum concentration achievable in the normal phase
of uniform matter before phase separation. Since the rotation
affects differently the potentials VS and VN, the value of the
concentration depends now on the angular position of the
interface. It ranges from a minimum value x�RS�0,���=xc
=0.44 along the z axis �where the effect of the rotation is
vanishing� to a maximum, �-dependent value x�RS�� /2,���
in the xy plane �where the effect of the rotation is largest�.

The effect of the rotation is thus to enhance the average
value of the concentration in the normal phase and hence to
favor the depletion of the superfluid �see Fig. 10 and discus-
sion below�. This is physically understood by noticing that in
the rotating frame the atoms in the normal part gain the en-
ergy 1

2mvN
2 �r� due to the centrifugal force. Thus, the energy

of the normal part can become smaller than the value in the
superfluid �9�. The main effect is to change the critical con-
centration xc at the interface �see Fig. 2 below�.

Notice, however, that the critical global concentration Pc
for the system to start nucleating the central superfluid core
is not affected by the rotation and keeps the nonrotating
value Pc=77% �see also Fig. 3�. The reason for that is easily
explained within the local density approximation used here.
Just above Pc the system is completely normal and the only
effect of the rotation is the squeezing of the transverse trap-
ping frequencies, while in the z direction the system remains
unaffected �see Eqs. �8� and �9��. Since at Pc the superfluid is
nucleated at the center of the trap where centrifugal effects
are absent, the local condition for equilibrium between the
superfluid and the normal component is the same as without
rotation. The calculation of the critical polarization proceeds
then in exactly the same way as without rotation, but for a
simple rescaling of the trapping frequencies which has no
effect on the value of Pc.

III. RESULTS

In the following we will assume �x=�y =�� and we con-
sider the solution vS=0, thus a nonrotating axisymmetric su-
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FIG. 2. �Color online� Concentration n↓ /n↑ for P=44%, �=0
�black small dashed�, �=0.3�� �orange dashed�, and �=0.5��

�turquoise solid� as a function of the polar angle �.
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FIG. 3. �Color online� Concentration n↓ /n↑ at the superfluid-
normal interface as a function of the polar angle � for �=0.5��

and different values of the polarization: P=77% �black solid�, P
=44% �turquoise dashed�, P=10% �pink dotted-dashed�, P=2%
�green long dashed�, and P=0 �black thin dashed�.
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perfluid and consequently VS�V. In this case the local con-
centration depends only on the polar angle � and the
superfluid radius takes the form

RS
2��� =

2

m

�	S
0 − �„x�RS�…	↑

0�
�1 − �„x�RS�…�

���z
2 cos2 � + ��

2 sin2 �

+
�„x�RS�…

1 − �„x�RS�…
�2 sin2 ��−1

, �14�

while the Thomas-Fermi radius RN of the normal gas is fixed
by the condition 	↑=VN�r� yielding

RN
2 ��� =

2	↑
0

m
��z

2 cos2 � + ��
2 sin2 � − �2 sin2 ��−1 � RS

2��� .

�15�

The values of the chemical potentials are fixed by the nor-
malization

	
r
RS

drnS�r� + 	
RS
r
RN

drn↑�r� = N↑ �16�

and

	
r
RS

drnS�r� + 	
RS
r
RN

drn↓�r� = N↓. �17�

In Fig. 2 we plot the concentration n↓ /n↑ at the interface
for P=44% as a function of the polar angle � for different
values of the angular velocity. The figure clearly points out
the increase of the concentration when one moves from the z
axis to the xy plane.

Complementary to this is Fig. 3, where we show the con-
centration n↓ /n↑ for a fixed angular velocity �=0.5�� and
different values of the polarization as a function of the angu-
lar position. This clearly reveals the nature of the normal
state by highlighting the two extreme and singular cases P
=77% and P=0%. As already pointed out, at the threshold
value P=77% for the nucleation of the superfluid, the rota-
tion does not affect the value of xc as evidenced by the solid
black line in Fig. 3. On the other hand, in the case that P
=0% the critical concentration is constant and singular

n↓ /n↑=1 for all angles but �=0. For all other values 0
 P

 Pc, the rotation has a considerable impact on the local
value n↓ /n↑.

The density profiles exhibit a typical shell structure. In
Fig. 4 we plot the radii of the superfluid �red�, ↑ �blue�, and
↓ �green� component in units of the Thomas-Fermi radius of
an ideal gas R↑

0 versus the angular velocity � /�� for a po-
larization P=44%. While the superfluid radius decreases un-
til the superfluid core completely vanishes at �=��, the
Thomas-Fermi radii of the ↑ and ↓ component diverge for
�=�� as a consequence of the centrifugal effect. It is curi-
ous to see that while the normal part exhibits the typical
bulge effect, the superfluid behaves in the opposite way. In
fact, its radial size becomes smaller than the axial one as a
consequence of the depletion caused by the rotation, with
consequently inversion of the behavior of the aspect ratio
R� /RZ �see Fig. 1�.

It is worth mentioning that at large enough angular veloci-
ties the system exhibits solutions which break the axial sym-
metry �20�. Such critical value is predicted to be �cr

0.5�� as we discuss in detail in Sec. IV. The results in
Figs. 4, 10, and 11 for ��0.5�� �dashed vertical line� cor-
respond to the axial symmetric solution of the problem.

In an experiment the effect of phase separation as well as
the radius of the superfluid are best revealed as a knee in the
in situ column density n�,2D�����dzn��r�, with �= ↑ ,↓.
These observables can nowadays be measured with high pre-
cision using phase-contrast image techniques. We expect that
the position of the knee for a fixed polarization will depend
on the angular velocity. This is clearly shown in the column
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FIG. 4. �Color online� Radii in units of R↑
0 versus angular veloc-

ity for �=� /2 of the superfluid �red�, n↑ �blue�, and n↓ �green� for
a polarization P=44%.
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FIG. 5. �Color online� Column densities of the n↑ �blue� and n↓
�green� component in a spherical harmonic trap for a polarization
P=44% and �=0 �dashed lines� and �=0.5�� �solid lines�.
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FIG. 6. Difference of the column densities of the n↑ and n↓
components in a spherical harmonic trap for a polarization P
=44% and �=0 �dashed line� and �=0.5�� �solid line�.
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density of the majority �↑, blue� and the minority �↓, green�
components, Fig. 5, for �=0 �dashed� and �=0.5�� �solid�,
as well as in the density difference, Fig. 6. The knee is a
direct consequence of the discontinuity exhibited by the
three-dimensional density shown in Figs. 7 and 8, where we
plot nS �red�, n↑ �blue�, and n↓ �green� in a spherical trap for
�=0 and �=� /2, respectively. The densities and the radial
coordinate have been renormalized with respect to the central
value of n↑

0 and the Thomas-Fermi radius R↑
0 of an ideal gas.

In accordance to the results for the superfluid radius shown
in Fig. 4 the discontinuity in the density takes place at a
smaller value of the radius compared to the nonrotating con-
figuration. It is worth noticing that this knee is also exhibited
by the total density of the unpolarized gas �Fig. 9�, reflecting
the density discontinuity produced by the rotation �9�.

For �=0 the densities n↑ and n↓ jump from the superfluid
value nS to the values n↑
1.01nS and n↓=xcn↑�0.44nS as
one enters the normal phase, precisely as in the nonrotating
case �6�. Yet for �=� /2 the behavior is different and in
particular for �=0.5�� the densities jump from nS to n↑
�0.99nS and n↓�0.55nS. The smaller relative jump with
respect to the nonrotating case reflects the smaller polariza-
tion �higher concentration x� exhibited by the rotating normal
phase at the interface.

Further insight on the effect of the rotation is provided by
the depletion of the superfluid. In Fig. 10 we plot the ratio
between the number of particles in the superfluid NS and the
total number N �superfluid fraction� as a function of the an-

gular velocity. This effect is especially pronounced for small
polarizations �Fig. 10 black line, P=0� since the depletion
for higher polarization is large already in the nonrotating
case.

Finally in Fig. 11 we plot the angular momentum LZ
=��dr�x2+y2�nN�r� of the system for different polariza-
tions. For an axisymmetric configuration the superfluid does
not carry angular momentum which is then provided only by
the normal component. Hence, the more particles are in the
normal part, the stronger the response of the system to the
rotation.

IV. QUADRUPOLE INSTABILITY INDUCED BY THE
ROTATION

In the preceding section we have shown that the effect of
the rotation applied to a polarized Fermi gas at unitarity is to
enhance the depletion of the superfluid.

A further important effect is the spontaneous breaking of
axisymmetry. In fact, one expects that above a certain critical
value �cr the system exhibits a surface energetic instability,
undergoing a continuous shape deformation, similarly to
what happens in Bose-Einstein condensates �11,20,21�. This
effect is accounted for by the solution vS�0 of Eq. �6�
which becomes energetically favorable above �cr.

In the case of Bose-Einstein condensates the quadrupole
instability occurs at �cr=�� /�2 when the �=�2�� hydro-
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FIG. 7. �Color online� Density profiles for �=0 of the superfluid
�red�, n↑ �blue�, and n↓ �green� in a spherical harmonic trap for a
polarization P=44% and �=0.5�� in units of the central density of
the noninteracting gas �dashed line�.
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FIG. 8. �Color online� Density profiles for �=� /2 of the super-
fluid �red�, n↑ �blue�, and n↓ �green� in a spherical harmonic trap for
a polarization P=44% and �=0.5�� in units of the central density
of the noninteracting gas �dashed line�.
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FIG. 9. �Color online� Total column density of the unpolarized
system in a spherical harmonic trap for �=0 �dashed red line, su-
perfluid at rest�. For �=0.5�� the system consists of a superfluid
core surrounded by a normal shell where n↑=n↓.
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FIG. 10. �Color online� Evolution of the superfluid particle
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�pink dotted-dashed�, P=25% �orange large dashed�, and P=44%
�turquoise small dashed�, as a function of � /��.
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dynamic quadrupole mode becomes energetically unstable in
the rotating frame �20�. A different value is predicted to oc-
cur for the rotating Fermi gas, due to the new boundary
conditions imposed by the presence of the normal compo-
nent �22�. In fact, the current of the superfluid, in the rotating
frame, should be tangential to the interface where the den-
sity, differently from the Bose-Einstein condensate �BEC�
case, does not vanish.

In the following we will determine the value of the critical
velocity in the simplest case of a rotating unpolarized gas
and we will consider the onset of a quadrupole deformation.

We consider an axially symmetric potential �x=�y =��

��z and a solution where axisymmetry is spontaneously
broken. This is associated with the appearance of a nonvan-
ishing velocity field in the superfluid component whose ve-
locity potential will be chosen of the form

 = xyf�r2,z2� , �18�

where f is an arbitrary function of r2=x2+y2 and of z2. Note
that in the case of the quadrupole instability of a Bose-
Einstein condensate an exact stationary solution is found
with f =const.

The value of �cr corresponds to the onset of solutions
with a deformed configuration. It is determined by solving
the continuity equation in the rotating frame

� · ��� − � � r�nS�r�� = 0, �19�

where nS�r� is now no longer axisymmetric and by imposing
that the superfluid current be tangential to the boundary B�r�
of the superfluid

�� − � � r� · �B�r�r=RS
= 0. �20�

The density, in the local density approximation, is given by

nS�r� =
1

�S

1

6�2�2m

�2 �3/2

�	 − VS�r��3/2, �21�

where VS�r�=V�r�+ 1
2mvS

2 −m��r�vS�Z is the effective har-
monic potential felt by the superfluid. By expanding the ex-
ternal potential to first order in f as VS�r�=V�r�+�VS�r� with
�VS�r�=−m����r�, one finds nS�r�= �	−V�r��3/2− 3

2 �	
−V�r��1/2 ·�VS�r�. At the same time the border can be written

as B�r�=B0�r�+�B�r�, where B0�r� is the radius of the su-
perfluid given by �9�

RS
2��� =

2	

m
��z

2 cos2 � + ��
2 sin2 � +

�

1 − �
�2 sin2 ��−1

,

�22�

and �B�r�=−m� · ���r� is the linear perturbation due to
the quadrupole symmetry breaking.

Then, Eqs. �19� and �20� reduce to

�	 − V�r��� +
3

2
���VS�r�� · �� � r� −

3

2
� V�r� · � = 0

�23�

and

 �  · �B0�r� − �� � r� · ��B�r�r=RS��� = 0. �24�

By inserting the explicit expressions of the respective func-
tions in Eqs. �23� and �24�, after some straightforward alge-
bra �23� we obtain

�2�2 − 1�f + 2
3 �1 − r2 − z2��r2frr + z2fzz� + �2 − 3r2 − 2z2�fr

+ 1
3 �1 − r2 − 4z2�fz = 0 �25�

and

��1 − ��1 − �2� − 2�2�f + �1 − ��1 − �2��r2fr + �1 − ��z2fz�

��1 − r2 − z2�3/2r=RS��� = 0, �26�

where the latter equation is evaluated at the interface equa-
tion �22�. In Eqs. �25� and �26�, fr�z� is the first derivative of
f with respect to r �z�, frr�zz� the second, and the expressions
have been renormalized with respect to the radius of a super-
fluid at rest �RS

0�2=2	 /m��
2 and we have made the substitu-

tion � /��→� and the assumption �z=��.
In the case of a two-dimensional system �RS����RS� the

previous equations can be easily solved. In this case indeed
Eqs. �25� and �26� reduce to

�2�2 − 1�f�r2� + �2 − 3r2�fr�r2� + 2
3 �1 − r2�r2frr�r2� = 0

�27�

and

�1 − ��1 − �2� − 2�2�f�r2� + �1 − ��1 − �2��r2fr�r2�r=RS

= 0, �28�

the latter being evaluated at

RS
2 �

�1 − ��
�1 − ��1 − �2��

. �29�

The solutions of the continuity equation �27� are hyper-
geometric functions 2F1�a ,b ,c ;r2� �24�, with the coefficients
a, b, and c given by

a = 7
4 − 1

4
�25 + 48�2,

b = 7
4 + 1

4
�25 + 48�2,
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FIG. 11. �Color online� Angular momentum LZ in units of the
rigid value for different polarizations �black solid P=0, pink dotted-
dashed P=10%, orange large dashed P=25%, and turquoise small
dashed P=44%� as a function of � /��.
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c = 3. �30�

Inserting these solutions in the boundary condition �28�,
we find the value �cr=0.45�� for the emergence of a spon-
taneous quadrupole deformation in two dimensions.

For the three-dimensional case the calculation is more
cumbersome and can be solved only numerically. The results
of the numerical calculation yield the estimate �cr
0.5��

for the critical angular velocity in three dimensions. Notice
that both in two and three dimensions the critical velocity is
predicted to be smaller than the value �cr=�� /�2 holding in
the BEC case.

V. CONCLUSIONS

In conclusion we have analyzed the effect of adiabatic
rotation on a polarized Fermi gas at unitarity assuming phase
separation between a superfluid and a normal phase. We find
that the normal phase is energetically favored by the rotation
and thus the superfluid is further depleted with respect to the
nonrotating configuration. The normal region exhibits the
typical bulge effect due to the centrifugal force while the
superfluid is squeezed. This has clear observable effects on
the density profiles which can be addressed experimentally.
A striking feature is that although the global polarization is
not affected by the rotation, the concentration n↓ /n↑ at the
border increases from the nonrotating value on the z axis to a
maximum value in the xy plane.

We have also addressed the question of quadrupole insta-
bility of the superfluid core, which produces a spontaneous
breaking of axial symmetry of the cloud. The critical fre-
quency for the onset of the instability turns out to be smaller
than in the BEC case. Its measurement would provide a fur-
ther crucial test of the mechanism of phase separation and of
the equation of state of the normal phase �6,7,25�.

In our work we assume that the polarized system phase
separates in only two phases. This assumption works ex-
tremely well for the experiment carried out so far �7�. In the

rotating case other phases could show up and it would be
very interesting to see how they affect our results. For ex-
ample, within BCS theory a third superfluid phase is found to
occupy a small region at the interface �10�. Unfortunately we
know that BCS theory is quantitatively �and sometimes also
qualitatively� not correct. A more microscopic investigation
of the phase separation at unitarity would be neccessary to
settle the problem.

Finally, let us briefly argue on the possibility of having a
rotating system without vortices in the superfluid, which is
the main assumption of the present work. If the vortices
could enter the superfluid, the lowest energy configuration
would not be the one discussed in the paper, but rather a
superfluid core with vortices surrounded by a rotating normal
shell, as also experimentally seen in �1�. We expect that there
exists a barrier for a vortex to enter the superfluid, as hap-
pens for a BE condensate. The interface caused by the polar-
ized fermions could however change the scenario. On the
one hand, the phase separation in the trap should disfavor the
vortex formation as the superfluid density is finite at the
interface. On the other hand, since there is a relative velocity
between the superfluid and the normal shell, vortex nucle-
ation could be favored by a Kelvin-Helmoltz-like mecha-
nism. Moreover, we have shown that the interface reduces
the critical angular velocity for a quadrupole instability. In
the BEC case the latter is considered as a route toward vortex
formation �11�. In the end, more theoretical and experimental
work is needed to enlighten the issue of vortex nucleation in
these polarized systems.
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