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We theoretically demonstrate that the strong field dynamics such as above-threshold ionization and high-
order harmonic generation can be significantly altered by the introduction of the time-delayed two-color laser
field consisting of the near-infrared and mid-infrared frequencies. Specifically we apply the idea to the one-
dimensional hydrogen atom, and show that the strong field dynamics significantly depend on the time delay
between the two fields, as represented, for instance, by the change of the cutoff energies of above-threshold
ionization and high-order harmonic generation. It turns out, however, that the delay dependence is different for
those processes. In particular, if the duration of the near-infrared pulse is as short as a few cycles, its carrier-
envelope phase also plays a very important role. Our classical results for the two processes are consistent with
the numerical results.
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I. INTRODUCTION

The interaction of an atom with an intense laser field has
revealed many interesting phenomena such as above-
threshold ionization �ATI� �1� and high-order harmonic gen-
eration �HHG� �2�. Since the first experimental discoveries of
ATI and HHG in the late 1970s and early 1990s, respectively,
those processes have been extensively investigated from both
theoretical and experimental aspects �3–5�.

While the goal of many studies on the ATI and HHG
processes is to provide clear understanding for the processes
of interest, there are also many other studies with a flavor of
coherent control, the aim of which is to improve the outcome
after the strong field interaction where “improve the out-
come” means the enhancement of the HHG signal �6� and the
extension of the HHG cutoff energy, etc. To enhance the
HHG signal, for example, a two-color field consisting of the
fundamental field �800 nm� and its second �7,8� or third har-
monic �9� is often employed with the controlling parameters
such as the relative phase and/or the intensity ratio between
the two fields, and/or laser polarization. Recently dramatic
enhancement of high-order harmonics is experimentally re-
alized via mixing gases with different ionization potentials
�10�. Extension of the HHG cutoff energy is more demand-
ing, since it is essentially determined by the ponderomotive
energy, which is directly connected with the photon energy
and field amplitude. Nevertheless, a few ideas have been
proposed. For example, a combination of the 800 nm field
and the dc field is employed to extend the HHG cutoff en-
ergy �11–13�. Such schemes, however, require an extremely
strong dc field, and naturally they are rather impractical for
experimental realization. As an alternative, one may replace
the dc field by an ac field with a sufficiently long optical
period compared with the duration of the 800 nm pulse
�14,15�. Namely, a two-color field consisting of the funda-
mental �near-infrared� field with a short pulse duration and
the long wavelength �mid- or far-infrared� field can be a

useful tool to control the strong field dynamics. The dynam-
ics induced by the two-color �near-infrared plus mid-
infrared� field must be certainly different from those induced
by the other kind of two-color �near-infrared plus its second-
and/or third-harmonic generation� field due to the completely
different optical period of the additional field.

To our knowledge, however, investigation on the strong
field dynamics by the two-color �near-infrared plus mid-
infrared� field in terms of the time delay between them and
the carrier-envelope phase �CEP� still lacks in the literature,
in particular for the ATI process. Moreover, very few papers
report the study on both ATI and HHG processes even for the
single-color field in the long wavelength �16–20�. Note that
the ATI and HHG processes are strongly related and comple-
mentary to each other, and hence studying both processes
should help us to deepen the physical understandings.

The purpose of this paper is to investigate the ATI and
HHG processes under the time-delayed two-color laser field
consisting of the near-infrared and mid-infrared frequencies.
Through the numerical solution to the one-dimensional �1D�
time-dependent Schrödinger equation �TDSE�, we show that
the strong field dynamics significantly depend on the time
delay between the two fields, as represented, for instance, by
the change of the cutoff energies of ATI and HHG. The delay
dependence, however, turns out to be different for those pro-
cesses. Furthermore, we show that, if the duration of the
near-infrared pulse is as short as a few cycles, the CEP of the
near-infrared pulse also plays a very important role. We ad-
ditionally perform the classical analysis to shed some light
on the quantum mechanical �TDSE� results. Although we
specifically present results for the 1D hydrogen atom, the
underlying physics is rather clear and general, and can be
applicable to other system under a different context such as
Coulomb explosion of molecules and clusters �21�.

II. METHOD

To study the strong field dynamics, we numerically solve
the TDSE. It reads*t-nakajima@iae.kyoto-u.ac.jp
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i
���t�

�t
= �H0 + V�t����t� , �1�

where ��t� represents the total wave function of the system,
and H0 and V�t�, respectively, are the field-free atomic
Hamiltonian and the time-dependent interaction between the
electron and the laser field. Under the electric dipole approxi-
mation, V�t� is written as V�t�=E�t��̂ ·r with E�t� being the
electric field, �̂ the polarization vector, and r the position
operator of the electron. The atomic units �a.u., m=�=e=1�
are used throughout this paper, unless otherwise mentioned.
The electric field E�t� is defined via the vector potential A�t�
as E�t�=−�A�t� /�t. The vector potential of the two-color
field is defined as

A�t� = A1�t� + A2�t − �t�

= A10 cos2� �t

2�p1
�sin��1t + �1�

+ A20 cos2���t − �t�
2�p2

�sin��2�t − �t� + �2� . �2�

Here Ai0, �i, and �i�i=1,2� are the peak amplitude of the
vector potential, the central frequency, and the CEP for the
field i, respectively. To save the computation time, the
cosine-squared temporal field envelope is employed. The
pulse duration of field i, �pi, is defined for the full width at
half maximum �FWHM� as 2�Npi /�i, where Npi is the num-
ber of cycles for the FWHM. �t is the time delay of field 2
with respect to field 1. In this paper we specifically assume
that the two-color field consists of the 4 	m �field 1� and
800 nm �field 2� components. Since the 4 	m field can be
produced from the 800 nm field through the difference fre-
quency mixing, the time delay between the two fields can be
precisely controlled. Figure 1�a� �Fig. 1�b�� shows the rela-
tive positions of the two laser fields for three different time
delays for �2=0 ��2=0.5��. Note that the time delay is
defined in units of the optical period of the 4 	m field �
throughout this paper.

III. ATI AND HHG SPECTRA

In the following, without a loss of generality, we employ
a 1D atom �22� with a single-active-electron approximation
as the screened soft-core potential model, i.e., V�x�=
−
 /�1+x2, where 
 is an adjustable parameter. For the 1D
hydrogen atom, 
 is set to be 0.775, which yields the ground
state energy of −13.6 eV �23�. Once the TDSE given in Eq.
�1� has been solved using the Crank-Nicholson method, we
can calculate the ATI spectra by taking a projection of the
wave function, ��t�, after the pulse onto the positive energy
states, which are separately calculated by solving the “time-
independent” Schrödinger equation without the laser field
�17,22�. Since we use a box with a finite size, the continuum
states are described as discrete �quasicontinuum� states. To
increase the smoothness of the ATI spectra, we have em-
ployed a linear interpolation for the quasicontinuum energies
and averaged over four consecutive points. The HHG spectra
can be obtained by taking the fast Fourier transforms �FFTs�
of the dipole acceleration during the time propagation.

A. ATI spectra

We now present results for the ATI spectra. The laser
parameters we have chosen are Np1=2, I1=2�1012 W /cm2,
and �1=0 for the 4 	m field, and Np2=2, I2=5
�1013 W /cm2, and �2=0 for the 800 nm field, as shown in
Fig. 1�a�. The laser intensities have been chosen in such a
way that they result in the same ponderomotive energy
�3 eV� for each field. Note that we have assumed a short
pulse duration for the 4 	m field for the computational rea-
son, since, due to the use of the long wavelength field, the
box size to propagate the wave function must be very large.
This is particularly true for the ATI process if one wishes to
obtain the ATI spectra down to the cutoff region. In the fol-
lowing calculations, we set the box size to be 20 000 a.u.
with a spatial step of 0.1 a.u. One may have some concern
about the specific choice of the CEP’s, i.e., �1=�2=0, since
the pulse durations are as short as Np1=Np2=2 for both
fields. However, the effect of the CEP for the 4 	m field is
effectively taken into account through the small time delay �a
fraction of �� between the two fields. Therefore without so
much loss of generality we may choose the value for �1 as 0.
As for the 800 nm field, the CEP plays an important role as
we will show later on.

First we compare the ATI spectrum by the single-color
�800 nm� field with that by the two-color �4 	m+800 nm�
field with zero time delay. The results are shown in Fig. 2�a�.
For the single-color case, we find a typical behavior for the
high order ATI spectrum: As the photoelectron energy in-
creases, we observe a clear change of the slope, which is
followed by the cutoff. However, neither clear ATI peaks nor
clear plateau are observed due to the short pulse duration.
When the 4 	m laser field is additionally introduced with
zero time delay, the plateau and accordingly the cutoff posi-
tion is significantly extended. Needless to say, this is due to
the combined effect of the two fields. Note that the electron
ejection probability �signal intensity� around region B for the
two-color case is a little bit smaller than that around region A
for the single-color case.

FIG. 1. �Color online� Time-delayed two-color laser field con-
sidered in this paper. Specifically we assume 4 	m and 800 nm
laser fields with two-cycle �FWHM� durations �Np1=Np2=2�, and
the CEPs of �1=0, and �a� �2=0 and �b� �2=0.5�. The dashed
curve represents the 4 	m field, and the dot-dashed, solid, and
short-dashed curves represent the 800 nm laser field with delay
�t=−0.25�, 0, and +0.25�, respectively, where � stands for the
optical period of the 4 	m field.
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Now we change the time delay between the two fields.
The results are shown in Fig. 2�b�. The ATI spectra clearly
show the delay dependence: Not only the shape of the ATI
spectra but also the signal intensity are significantly altered
as the time delay changes. Note, however, that the height and
shape of the plateaus calculated by the 1D TDSE should not
be directly compared with the experimental results or 3D
TDSE results, since the electron motion is simplified in the
1D model. When the time delay is +0.25�, the plateau and
cutoff shift towards the high energy side compared with the
case of zero time delay. When the delay is −0.25�, one may
expect some difference in the ATI spectrum with that for the
+0.25� time delay, since the combined fields for �0.25� time
delays are different, as one can see from Fig. 1�a�. Indeed,
although the spectra in the low energy region �region C� are
similar, there exists a clear difference in the high energy
region �region D�; that is, for the former there is no clear
change of the slope. For the cases of �0.5� time delays, the
difference becomes larger, especially in the higher energy
region. This must be entirely due to the use of the time-
varying 4 	m laser field, since this should not happen if the
4 	m laser field has a constant envelope. Most importantly,
the cutoff energy turns out to be the maximum when the
delay is +0.25�. In Sec. III C we will make some compari-
sons with the classical theory.

B. HHG spectra

Having studied the ATI spectra, we now investigate the
HHG spectra. We increase the intensities for both fields by a
factor of 3 so that the plateaus in the HHG spectra become
more visible. Hence the ponderomotive energy is 9 eV for
each field now. All other parameters are taken to be the same
with those for the ATI spectra in Figs. 2�a� and 2�b�. Figure
3�a� shows the HHG spectra for the single-color �800 nm�

field and the two-color �4 	m+800 nm� field with zero time
delay. For the single-color case, we again find a typical be-
havior for HHG: We observe a clear plateau which is fol-
lowed by a steep cutoff at the energy 43 eV, which agrees
well with the well-known formula Ip+3.17Up, where Ip is the
ionization potential of the target atom and Up is the pondero-
motive energy. When the 4 	m field is additionally intro-
duced with zero time delay, the plateau is significantly ex-
tended to the higher-order harmonic energy. Because of the
use of only two-cycle pulses for 4 	m and 800 nm fields, the
appearance of the plateau for the two-color case is neither
very obvious nor flat, especially in the higher-order harmonic
energy region.

Now we change the time delay between the two fields.
The results are shown in Figs. 3�b� and 3�c�. The time delay
significantly affects the HHG spectra in terms of the posi-
tions of the cutoffs. This can be attributed to the different
values of the combined field amplitudes for the different time
delays. As we introduce the time delay such as �0.25�,
�0.5�, and others �not shown here�, the maximum harmonic
energies clearly decrease compared with that for zero time
delay. They are almost the same with that for the single-color
case. In addition, from Figs. 3�b� and 3�c�, we can ensure
that, only when the delay is zero, the cutoff energy can be the
maximum.

From Figs. 2 and 3, we see that the ATI and HHG pro-
cesses have a common feature: Use of the two-color field
significantly alters the strong field dynamics in terms of both
ATI and HHG processes, and the alteration is clearly delay-
dependent. It is important to note, however, that the maxi-
mum kinetic energy for HHG is at zero time delay, while it is
at the time delay of +0.25� for ATI. This difference comes
from the fact that the high-order ATI and HHG processes are
inherently different: The electron is eventually ejected in the
former while it is eventually recombined with the core in the

FIG. 2. �Color online� ATI spectra of 1D hydrogen atom irradi-
ated by the single-color �800 nm� or two-color �4 	m+800 nm�
laser field. �a� ATI spectra by the single-color �dashed curve� and
two-color �solid curve� fields with zero time delay. �b� ATI spectra
by the two-color field with different delays. The laser parameters
for the 4 	m laser field are Np1=2, I1=2�1012 W /cm2, and �1

=0, and those for the 800 nm field are Np2=2, I2=5
�1013 W /cm2, and �2=0.

FIG. 3. �Color online� HHG spectra of 1D hydrogen atom irra-
diated by the single-color �800 nm� or two-color �4 	m+800 nm�
laser field. �a� HHG spectra by the single-color �dashed curve� and
two-color �solid curve� fields with zero time delay. �b� and �c� HHG
spectra by the two-color field with different delays. The intensities
are I1=6�1012 W /cm2 and I2=1.5�1014 W /cm2 with all other
parameters taken to be the same with those for the ATI spectra in
Fig. 2.
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latter. Therefore the optimized time delays are different for
the two different processes. For a better and intuitive under-
standing, we perform the classical analysis in the next sub-
section.

C. Classical analysis

The classical theory of ATI by a single-color laser field
has been given in several papers �4, 5, 17, and references
therein�, which can be easily extended to the two-color case.
In the classical theory the electron’s motion is assumed as
follows: The electron is born at the origin with zero velocity
at time t0 �ionization time�, and subsequently it moves under
the influence of the laser field only. After some time, the
electron may return to the origin and experience the recom-
bination or elastic scattering with the core at time tr �recom-
bining or rescattering time�. The former and the latter pro-
cesses result in HHG and ATI, respectively. In this
subsection we calculate the classical electron trajectory and
investigate the temporal change of the electron kinetic en-
ergy in the single-color and time-delayed two-color laser
fields.

By solving the Newton’s equation dr�t� /dt2=−E�t�, we
find that the electron velocity v�t� at any time after ionization
can be obtained as v�t�=A�t�−A�t0� �t t0�. If the electron
returns to the origin, the relation �t0

trdtv�t�=0 must be always
satisfied. If it recombines with the core, the electron energy
is obtained by �A�tr�−A�t0��2 /2. If it is backscattered by the
core, the electron energy is obtained by �A�Tp�−A�tr�
−v�tr��2 /2. For the two-color case, A�t� must be replaced by
A1�t�+A2�t−�t�. Note that the rescattering can take place
more than once until the laser pulse is turned off at time Tp.
Here we only consider the first return, since, generally speak-
ing, the probabilities of the higher order returns should be
much smaller than that of the first return. We should point
out that the classical analysis we perform in this subsection
is slightly different from that by Milosevic et al. �5�, since
we need to take into account the electrons flying to both
directions along the laser polarization axis to compare with
our 1D TDSE results which has no resolution on the direc-
tion of electron ejection.

It should be kept in mind that the classical analysis does
not tell us with what probability the photoelectron ejection at
a certain kinetic energy takes place, although it does tell us
the change of electron kinetic energy as a function of ioniza-
tion time with an assumption that the electrons are already in
a laser field. That is, the classical analysis can take into ac-
count neither electron ejection, rescattering, nor recombining
probabilities. It has some limitations. Nevertheless, such an
analysis is very useful to obtain some insights for the ATI as
well as HHG dynamics �4,5,17�. For example, the well
known cutoff laws for HHG and ATI at 3.17Up and 10Up are
successfully obtained for the case of a single-color field. By
extending the analysis to the case of two-color field with or
without time delay, we could also obtain some insights which
would be helpful to understand the quantum mechanical re-
sults shown in Figs. 2 and 3.

In Figs. 4�a� and 4�b�, we show the classical results for
the kinetic energy of rescattered electron as a function of

ionization time t0 with the same laser parameters employed
for the calculation of ATI spectra in Fig. 2. The kinetic en-
ergy is in units of the ponderomotive energy by the 800 nm
laser field only, Up, which is 3 eV and exactly the same with
the ponderomotive energy by the 4 	m laser field only. Ow-
ing to the highly nonlinear field dependence of the ionization
process, only the events at the reasonably high electric field
have physical significance �5�. Accordingly we focus on the
events at 	E�t�	�0.67E20 where E20 is the peak amplitude of
the electric field of the 800 nm laser. From Fig. 4�a� we find
that the maximum kinetic energies of the electron are about
9Up and 15Up for the single-color field and two-color field
with zero time delay, respectively. That is, the maximum
kinetic energy is significantly extended for the two-color
case compared with the single-color case. Note that the value
of 9Up for the time-varying single-color field is a little bit
smaller than that for the constant laser field, 10Up, which
must be due to the pulse duration effect. By adding the con-
tribution of the Coulomb potential, 0.538Ip �24�, to the maxi-
mum kinetic energies of 9Up �15Up� for the single-color
�two-color� field, we find that the classical theory can ap-
proximately reproduce the cutoff positions of ATI in Fig. 2�a�
for the single-color case �region A in Fig. 2�a�� as well as the
two-color case with zero time delay �region B in Fig. 2�a��.
Figure 4�b� shows similar results with different time delays.
Clearly the maximum kinetic energy of the rescattered elec-
tron under the two-color field is very sensitive to the time
delay between the two fields: For the time delay of +0.25� it
takes the largest value, and for the time delay of zero and

FIG. 4. �Color online� Classical results for the electron kinetic
energy driven by the single-color �800 nm� or two-color �4 	m
+800 nm� laser field. �a� Kinetic energy of the rescattered electron
as a function of ionization time for the single-color �open circle�
and two-color �closed circle� fields with zero time delay. �b� Similar
to graph �a� but for the two-color field with different time delays.
�c� Kinetic energy of the recombining electron as a function of
ionization time for the single-color �open circle� and two-color
�closed circle� fields without a time delay. �d� Similar to graph �c�
but for the two-color field with different time delays. All the kinetic
energy is in units of the ponderomotive energy Up for the 800 nm
laser field, which is 3 eV for ATI and 9 eV for HHG, respectively,
due to the different choices of the intensities as described in the
text.
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�0.5� it takes the similar second largest values, and for the
time delay of −0.25� it takes the smallest value. Clearly the
above classical analysis for ATI under the time-delayed two-
color field successfully reproduces the cutoff energies for
different time delays obtained by the numerical solution of
1D TDSE. However, when it comes to the height of the ATI
signal which depends on the ionization as well as rescatter-
ing probabilities, there is something which cannot be ex-
plained by the classical analysis. This is the limitation of the
classical analysis.

Similarly, Figs. 4�c� and 4�d� show that the maximum
kinetic energy of the recombining electron is also very sen-
sitive to the time delay. For the two-color case it can be
significantly extended compared with the single-color case.
According to Fig. 4�c�, the maximum kinetic energies of the
recombining electron are about 3Up and 6Up, respectively,
for the single-color field and two-color field with zero time
delay. Note that the value of 3Up for the time-varying single-
color field is a little bit smaller than that for the constant
laser field, 3.17Up, which is also due to the short pulse du-
ration effect. Again, by adding the value of the ionization
potential to the maximum kinetic energies of 3Up �6Up� for
the single-color �two-color� field shown in Fig. 4�c�, we find
that the classical prediction of the cutoff energy agrees rather
well with the numerical results �Fig. 3�a��. Note that the Up
for each field takes the same value, which is 9 eV. When the
time delay is introduced �Fig. 4�d��, we find a reduction of
the maximum kinetic energy of recombining electron. Note
that this behavior for HHG is different from that for ATI.
Moreover, with any finite delays �positive or negative�, we
see some extension of the plateau compared with the single-
color case. An intuitive explanation can be that, after the
birth of the electron �ionization� by the 800 nm field, the
electron is further accelerated by the 4 	m field if the two-
color field is employed. We would like to point out that the
above findings by the classical analysis are consistent with
the numerical results shown Figs. 3�b� and 3�c�.

As we have shown above, the classical results agree rather
well with the TDSE results presented in Figs. 2 and 3. Both
ATI and HHG processes have a common feature: Use of the
two-color field significantly alters the strong field dynamics
and the alteration is delay-dependent. However, we notice
some differences as well: �i� The maximum kinetic energy
for HHG is at zero time delay, while it is at the time delays
of +0.25� for ATI. �ii� For HHG the delay dependence ap-
pears to be more symmetric compared with ATI with respect
to the sign of the time delay. These differences must come
from the fact that the high-order ATI and HHG processes are
inherently different; that is, the electron is eventually ejected
in the former while it is eventually recombined with the core
in the latter.

D. Effect of the CEP

It is well known that the CEP of a few-cycle laser field
has a significant effect on the interaction dynamics such as
phase-dependent ionization �25�. Since we have employed
Np2=2 for the 800 nm field with �2=0 as shown in Fig.
1�a�, we ought to consider the case with different values of

�2. Figures 5 and 6, respectively, present results for the ATI
and HHG spectra with �2=0.5� whose temporal field profile
is shown in Fig. 1�b�. The corresponding classical results are
shown in Fig. 7. Here, similar to the reason explained in Sec.
III C, we choose 	E�t�	�0.5E20. From the comparison of Fig.
2 with Fig. 5 for ATI, and Fig. 3 with Fig. 6 for HHG, it is
clear that the CEP of the 800 nm field plays an important
role. First, for ATI, the maximum kinetic energies of the
photoelectron and harmonic photon in the case of �2=0.5�
is slightly smaller than those for �2=0 with different time
delays, which must be due to the different combined peak
intensities employed for both cases. Second, for the case of
zero time delay, the plateau �between about 37 and 50 eV�
exhibits a very well-resolved beating pattern, while this is
absent for the corresponding case with �2=0 �black curve in
Fig. 2�a��. If we refer to the classical result shown in Fig.
7�a�, we can find two ionization times for the kinetic energy
of 10–15Up. This results in the beating pattern in the ATI
spectrum �black curve in Fig. 5�a��. Moreover, the delay de-
pendence of the cutoff energy for �2=0.5� is also different
from that for �2=0, although the maximum cutoff energy for
�2=0.5� is still obtained at the time delay of +0.25�. Finally
for HHG, a similar conclusion can be drawn. Similar to the

FIG. 5. �Color online� Same as those Fig. 2, but calculated for
�2=0.5�.

FIG. 6. �Color online� Same as those in Fig. 3, but calculated for
�2=0.5�.
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case of �2=0, some features we observe in the TDSE results
�Figs. 5 and 6� can be found in the classical results shown in
Fig. 7. We should bear in mind that the CEP effect for the
4 	m field is only approximately taken into account through
the time delay in our specific case, because we have assumed
a rather short pulse duration for the 4 	m field. If the pulse
duration of the 4 	m field were longer, the approximate cor-
respondence between the CEP of the 4 	m field and the time
delay would become rigorous.

In order to show that our findings are rather general, we
have carried out two additional calculations. In the first cal-
culations we have employed a different wavelength for the
mid-infrared field, 3.3 	m, which is not exactly an integer
multiple of 800 nm. As before, the intensity of the 3.3 	m is
chosen such that the ponderomotive energies are the same
for both fields. The results are shown in Fig. 8. As Fig. 8
clearly shows, the HHG cutoff energies are still sensitive to
the time delay, and moreover, they agree well with the clas-
sical results. In the second calculations, we have employed a
multicycle pulse �Np2=4� for the 800 nm field combined
with the 4 	m field �results are not shown here�. As we
expected, the CEP of the 800 nm field with a longer pulse
duration plays a lesser role compared with the two-cycle
pulse �Np2=2� studied in this paper. It is, however, interest-
ing to note that the effect of the time delay is still there
regardless of the longer pulse duration of the 800 nm field,
which is rather favorable for the experimental realization.

Thus we have confirmed that the strong field dynamics
under the two-color �near-infrared and mid-infrared� laser
field can be controlled through the time delay, and if the
pulse duration is as short as a few cycles the CEP can also
serve as a control parameter.

IV. CONCLUSIONS

In conclusion we have theoretically studied the strong
field dynamics for the one-dimensional hydrogen atom under
the combination of the time-delayed near-infrared and mid-
infrared fields. The role of the mid-infrared field is to induce
the quasistatic offset of the electric field amplitude during the

interaction of the near-infrared field with target atoms. We
have carried out the specific study for the 1D hydrogen atom
under the influence of the 4 	m and 800 nm laser fields, and
found that the time delay between the two fields plays a very
important role in the strong field dynamics such as ATI and
HHG. Since the pulse duration employed in this work is a
few-cycle, we have also found additional but strong effects
of the CEP.

One of the most eminent phenomena we have found is a
change of the cutoff energies for both ATI and HHG. How-
ever, the delay dependence of the cutoff energies is different
for ATI and HHG, since their dynamics are inherently differ-
ent: The electron is eventually ejected in the former while it
is eventually recombined with the core in the latter. Through
the classical analysis for both processes, we have confirmed
our conclusions. Although we have also found that the height
and shape of plateaus strongly depend on the time delay and
the CEP, we cannot say anything quantitative to compare
with experiments, since our results presented in this paper
are based on the one-dimensional calculations.

As a last remark, we note that the strong field dynamics of
molecules and clusters will also be significantly altered un-
der the two-color field, which is out of the scope of this
work.
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FIG. 7. �Color online� Same as those in Fig. 4, but calculated for
�2=0.5�.

FIG. 8. �Color online� �a� and �b� HHG spectra of 1D hydrogen
atom irradiated by the two-color �3.3 	m+800 nm� laser field with
different delays. �c� Kinetic energy of the recombining electron as a
function of ionization time for the two-color �3.3 	m+800 nm�
field with different time delays. The laser parameters for the 3.3 	m
laser field are Np1=2, I1=8.8�1012 W /cm2, and �1=0, and those
for the 800 nm field are Np2=2, I2=1.5�1014 W /cm2, and �2=0.
The kinetic energy is in units of the ponderomotive energy Up

�9 eV�. �� stands for the optical period of the 3.3 	m field.
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