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A nonperturbative treatment is presented for laser-pulse-driven formation of heteronuclear diatomic mol-
ecules in a thermal gas of atoms. Based on the assumption of full controllability, the maximum possible
photoassociation yield is obtained. A one-dimensional model is used for calculating the photoassociation
probability as a function of the laser parameters as well as for different temperatures. The dependence of the
photoassociation yield on the laser frequency and amplitude reveals complex patterns of one- and multiphoton
transitions. The photoassociation yield induced by subpicosecond pulses of a priori fixed shape is very low
compared to the maximum possible yield.
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I. INTRODUCTION

The formation of chemical bonds is one of the most fun-
damental processes in chemistry. In photoassociation, the
binding of colliding atoms is facilitated by means of an ex-
ternal field, which induces a free-to-bound transition, form-
ing a molecule in either the electronic excited or ground
state. The identification of proper external fields opens up
access to control of a variety of photoassociation processes
�1�.

Absorption and emission spectroscopy can provide insight
into photoassociation �2–6� and femtosecond pulses have
been applied to study photoassociation reactions �7–9�. The
investigation of photoassociation processes is receiving in-
creasing attention, mainly sparked by experimental develop-
ments with ultracold atomic and molecular gases �10–16�.
Most of those investigations involve the absorption of visible
or ultraviolet radiation by the colliding atoms to create a
molecule in an electronically excited state. Subsequently, the
formation of a molecule in its electronic ground state may be
accomplished by either spontaneous or stimulated emission.

The photoassociation dynamics has also been studied with
temperatures well above millikelvins in the thermal energy
domain, which is a regime commonly encountered in the
laboratory �9,17–21�. An alternative photoassociation mecha-
nism can be envisioned based on the use of infrared pulses to
drive a transition from free colliding atoms on the electronic
ground state energy surface to form a molecule directly on
that surface �17�. This approach requires the existence of
non-negligible electric-dipole coupling between the free
atomic states and the rovibrational levels of the ground elec-
tronic state of the molecule to be formed. This situation is
often modeled as an atomic beam with a Gaussian wave
packet describing the initial state of the colliding atomic pair
�17–21�.

In the present work, we investigate the photoassociation
in a thermal gas of two different atomic species. The gas is
assumed to be initially in translational thermal equilibrium

while being subjected to an intense laser pulse, which aims
to form a heteronuclear diatomic molecule. Assuming only
binary collisions between the atoms and that the laser-
induced transitions occur in the ground electronic state, we
derive an expression for the photoassociation probability.
Temperatures ranging over 1�T�500 K are considered.
Unlike previous investigations in the thermal regime based
on this mechanism �17–21�, here the total photoassociation
probability is obtained by incoherently averaging the transi-
tions from the Boltzmann-weighted scattering states. In per-
forming atomic scattering calculations, it is often desirable to
use square-integrable eigenstates as basis functions �22�.
This can be achieved by considering the system confined to a
suitable finite-size box �23,24�. Upon increasing the size of
the box, the standing waves of the box will approximate the
scattering states of the continuum. This paper considers a
truncated Morse potential with an infinite barrier at long
range to model the relative motion of a colliding atomic pair
�25�. Moreover, based on considerations of control theory
and assuming full controllability of the system �26–30� the
maximum possible photoassociation yield are evaluated.

In Sec. II, a general formalism is presented for obtaining
the photoassociation probability of a thermal atomic en-
semble. A computationally practical model for colliding
atomic pairs based on the Morse potential is presented and
the upper bound of the photoassociation yield is determined.
In Sec. III, the numerical results are presented for the pho-
toassociation probability as a function of the pulse param-
eters and for several temperatures. Finally, conclusions are
drawn in Sec. IV.

II. PHOTOASSOCIATION IN A THERMAL GAS
OF ATOMS

Consider a dilute gas of atoms composed of two distinct
atomic species at translational thermal equilibrium and sub-
jected to an intense laser pulse. Assuming that only binary
collisions take place, the goal is to determine the probability
of forming heteronuclear diatomic molecules induced by the
laser pulse. In the absence of the external field, the density
operator of two colliding atoms in the gas is
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�̂�t = 0� =
1

Z
e−�Ĥ0, �1�

where Ĥ0 is the field-free Hamiltonian, Z=Tr�e−�Ĥ0� is the
partition function, and �−1=kBT with kB being the Boltzmann
constant and T the temperature.

For simplicity, the field-free Hamiltonian Ĥ0 is taken to
have a nondegenerate spectrum, consisting of discrete bound
states ���� with energy E� and continuous scattering states
���E�� with energy E. The gas at full thermal equilibrium
will have some fraction of diatomic molecules present. The
focus here before the laser pulse is on �a� the remaining
unbound atoms or equivalently on �b� a nascent gas only
consisting of atoms in translational equilibrium. Thus, before
the laser field is turned on, the corresponding density opera-
tor can be written as an integral over the scattering states

�̂�t = 0� =
1

Z
	

0

�

e−�E���E��
��E��dE . �2�

The thermally averaged probability P� of the laser transfer-
ring the system into the bound state ���� at time t is

P��t� = Tr�����
���Û�t,0��̂�t = 0�Û†�t,0�� , �3�

where Û�t ,0� is the time-evolution operator satisfying the
Schrödinger equation corresponding to the time-dependent

Hamiltonian Ĥ= Ĥ0+ ĤI�t�, which includes the interaction of

the pair of colliding atoms with the laser field through ĤI�t�.
From Eqs. �2� and �3�, the thermally averaged photoassocia-
tion probability into state ���� becomes

P��t� =
1

Z
	

0

�

e−�E�
���Û�t,0����E���2dE , �4�

where 
���Û�t ,0����E�� is the transition amplitude from the
continuum state ���E�� to the vibrational state ���� at time t.
The total photoassociation probability is the summation of
P� for all bound states ��P�. The following section presents
a practical one-dimensional model to compute the photoas-
sociation probability.

A. The binary collision model

A colliding pair of atoms is modeled as interacting
through a Morse potential. In practice, the Morse potential is
truncated at a long-range location L by an infinite barrier.
The presence of the infinite barrier leads to discretization of
the free Morse eigenstates and allows for treatment of the
collision with square-integrable basis functions �25�. The
field-free Hamiltonian for the relative motion is

H0�x� = −
�2

2mr

d2

dx2 + V�x� , �5�

where mr is the reduced mass of the colliding atoms and V�x�
is the truncated Morse potential,

V�x� = VM�x� for x � L ,

� otherwise.
� �6�

The Morse function is

VM�x� = D�e−2��x−xe� − 2e−��x−xe�� , �7�

where D is the well depth at the equilibrium position xe, and
�−1 is the potential range. The position of the barrier L is
located sufficiently far outside the influence of the Morse
oscillator, i.e., L	�−1+xe and VM�x=L��0. There are two
types of solutions for the eigenvalue equation of the field-
free Hamiltonian in Eq. �5�: bound eigenfunctions with nega-
tive energies −D
E�
0 and unbound or scattering eigen-
functions with positive energies Em�0. The bound
eigenfunctions �� are normalized as 
�� �����=���� and obey
the discretization rule

Nb − ���� = � , �8�

where � is the rescaled bound energy �=2mrE� / ��2�2� and
� is a non-negative integer, which runs from 0 to the integer
part of Nb and can be determined by the relation 2Nb+1
= �8mrD�1/2 / ����. The unbound eigenfunctions �L�Em� are
normalized as 
�L�Em� ��L�Em���=�mm� and follow the dis-
cretization condition �see Ref. �25� for details�

�km�L − xe� + ��km� = m� , �9�

where the dimensionless rescaled momentum is km
= �2mrEm�1/2 / ���� and m=1,2 , . . .. The phase shift ��km� can
be determined via the relation

��km� = arg���1 + 2ikm��2Nb + 1�−ikm

��− Nb + ikm� � , �10�

where ��z� is the Gamma function of complex argument.
The time-dependent interaction Hamiltonian in the semiclas-
sical dipole formulation is

HI�x,t� = − ��x�E�t� , �11�

where the dipole function is set to ��x�=qxe−x/xd, with q and
xd being constants, and the laser pulse E�t� starts at t=0 and
ends at t= tf. The matrix elements of the dipole function ��x�
with respect to the Morse eigenstate basis can be readily
expressed analytically �31�.

The discretization of the unbound states reduces the den-
sity operator �̂�t=0�, Eq. �2�, to the summation

�̂L�t = 0� =
1

ZL
�
m=1

�

e−�Em��L�Em��
�L�Em�� , �12�

where the L-dependent partition function ZL is

ZL = �
m=1

�

e−�Em. �13�

The photoassociation probability into the bound state ���� at
t= tf, Eq. �4�, becomes
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P�,L�tf� =
1

ZL
�
m=1

�

e−�EmT�,L�Em� . �14�

The unbound→bound transition probabilities are

T�,L�Em� = �
���ÛL�tf,0���L�Em���2, �15�

where the time-evolution operator ÛL�tf ,0� depends on the
location of the infinite barrier at L. The state-to-state transi-
tion probability, T�,L�Em�, can be obtained by solving the
corresponding time-dependent Schrödinger equation. The to-
tal photoassociation probability is the sum of P�,L�tf� over all
bound states

PL�tf� = �
�=0

Int�Nb�

P�,L�tf� , �16�

where Int�Nb� is the integer part of Nb.
In the limit L→�, Eq. �14� can be recast as

lim
L→�

ZLP�,L�tf� = lim
L→�

	
0

�

e−�Em
dm

dEm

��
���Û�tf,0���L�Em���2dEm, �17�

where the density of states dm /dEm can be obtained from the
discretization condition �9�,

dm

dE
=

1

���
�mr

2E
���L − xe� +

d��k�
dk

� , �18�

and the unbound eigenstates satisfy the relation �25,31�

lim
L→�

� dm

dEm
��L�Em�� = ���Em�� . �19�

Substitution of Eqs. �18� and �19� into Eq. �17� yields the
non-normalized photoassociation probability from the con-
tinuum,

lim
L→�

ZLP�,L�tf� = 	
0

�

e−�E�
��Û�tf,0����E���2dE = ZP��tf� ,

�20�

where ���E�� refers to the Morse continuum eigenstates, sat-
isfying the orthogonality relation 
��E� ���E���=��E−E��.
In the limit L→�, the partition function ZL becomes

lim
L→�

ZL = 	
0

�

e−�Em
dm

dEm
dEm �

L

2��
�2�mr

�
, �21�

which gives rise to the L dependence of P�,L�tf�.
In setting a value for the position of the infinite barrier,

the collision of each atomic pair can be regarded as taking
place within a relative distance L. Since a one-dimensional
model is considered, the photoassociation probability for the
system can be regarded to scale with density as L−1 �23�. In
practice, the value of L is chosen to be sufficiently large such
that convergence occurs with no significant change of the
non-normalized photoassociation probability. In this case,
Eqs. �20� and �21� show that the probabilities for still larger

values of L, or equivalently lower densities, are determined
by the converged probability apart from a scaling factor.
Therefore, in a situation where Eq. �20� is numerically con-
verged, P�,L already incorporates all the relevant physics as-
sociated with the photoassociation transition probability. For
instance, given two distinct converged values for the barrier
position L1 and L2, the corresponding transition probabilities
are related by P�,L1

= �ZL2
/ZL1

�P�,L2
.

B. Photoassociation upper bound

For a general controllable N-level quantum system, it is
possible to derive the maximum attainable expectation value

of an Hermitian observable operator Ô�tf� �26–30�. The full
controllability of the system implies that any mixed quantum
state �̂�tf� in the same kinematic equivalence class �27� as the
initial one �̂�t=0� can be reached dynamically. The observ-

able Ô�tf� and the initial density matrix �̂�t=0� may be ex-
pressed in diagonal form and their respective eigenvalues
may be ordered as �1

O��2
O� ¯ ��N

O and �1
���2

�� ¯

��N
� . It follows that the expectation value of Ô�tf� has an

upper bound given by �26�


Ô�tf�� = Tr�ÔÛ�tf,0��̂�t = 0�Û†�tf,0�� � �
i=1

N

�i
O�i

�.

�22�

The operator of concern here is the projection operator onto

all bound states Ô�tf�=������
���. Thus, it is possible to
readily determine from Eqs. �16� and �22� the maximum pos-
sible photoassociation yield QL�T� at a temperature T,

QL�T� =
1

ZL
�
m=1

int�Nb+1�

exp�− �Em� . �23�

Furthermore, in the limit of large L the energies Em in the
above summand tend to approach zero and QLZL approaches
the number of bound states, int�Nb+1�. Then, from Eqs. �20�
and �23� the maximum possible photoassociation yield in the
continuum case Q�T� is related to the case with the barrier by

ZQ�T� = lim
L→�

ZLQL�T� = Int�Nb + 1� . �24�

Thus, the upper limit to the photoassociation probability is
proportional to the number of bound states of the molecule to
be formed. Although the calculation leading to Eq. �24� was
carried out for the specific model system considered here,
this result is far more general. For instance, taking into ac-
count rotational degrees of freedom and the possibility of
electronic excitation, one can conclude following the same
line of reasoning that the upper bound of the photoassocia-
tion probability is still proportional to the corresponding
number of bound states. The analysis leading to Eqs. �23�
and �24� does not identify an optimal field leading to this
maximum possible control result. However, QL�T� provides
an upper limit to compare with using a priori chosen fields
and a target goal for subsequent optimal control studies.
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III. RESULTS AND DISCUSSIONS

The binary collision model described in the previous sec-
tion is illustrated numerically for the photoassociation reac-
tion

O + H→
E�t�

OH, �25�

where the electric field assumes a simple sine-squared pulse
form

E�t� = V0 sin��t/tf�2 cos��t� for 0 � t � tf ,

0 otherwise,
� �26�

with amplitude V0 and carrier frequency �. The Morse pa-
rameters in Eq. �7� are D=5.4 eV, �−1=0.445 Å, xe
=0.9639 Å, and the reduced mass of OH is mr=0.9482 u.
There are 22 bound states supported by the Morse potential,
noting that Nb�21.58 from Eq. �8�. The parameters of the
dipole function are q=1.634�e� and xd=0.6 Å in Eq. �11�.
Temperatures up to T=500 K are considered, for which
kBT=0.043 eV. A typical value for the field bandwidth used
here is 0.014 eV, corresponding to a pulse duration of tf
=0.5 ps. For a peak amplitude of V0=50 MV cm−1 and x
=xe, the coupling strength is roughly 0.4 eV.

Figure 1 shows the non-normalized probability ZLPL�tf�
as a function of the position of the infinite barrier L for T
=100 K, V0=100 MV cm−1, �=0.028 eV, and tf =0.5 ps. It
is seen that for L�20 Å the non-normalized photoassocia-
tion probability is essentially constant. The barrier position at
L=50 Å proved to be sufficiently large to guarantee the con-
vergence of ZLP�,L�tf� for all parameter values used in this
work. However, it should be noted that other choices for the
external field may, in general, require different values for the
barrier position in order to guarantee reasonable satisfaction
of Eq. �20�.

Figure 2 shows the thermal probability density 
x��̂L�t��x�
as a function of x at t=0 and t= tf, using the same parameters
of Fig. 1 and the barrier set at L=50 Å. At t=0, the thermal
density is oscillatory around the equilibrium position of the

Morse well, becomes constant beyond x=5 Å, and ap-
proaches zero at x=50 Å because of the infinite barrier. At
t= tf, the increase of the thermal density in the Morse poten-
tial well region �x
5 Å� is related to transitions into the
bound states, as analyzed below. There is also an increase of
the thermal density between 9 and 22 Å relative to that at t
=0 due to the presence of transitions amongst the unbound
states. The fact that the thermal density remains unchanged
for x�22 Å throughout the pulse duration t� �0, tf� indi-
cates convergence of the calculations for a choice of L
�22 Å, which is consistent with the convergence shown in
Fig. 1.

The maximum photoassociation yield QL�T� in Eq. �23�
for L=4000 Å as a function of the temperature is depicted in
Fig. 3. QL�T� decreases as T increases due to involvement of
more unbound states in the partition function at higher tem-
peratures. At low temperatures, higher yields are possible
because a small number of unbound states are involved. The
maximum yield for T=1 K is about 0.1 and for T=500 K it
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are amplitude V0=100 MV cm−1, frequency �=0.028 eV, and du-
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is 0.005. The inset shows the convergence of the non-
normalized maximum yield ZLQL�T� for several tempera-
tures. The non-normalized maximum yield approaches the
total number of bound states of the molecule. The value of L
for the convergence of the maximum yield is much larger
than the converged L value for the transition probabilities
calculated for the fixed-shape pulses used here. This is re-
lated to the fact that Eq. �23� involves only the unbound
energies and the temperature, whereas Eq. �16� crucially de-
pends on the nature of the laser field.

A. Single-scattering-state photoassociation

First consider photoassociation starting from a single un-
bound state ��L�Em�� setting the barrier position to L=50 Å.
This preliminary step can reveal the detailed structure of the
state-to-state photoassociation processes to aid in judiciously
choosing the parameters of the laser pulse. Since this is a
pure-state case, the upper bound for the transition probability
is 1 �26�. Figure 4 shows the unbound→bound transition
probability of Eq. �15� summed over all bound states
��T�,L�Em� as a function of the laser carrier frequency. The
transition probability is calculated at t= tf and the initial un-
bound state has energy Em=0.06 eV, which corresponds to
the scattering level m=78. This initial state energy is chosen
in the region of the maximum bound-unbound matrix ele-
ment 
������L�Em�� and also corresponds to the mean wave
packet energy used in Ref. �18�. The pulse duration is tf
=0.5 ps and the amplitude is V0=100 MV cm−1. The ob-
served peaks arise from single- and multiphoton transitions
between the initial scattering state and the bound states. The
n-photon resonance condition is given by n�= �Em−E�� /�,
although precise correlation with the peak in Fig. 4 can be
influenced by the dynamical power shifting of the energy
levels due to the strong field. Some single-photon transitions
to the bound levels are indicated by arrows in the figure. For
low frequencies �
0.1 eV�, the transitions occur to the high-

est excited levels, which are closely spaced, especially to the
�=21,20 states, respectively at 0.0037 and 0.0278 eV below
the dissociation limit. For higher frequencies, the peaks are
related to single-photon transitions to the �=19,18,17 states,
respectively at 0.0742, 0.1428, 0.2336 eV below the disso-
ciation threshold. Concurrently with the more evident single-
photon transitions, there also exists multiphoton transitions.
For instance, the peak at �=0.29 eV occurs due to a single-
photon transition into the �=17 state �reaching a final popu-
lation of 0.076� and also to three-photon transition to the �
=13 state �reaching a population of 0.008�. Finally, we note
that population below the �=11 state is negligible. This can
be understood in view of the bound-unbound matrix ele-
ments �31�, which have very small amplitude for the strongly
bound levels �
11.

Figure 5 shows the overall continuum→bound transition
probability ��T�,L�Em� as a function of the external pulse
amplitude for three frequencies: �=0.13, �=0.195, and �
=0.295 eV. These frequencies were chosen to coincide with
some of the peaks in Fig. 4. The highest probabilities of the
three curves are found for the field amplitude in the range
from 50 to 200 MV cm−1. The transition probabilities in
Figs. 4 and 5 are very low compared to unity, which is the
maximum attainable probability in this case. As shown in the
next section, the thermal average probability obtained for the
subpicosecond pulses given in Eq. �26� is also well below the
photoassociation upper bound.

Before examining the thermal-averaged calculations, con-
sider the Boltzmann-weighted transition probability TB,L�Em�
for a single scattering state ��L�Em�� defined by

TB,L�Em� =
e−�Em

ZL
�
�=0

int�N�

T�,L�Em� . �27�

Figure 6 presents the Boltzmann-weighted transition prob-
ability as a function of the initial scattering-state energy for
T=100 and 500 K. The external field parameters are �
=0.147 eV, V0=50 MV cm−1, and tf =0.5 ps. For compari-
son, the inset shows the transition probability summed over
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all bound states without the Boltzmann factor ��T�,L�Em�. It
is evident that the transitions from high scattering energies
are damped by the Boltzmann factor. It is also evident that
the peak at low energy is comparatively higher for T
=100 K than for T=500 K. The broadening of the Boltz-
mann distribution as the temperature increases allows for
more transitions among scattering and bound states to be
taken into account in the thermal average, however this is
also accompanied by an increment of the partition function,
as ZL�T1/2. Therefore, the trade-off between these factors
will give the peak photoassociation yield at some particular
temperature T for fixed laser-pulse parameters.

B. Thermal-averaged photoassociation

In this section, the probabilities are found with respect to
a barrier position at L=4000 Å, allowing for comparison

with the maximum yield in Fig. 3 and corresponding to a
system with linear density of the order of 104 atoms /cm.
Figure 7 shows the total thermally averaged photoassociation
probability PL�tf�, Eq. �16�, as a function of the laser fre-
quency � at four temperatures T=1, 10, 100,500 K, and for
V0=50 MV cm−1, and tf =0.5 ps. At least four major peaks
are observed: the first below �=0.01 eV, and the others
around 0.03, 0.08, and 0.147 eV. The total photoassociation
probability increases as the temperature increases from
1 to 100 K. However, the total photoassociation probability
decreases for �
0.01 eV and �=0.147 eV as the tempera-
ture rises from 100 to 500 K.

The total thermally averaged photoassociation probability
PL�tf� as a function of the laser amplitude V0 is depicted in
Fig. 8 for several temperatures calculated for the pulse fre-
quency �=0.028 eV and for the pulse duration tf =0.5 ps.
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The curves have maxima around V0=60 MV cm−1, and as in
the case of Fig. 7, the total photoassociation probability in-
creases with the temperature between 1 and 100 K. How-
ever, further raising of the temperature from 100 to 500 K
leads to a decrease in the total photoassociation probability
for pulse amplitudes below V0=70 MV cm−1. The tempera-
ture dependence observed in Figs. 7 and 8 may be under-
stood as a trade-off between the Boltzmann factors and the
partition function �cf. Eq. �14��.

Figure 9 shows the total photoassociation probability as a
function of the duration of the pulse tf, with V0
=60 MV cm−1, �=0.028 eV, and T=100 K. There is oscil-
latory behavior along with an overall increase of the photo-
association probability as the pulse duration is increased. The
total photoassociation yield for pulses below 1 ps remains
very low compared to the optimal photoassociation probabil-
ity of 0.01 of Fig. 3 at T=100 K. Figures 7–9 indicate that no
simple adjustment of the parameters in the sine-squared
pulse of Eq. �26� can approach the optimal yield depicted in
Fig. 3. The probabilities obtained for the fixed-shape pulses
were at least 20 times below the optimal value.

IV. CONCLUSION

This work investigated the formation of diatomic mol-
ecules induced by an external laser pulse in a thermal gas of

atoms. A nonperturbative treatment was presented based on a
simple one-dimensional model for the atomic binary colli-
sions. In the context of quantum optimal control theory, as-
suming full system controllability, we determined the maxi-
mum possible photoassociation yield which could be
produced by an appropriate optimally designed field. It was
shown that the maximum yield is proportional to the number
of bound states of the molecule being formed. This result is
not restricted to the model considered here and is valid in
more general situations when rotation and electronic excita-
tion are taken in account. In the numerical calculations, the
total photoassociation probability was found to have a com-
plex dependence on the parameters for a fixed-shape pulse
and the temperature. Single-photon- and multiphoton-driven
transitions are involved in the photoassociation dynamics.
However, the photoassociation yield was more than one or-
der of magnitude lower than the upper bound for any choice
of the pulse parameters. The formulation and results of this
paper lay the groundwork for proceeding with full optimal
control calculations to determine the nature of the fields that
can reach the maximum attainable yield.
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