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The precession of an electric dipole moment in an external electric field can be reversed by reversing the
field direction. This time-reversal operation allows study of coherence in the time evolution of Rydberg Stark
wave packets by measuring the resulting echoes. Different sources of reversible dephasing and irreversible
dephasing, i.e., decoherence, are discussed in detail. Stochastic interactions with the environment are simulated
in a controlled manner by using artificially synthesized noise. The rate of irreversible dephasing is determined
from the reduction of the echo amplitude under multiple field reversals.
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I. INTRODUCTION

Many microscopic descriptions of decoherence and the
approach toward equilibrium in nonequilibrium statistical
physics rely on the concept of “open quantum systems” or
their classical analog, open classical systems. Accordingly,
only a subsystem with a small number of degrees of freedom
is treated within the framework of Hamiltonian dynamics. Its
interactions with the large number of neglected degrees of
freedom, the so-called environment or noise, are too com-
plex to be included microscopically and only their statistical
properties, such as the average coupling strength and the
fluctuation spectrum, are considered. The time evolution of
the open system and of expectation values of system observ-
ables are determined as ensemble expectation values over
different realizations of the environmental interactions. Two
classes of environmental fluctuations are to be distinguished
when the approach toward equilibrium or relaxation �“the
arrow of time”� is considered: spatial fluctuations �or inho-
mogeneities� and temporal fluctuations �or stochastic varia-
tions� of the coupling to the environment. The key to this
distinction lies in their different properties under time rever-
sal. For coupling to an environment exhibiting spatial fluc-
tuations, the dynamics of each member of the ensemble is
reversible. The phase fluctuations in the time evolution
which lead to dephasing and decay of nonequilibrium expec-
tation values can be reversed, allowing rephasing. In con-
trast, temporal stochastic fluctuations are not invariant under
time reversal. They give rise to irreversible dephasing often
referred to as decoherence and render the dynamics intrinsi-
cally irreversible. The rate of decoherence is of interest for
quantum-information processing �1� where information is
stored as a coherent superposition, or for coherent control of
quantum systems �2� where a desired coherent superposition
can be maintained only until decoherence sets in. The deco-
herence rate �or the dephasing rate� can be used to probe the
coupling strength between an isolated system and its envi-
ronment �3�. Distinguishing reversible from irreversible
dephasing, which is a prerequisite for the determination of
the decoherence rate, remains a challenge. For example,

when the damping of “quantum beats,” i.e., temporal oscil-
lations due to the coherent superposition of nondegenerate
states, is observed, both static and stochastic couplings are
involved. If now an operation mimicking time reversal can
be devised, that part of the dephasing resulting from static
couplings can be reversed, leading to an increase in the am-
plitude of the quantum beats. Such a forced revival of the
quantum beats is termed an echo. Echoes have been seen in
nuclear magnetic resonance �NMR� as rephasing of nuclear
spin precession around an external magnetic field �“spin
echo” �4�� and in quantum optics as realignment of polariza-
tion induced in matter interacting with coherent light �“pho-
ton echo” �5��. The reduction of the amplitude of the echoes
provides a measure of the decoherence: echoes that recover
fully the initial beat amplitude show that no significant de-
coherence has occurred whereas the lack of any echo points
to complete decoherence.

The precession of the electric dipole moments of Rydberg
atoms in external electric fields has recently been shown to
display echoes �6–8�. If the wave packet comprises a coher-
ent superposition of either redshifted or blueshifted Stark
states, the atom forming the wave packet has a �quasi�per-
manent dipole that will precess about the externally applied
static electric field. A reversal of the field direction reverses
the dipole precession, allowing the generation of echoes.
Such time reversal was first demonstrated using an ensemble
of wave packets, each of which was a superposition of two
Stark states �6�. Recently, echoes of the electric dipole have
been observed for an ensemble where each wave packet is a
superposition of many Stark states �8�. This system features
many similarities with the dynamics of nuclear spins while
providing an ideal testing ground for discriminating between
reversible and irreversible dynamics. Its equation of motion
closely mirrors the Bloch equation of NMR. Moreover, for
the system observables, i.e., the evolution of the dipole mo-
ments, a close classical-quantum correspondence holds. Un-
like NMR, however, the interaction with the “environment”
can be microscopically accounted for since other internal
atomic degrees of freedom provide a significant part of the
environment of the “system,” the precessing electric dipoles.
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While the dynamics of the electric dipoles can be almost
fully controlled by using external electric fields, their cou-
pling to the “atomic environment” can also be, to a certain
degree, controlled and manipulated. In very high Rydberg
states �n�350� characteristic precession times are such that
atomic dephasing and rephasing can be conveniently ob-
served without recourse to short-pulse lasers. Thus, Rydberg
Stark wave packets can be used to study the coherences
which we can experimentally maintain, control, and probe.
In this paper we analyze the dynamics of Rydberg atoms in a
static electric field in detail and demonstrate both experimen-
tally and theoretically how to extract information on the time
reversibility of the dynamics.

The outline of the paper is as follows. In Sec. II, we
review in detail the dynamics of a hydrogenic Rydberg atom
in a static electric field. Similar to the dynamics of spins in
NMR, the dynamics of the electric dipole moment averaged
over an ensemble of quantum Stark wave packets is well
represented by the classical dynamics. In Sec. III we discuss
basic mechanisms for reversible and irreversible dephasing.
The present echo technique is introduced in Sec. IV, where
we describe how to observe echoes by reversing the direction
of the dc field. Since such field reversal only approximates a
time-reversal operation and does not affect the other degrees
of freedom of the electronic wave packet, this system fea-
tures an intrinsic source of “irreversible” dephasing or deco-
herence. The origin of the different sources of dephasing is
discussed together with a method to quantify the dephasing
rates. Irreversible and reversible dephasing can be identified
and separately determined. Dephasing rates can be manipu-
lated and controlled �Sec. V� by introduction of tailored “col-
ored” noise. Experimental results for highly excited Rydberg
wave packets �n�350� are presented in Sec. VI, followed by
concluding remarks in Sec. VII. Atomic units are used unless
indicated otherwise.

II. DYNAMICS OF AN ATOM IN A STATIC
ELECTRIC FIELD

We analyze in the following both the classical and quan-
tum dynamics in Coulomb systems in order to highlight the
close classical-quantum correspondence for observables cal-
culated using quantum and classical perturbation theory. This
correspondence plays a key role in extracting �quantum� re-
versible and irreversible dephasing from classical dynamics.

A. Classical dynamics

Consider first the classical evolution of a hydrogenic Ry-
dberg atom in the absence of an external electric field. The
electron follows an elliptic orbit specified by the Hamil-
tonian

Hat =
p2

2
−

1

r
, �1�

where r�= �x ,y ,z� and p� = �px , py , pz� are its coordinate and
momentum, respectively. The eccentricity and orientation of

the ellipse are determined by the angular momentum L� =r�

� p� and the Runge-Lenz vector A� = p� �L� − �1 /r�r� �9�, both of

which are constants of motion. When the atom is subject to a
static electric field F directed along the z axis, the Hamil-
tonian becomes

H = Hat + zF , �2�

and the angular momentum and Runge-Lenz vectors precess
about the z axis. In the following we analyze the evolution of
the Kepler ellipse characterized by these vectors rather than
following the temporal position of the electron (r��t� , p��t�)
along the ellipse. The two vectors L� and A� are coupled to
each other through the perturbation zF and their magnitudes
vary periodically in time �10,11�. To first order in F, this
periodic variation can be removed by a transformation to the
so-called pseudospins �10�

J�� =
1

2
�L� � nA� � �3�

where n=1 /�2 �Hat�. Within the framework of the secular
perturbation approach �12�, Hat, Jz

+, and Jz
− change adiabati-

cally and are considered to be constants of motion at each
instant. The perpendicular components �along x and y� of the
pseudospins precess about the field z axis after the fast mo-
tion on the time scale of the Kepler orbital motion has been
“adiabatically eliminated.” In order to describe this proce-
dure, it is useful to define the zeroth-order expectation value
of an observable O over an unperturbed Coulomb orbit,

�O	0 =
 d3r d3p O�r�,p���cl
0 �r�,p�� =

1

Tn
� dt�O„r�0�t��,p�0�t��… ,

�4�

given by the average over a phase space distribution �cl
0 �r� , p��

given by the ensemble of points belonging to an unperturbed
Coulomb orbit. The expectation value is equivalent to a time
average of the observable along the unperturbed Coulomb
orbit (r�0�t� , p�0�t�), over the Kepler orbital period Tn=2�n3.
The orbital-averaged value is the classical analog to the
quantum matrix element of the same observable O in a quan-
tum state with quantum numbers given by the classical ac-
tions. Within first-order secular perturbation theory, the pseu-
dospin dynamics are described by the orbital-averaged
equation of motion

d

dt
J�� � �J��,H�	0 =

1

Tn
� J��,H�dt�. �5�

This coarse graining �i.e., orbital averaging� smoothes out

the fast oscillation in the Poisson bracket J�� ,H� on a time
scale of Tn. To simplify the notation in the remainder of this
section the brackets will be dropped and all quantities will be
taken to refer to orbital-time-averaged quantities. One con-
sequence of coarse graining in Eq. �5� is that the fast orbital
motion along the Kepler ellipse becomes an unobserved de-
gree of freedom when we consider the system Hamiltonian
H=H�Hat ,Jz

+ ,Jz
−� as a function of the orbital-averaged ac-

tions Jz
+ ,Jz

−. As a result of the reduction of the problem to the
precessional motion of two pseudo-spins, part of the internal
atomic motion takes on the role of an environmental degree
of freedom, i.e., under suitable circumstances the atomic dy-
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namics can become the source of dephasing and decoherence
for the pseudospin dynamics. We will exploit this remarkable
feature in the following.

The orbital-averaged �“secular”� equation of motion for
the pseudospins is

d

dt
J�� =

�H

�Hat
J��,Hat� +

�H

�Jz
+ J��,Jz

+� +
�H

�Jz
− J��,Jz

−� = ��J�� � ẑ

�6�

with ��=−�H /�Jz
�. Here we have used the classical version

of the commutation relations, the Poisson brackets

J�
�,J�

�� = 	��
J

�, J�

�,J�
�� = 0, J�

�,Hat� = 0, �7�

where � ,� ,
=x ,y ,z, and 	��
 is the Levi-Cività symbol.
The last commutation relation indicates that in the absence of
an external field the pseudospins are conserved. The effective
Hamiltonian used in Eq. �6� can be written to first order in F
as

H = Hat + �z	0F � Hat +
3n

2
�Jz

− − Jz
+�F , �8�

using the orbital period average

�z	0 = −
3

2
n2Az =

3

2
n�Jz

− − Jz
+� , �9�

taken over the unperturbed Kepler motion �Eq. �5��. Conse-
quently the pseudospin precession frequencies are deter-
mined as ��=−�H /�Jz

�= � �3 /2�nF. Equation �6� re-
sembles the Bloch equation �13� for �nuclear� spin
precession in a magnetic field in NMR �3� in the limit of
vanishing transverse and longitudinal relaxation. In the
present case, however, the dynamics are characterized by a
pair of counterpropagating pseudospins, each having one ef-
fective degree of freedom, the azimuthal angle ��

J

�arctan�Jy
� /Jx

��=��t. In first-order perturbation theory the
two pseudospins are decoupled. They become coupled, how-
ever, upon inclusion of second-order corrections. To this or-
der, the secular Hamiltonian becomes

H = −
1

2n2 +
3

2
nkF −

1

16
F2n4�17n2 − 3k2 − 9m2 + 19�

= −
1

2n2 +
3

2
n�Jz

− − Jz
+�F −

1

16
F2n4

�17n2 − 12��Jz
+�2 + �Jz

−�2 + Jz
+Jz

−� + 19� , �10�

where Jz
�= �1 /2��m�k� and we have expressed the classical

actions in terms of their corresponding “quantum” numbers

m = Lz, k = − nAz = Jz
− − Jz

+. �11�

We exploit here the �almost� complete classical-quantum cor-
respondence. Equation �11� holds identically in quantum me-
chanics except that �m ,k� are integer values. Likewise, Eq.
�10� is valid in second-order quantum perturbation theory as
well. The only difference is the additional term, constant
within each n manifold, −�19 /16�F2n4, which results from
the noncommutativity of complementary variables. This
quantum correction is included in Eq. �10� for completeness.

With the secular Hamiltonian �Eq. �10��, the dynamics of the
pseudospins are still approximated by the Bloch equation
�Eq. �6�� but with modified precession frequencies,

���F� = −
�H

�Jz
� = � ��k

�1��F� − �k
�2��F�� − �m

�2��F� �12�

with �k
�1��F�= �3 /2�nF, �k

�2��F�= �3 /8�n4kF2, and �m
�2��F�

= �9 /8�n4mF2. Inclusion of second-order terms yields a good
approximation to the pseudospin dynamics even for rela-
tively strong external fields. Elimination of the additional
fast degree of freedom underlying Eqs. �8� and �10� intro-
duces, via coarse graining, corrections to Eq. �8� which can
cause decoherence even in the absence of any external sto-
chastic perturbation. This decoherence process can be fully
accounted for by solving the full classical equations of mo-
tion without orbital averaging. The dephasing �or relaxation�
terms in the Bloch equations �Eq. �6�� originating from this
source can thus be microscopically determined. Clearly,
other sources of environmental noise also contribute to
dephasing and must be treated differently.

B. Quantum dynamics

As expected from the correspondence principle, it is also
possible to derive the Bloch equation �Eq. �6�� quantum me-
chanically �14�. We consider a Stark wave packet which is a
superposition of pseudospin eigenstates

��t�	 = �
n,j+,j−

cn,j+,j−
�t��n, j+, j−	 , �13�

where �n , j+ , j−	 is an eigenstate of the operators Hat, Jz
� with

eigenvalues −1 / �2n2�, j�. The pseudospin eigenstates are
parabolic states �n , j+ , j−	= �n ,k ,m	 where k= j−− j+ and m
= j++ j−. The Runge-Lenz operator entering in the pseu-

dospins �Eq. �3�� has to be antisymmetrized as A� = �1 /2��p�
�L� −L� � p��− r̂ so that the operator becomes Hermitian �15�.
Expressed in terms of the density operator ��t�, the time
evolution of the expectation values of the pseudospins is
given by the Liouville–von Neumann equation

i
d

dt
�J���t�	n,j+,j−

= �n, j+, j−��J��,H���t��n, j+, j−	 , �14�

where �J�+	n,j+,j−
= �n , j+ , j−�J�+��t��n , j+ , j−	.

For weak fields, the eigenenergy of the total Hamiltonian
H is given in first-order degenerate perturbation theory by

En,j+,j− = −
1

2n2 +
3

2
n�j− − j+�F . �15�

The dipole matrix �n , j+ , j−�z�n� , j+� , j−�	 is diagonal within a
single n manifold but couples different n manifolds. The op-
erator equivalence z= �3 /2�n�Jz

−−Jz
+� holds only within the

Hilbert subspace of fixed n. In order to transform Eq. �14� to
the Bloch equation, we introduce the ladder operators
J� ,J�

† defined as
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Jx
� =

1

2
�J�

† + J��, Jy
� = −

i

2
�J�

† − J�� , �16�

which act as raising and lowering operators on the pseu-
dospin states

J+
†�n, j+, j−	 � �n, j+ + 1, j−	 ,

J+�n, j+, j−	 � �n, j+ − 1, j−	 ,

J−
†�n, j+, j−	 � �n, j+, j− + 1	 ,

J−�n, j+, j−	 � �n, j+, j− − 1	 . �17�

Using these relations, the components in Eq. �14� obey the
equations of motion

d

dt
�Jx

+	n,j+,j−
=

i

2
�En,j+,j−

− En,j+−1,j−
��J+

†	n,j+,j−
−

i

2
�En,j++1,j−

− En,j+,j−
��J+	n,j+,j−

,

d

dt
�Jy

+	n,j+,j−
=

1

2
�En,j+,j−

− En,j+−1,j−
��J+

†	n,j+,j−

1

2
�En,j++1,j−

− En,j+,j−
��J+	n,j+,j−

,

d

dt
�Jz

+	n,j+,j−
= 0. �18�

By rewriting the energy difference as a derivative of the
eigenenergy,

�+ = −
�H

�Jz
+ � En,j+,j−

− En,j++1,j−
=

3

2
nF �19�

the equation becomes identical to the classical Bloch equa-
tion �Eq. �6��, i.e.,

d

dt
�J�+	n,j+,j−

= �+�J�+	n,j+,j−
� ẑ . �20�

The expectation values of the pseudospin operator, �J�+	n,j+,j−
,

follow the dynamics of a single classical pseudospin �J�+	0

�the same correspondence is obtained between �J�−	n,j+,j−
and

�J�−	0�. This is an obvious manifestation of the correspon-
dence principle since the precessional motion is harmonic.

It is now of interest to identify the quantum analog to the
classical adiabatic elimination of the fast time scale associ-
ated with the Kepler motion �see Eq. �5��. This is implicit in
Eq. �15� through the projection onto states of fixed n �and
fixed energy En� which implies an average of the conjugate
variable, i.e., time, over a duration Tn�2��En+1−En�−1. For
wave packets excited within a given n level, the average
pseudospin follows the Bloch equation without damping �Eq.
�20��, i.e.,

d

dt
�J�+	n = �+�J�+	n � ẑ �21�

with �J�+	n=� j+,j−
�J�+	n,j+,j−

. For a wave packet with a super-
position of neighboring n states over a narrow band �n, the

expectation value �J�+	 is given by the incoherent average

over �J�+	n,

�J�+	 = �
n

�J�+	n. �22�

This separability in the dynamics of the pseudospin compo-
nent follows directly from the fact that the couplings be-
tween different n levels are eliminated through the operator
replacement �z→−�3 /2�n2Az�. At this level of approxima-
tion, the wave packet is reduced to an incoherent superposi-
tion of different n levels. Quantum beats on the time scale Tn
are traced out.

For stronger fields, the coupling between different n lev-
els, �n , j+ , j−�z�n� , j+� , j−�	�0, becomes non-negligible. In the
quadratic Stark regime the admixture from different n levels
is taken into account in the eigenstates of the Stark Hamil-
tonian and the eigenenergies are given to second order in F
by Eq. �10�. The evolution of the pseudospins can still be
approximated by the Bloch equation �Eq. �20�� although with
the modified precession frequencies �� given by Eq. �12�.
The effects of n level mixing not accounted for by Eq. �20�
give rise to dephasing, relaxation, or decoherence effects as
they play now the role of environmental degrees of freedom.

III. PRECESSION AND DEPHASING

The accuracy of the classical �Eq. �6�� or quantum Bloch
equation �Eq. �20�� in the limit of vanishing damping or re-
laxation can be tested by comparison with a full classical or
quantum simulation. The latter includes the internal degrees
of freedom traced out, i.e., the classical Kepler motion �Eq.
�5�� or, equivalently, quantum mechanical inter-n coupling
�Eq. �22��. The neglected internal degree of freedom, elec-
tron motion along Kepler ellipses, is in this case interpreted
as part of the environment. Damping due to this coupling is
therefore included from the outset.

The dynamics of pseudospins are one dimensional in the
reduced �or isolated� system. A single spin evolves through
the azimuthal angle ��

J �t�=��t+��
J �0� with an angular ve-

locity ��� � �3 /2�nF �Fig. 1�a��. This behavior is illus-
trated for a single classical trajectory in Fig. 1�b� as a pseu-
dospin initially oriented along the −x axis in n=350 is
subject to sudden application of a dc field �F=20 mV /cm�
directed along the +z axis. The time evolution resembles, to
a good approximation, the precessional motion predicted by
the first order Bloch equation. The Cartesian component Jx

+

undergoes nearly harmonic oscillations �Fig. 1�b�� for the
time interval of observation �1 �s�. We note that this result is
obtained even without orbital period averaging �Eq. �5��
demonstrating that the fluctuations associated with the fast
Kepler motion are indeed quite small.

This harmonic oscillation seen in the single-classical-
pseudospin dynamics provides a vehicle to study classical-
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quantum correspondence. For an ensemble of pseudospins,
however, the situation can be different since quantum wave
packets possess coherence between pseudospin components

�J�+	n,j+,j−
. We examine here if such coherence can play any

role in the evolution of a wave packet, i.e., a pseudospin
ensemble. We first consider the time evolution of an en-
semble of classical pseudospins �see Fig. 1�c�� for which the
effect of the ensemble average appears as “damping” of the
harmonic oscillation. The pseudospins are initially oriented
along the −x axis �an ensemble of redshifted Stark states�.
The ensemble average �Jx

�	 is calculated using the classical
trajectory Monte Carlo �CTMC� method assuming an initial
ensemble of phase space points given by

�cl
1D�r�,p� ,0� = Cn2 exp�−

�n − ni�2

2��n�2 ��−1
1 �Lx��n−2

n �nAx� ,

�23�

where C is a normalization constant and �a
b is the character-

istic function of the interval �a ,b�. The dependence on the
phase space coordinates arises from n, Lx, and nAx. These
have initial mean values �n	=ni=350 �as used experimen-
tally�, �Lx	=0, and �nAx	=−ni+1, representing extreme Stark
states and yielding �Jx

+	=−�ni−1� /2, �Jx
−	= �ni−1� /2. In the

following, such an initial ensemble with �n=13 is termed
for brevity the one-dimensional �1D� state. Because the en-
semble Eq. �23� involves a finite Gaussian distribution of
energy levels the oscillation amplitude of �Jx

��t�	 is clearly
damped �see Fig. 1�c��. The damping rate can be estimated
using the spread in the precession frequencies, �+
��3 /2�nF, which depends only on n. Since n has a Gaussian
distribution �assuming that the initial sudden application of F
only slightly modifies the n distribution�, the frequency spec-
trum will also have a Gaussian form with a width

��+ =
3

2
�nF � 3.1 rad/�s. �24�

The damping envelope is thus also Gaussian,
�exp�−��t�2 /2�, with a rate �=�� �see dashed line in Fig.

1�c��. This strong damping results from the dephasing of the
precessional motion �Fig. 1�a��, principally due to the fre-
quency spread in the ensemble. This dephasing is given by
the initial ensemble, is entirely deterministic, and is the
atomic analog to the inhomogeneous line broadening in
NMR. The inhomogeneity results in this case from the n
distribution in the initial classical ensemble. As this process
is deterministic rather than stochastic, this dephasing should
be reversible, as will be analyzed in more detail below.

It is now instructive to compare the classical result with
the time evolution of �Jx

�	 for the corresponding quantum
wave packet. We consider as an initial wave packet not only
a pure state such as that in Eq. �13� but also an incoherent
mixture of states to verify the separability of the dynamics
among different n levels discussed in Eq. �22�. As long as the
approximation of relaxation-free Bloch equations holds �in
the weak-field limit where inter-n couplings are negligible� a
coherent initial state and an incoherent mixture should give
identical results. Deviations result from weak couplings be-
tween different n levels, which are also responsible for de-
coherence. We calculate the time evolution of quantum wave
packets �Fig. 2� by numerically solving the Schrödinger
equation associated with the Hamiltonian �Eq. �2��. Since
quantum simulations for wave packets with ni�350 are de-
manding, we focus on a coherent superposition of extreme
parabolic states around ni�35 oriented along the x axis,

��0�	 =
1
�3

�
n=34

36

�n�0�	 , �25�

where �n�0�	= �n ,kx=−n+1,mx=0	, and an incoherent en-
semble encompassing the same states,

�inc�0� =
1

3 �
n=34

36

�n�0�	�n�0�� . �26�

CTMC simulations for the same range of action �ni
=34–36� have also been undertaken. By analogy to Eq. �26�,
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FIG. 1. �a� Schematic picture illustrating the precession of a
pseudospin in the �Jx

+ ,Jy
+� plane. �b� Time evolution of Jx

+ for a
single trajectory. �c� Ensemble average �Jx

+	 over 200 trajectories
representing a 1D state. In �b� and �c�, the initial state is oriented
along the x axis with principal quantum number ni=350 and subject
to sudden application �rise time �300 ps� of a dc field F
=20 mV /cm. The gray dashed line corresponds to an average en-
velope function describing the relaxation, 0.5 exp�−��t�2 /2� with
�=3.1 rad /�s.
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FIG. 2. �Color online� Calculated time evolutions of �Jx
+	 fol-

lowing sudden application �rise time �300 fs� of a dc field of
200 V /cm. �a� Quantum wave packet: The initial state is either a
coherent superposition of three �n=34, 35, and 36� extreme red-
shifted parabolic states �oriented along the x axis� �black line� or an
incoherent mixture of them �light blue �or gray� line, see Eqs. �13�
and �26��. �b� Classical wave packet: the initial state is a mix of
restricted microcanonical ensembles with three discrete energies E
=−1 / �2n2� �n=34, 35, or 36� �black line� or with a continuous
energy distribution �Eq. �23�� with �n=1 �light blue �or gray� line�.
Each of the restricted microcanonical ensembles corresponds to the
extreme redshifted parabolic state.
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the initial state is chosen as an incoherent mix of microca-
nonical ensembles either with a continuous energy spectrum
following Eq. �23� ��n=1� or with three discrete �quantized�
energies, i.e.,

�cl�r�,p� ,0� = C �
ni=34

36

��Hat +
1

2ni
2��−1

1 �Lx��n−2
n �nAx� �27�

where � is a Dirac delta function.
When a dc field is applied transverse to the initial orien-

tation of the pseudospins, the wave packet is no longer sta-
tionary. Each parabolic state �n ,kx ,mx	 can be represented in
the new basis, i.e., as a coherent superposition of parabolic
states �n ,k ,m	 defined along the z axis, i.e., parallel to the dc
field. Since the dc field removes the degeneracy of those
parabolic states �n ,k ,m	, the pseudospins start precessing
�Fig. 2�. In view of the scaling relations, F�n−4 and t�n3,
we employ a dc field of F=200 V /cm to mimic the dynam-
ics that would be expected at n=350, assuming that classical
scaling invariance holds. The pseudospin precesses and its
amplitude is damped, but on a time scale of picoseconds
instead of nanoseconds. As anticipated, the pseudospin pre-
cession and damping for the coherent and incoherent initial
state are �nearly� identical in the presence of inhomogeneous
line broadening. The observed damping can also be consid-
ered as transverse relaxation �3�. It does not involve any
energy transfer to the system while thermal �longitudinal�
relaxation would modify the occupation probability on each
pseudospin component by transferring energy into the wave
packet. Classical evolution predicted assuming a discrete en-
ergy spectrum �black line in Fig. 2�b�� and quantum dynam-
ics �Fig. 2�a�� are in excellent agreement with each other for
the time interval considered. The onset of a �fractional� “re-
vival” at t�900 ns �Fig. 2�b�� is present not only in the
quantum simulation but also in the classical simulation with
discrete energies. On the other hand, the conventional clas-
sical simulation with a continuous energy spectrum exhibits
damped oscillations without any revivals. Extrapolating this
result to the very high Rydberg levels �ni�350� studied here,

we can safely assume that the time evolution of �J��	 is well
predicted by CTMC calculations, i.e., the time scale of the
dephasing of the pseudospin can be assumed to be short
compared to the “quantum break time” �H beyond which
quantum observables deviate from their classical counter-
parts �when a continuous energy spectrum is assumed�. For

example, the observable �J��	 shows a revival �the break-
down of classical-quantum correspondence� around 1 ns for
n=35 and, consequently, 10 �s for n=350 since �H�n4. For
other observables, breakdown may occur somewhat earlier.
Thus, in the following, all simulations for Rydberg wave
packets with n�350 are performed using the CTMC
method. For the time interval considered �about ten preces-
sion periods in Fig. 1�, damping due to inhomogeneous
broadening dominates. This damping represents determinis-
tic and thus reversible dephasing. This does not imply that
irreversible dephasing or decoherence is absent. Since the
simulation is based on the full classical Hamilton’s equation
of motion or the Schrödinger equation of the 3D Coulomb
problem, inter-n couplings or temporal fluctuations due to

the fast Kepler motion traced out in the Bloch-type equation
is included. Accordingly, the damping rates include both ho-
mogeneous and inhomogeneous broadening. Separating the
two is a challenge, in particular when their sizes are vastly
different as in the present example. In the following we show
that separating and extracting the rates becomes possible us-
ing echoes which can distinguish reversible dephasing �inho-
mogeneous dephasing� from irreversible dephasing �homo-
geneous dephasing�.

IV. ELECTRIC DIPOLE ECHOES

In order to separate reversible from irreversible dephasing
we reverse the time axis by reversing the direction of pseu-
dospin precession. This method is closely related to spin ech-
oes in NMR �4�. Time reversal operates within the isolated
system or within the “observed” degrees of freedom. For the
unobserved degrees of freedom, such as the Kepler evolu-
tion, we cannot control the arrow of time. Consequently, this
partial time reversal allows the discrimination of homoge-
neous and inhomogeneous broadening. In practice, it is not
easy to reverse the arrow of time and generate rephasing. To
examine the time reversibility of the pseudospin dynamics, it
is necessary to perform an operation that �approximately�
mimics time reversal within the reduced state space, i.e., re-
versal of the pseudospin precession. For electric dipoles, this
can be accomplished in the linear Stark regime where the
precession frequency ��� � �3 /2�nF is linear in F. Similar
to the � pulse used to generate spin echoes in NMR �4�, field
reversal at t=� �see Fig. 3�a��, i.e.,
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FIG. 3. �a� Electric field used to generate the echo in �b� and �c�.
Time evolution �b� of �Jx

+�t�	 and �c� of the width of the azimuthal
angle ���

J �t� predicted by CTMC simulations. The initial state is
the ni=350 1D state and �=500 ns, ts=6.5 ns, and F=20 mV /cm.
The dashed line represents a linear growth in ��+

J =�t with the
damping rate �=3.3 rad /�s.
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F�t� =�
F for t � � −

ts

2
,

F −
2F
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�t − � +
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2
� for �t − �� �

ts

2
,

− F for t � � +
ts

2

� �28�

reverses the direction of Stark precession, ��→−��. Here,
ts denotes the switching time, i.e., the finite time interval
within which the field direction is reversed. The azimuthal
angle ��

J ���=���+��
J �0� recovers its original value

��
J �2��=−���+��

J ���=��
J �0� after another time interval �.

As seen in Figs. 1 and 2 an ensemble of pseudospins involv-
ing different actions n and thus different �� dephases and
shows damping of the oscillations in �Jx

��t�	. By reversing
the field direction at �=500 ns, all pseudospins, independent
of precession frequency, are time reversed and begin to
rephase. As illustrated in Fig. 3�b�, the initial amplitude is
almost completely recovered after 2� signaling an echo. Its
strength can be quantified by the width of the distribution
����

J , t� in azimuthal angle ���
J =arctan�Jy

� /Jx
��� defined as

���
J �t� = �����

J �t��2	 − �����
J �0��2	�1/2, �29�

where

�����
J �t��2	 =
 ���

J �2����
J ,t�d��

J − �
 ��
J ����

J ,t�d��
J �2

.

�30�

Zero spread ����
J �2��=0� at the time of the echo, t=2�,

indicates full reversal and, therefore, a fully coherent en-
semble. The difference between the fastest and the slowest
frequencies determines the initial �linear� growth of the azi-
muthal width, ���

J �t�� ���
max−��

min�t �see Fig. 3�c��. Thus,
the initial slope ���

J �t� / t reflects the width of the frequency
���� spectrum of the ensemble. Indeed, the slope in Fig.
3�c�, 3.3 rad /�s, matches well the width of the frequency
spectrum �Eq. �24��. After field reversal, the broadened dis-
tribution is refocused. The minimum width ��+

J �0.4
�0.13� at t�2� indicates a nearly perfect echo. We note
that a small departure from linear behavior of ��+

J becomes
apparent before field reversal. This reflects the fact that the
azimuthal angle is defined only within the range �−� ,��.
Pseudospins can “accidentally” rephase when the azimuthal
angles of different members of the ensemble are separated by
an integer multiple of 2�.

A. Sources of irreversible dephasing

The residual imperfection in the rephasing at the echo
time provides a direct quantitative measure of irreversible
dephasing. For the current model system sources of decoher-
ence are both intrinsic, i.e., atomic degrees of freedom not
included in the pseudospin dynamics, and extrinsic, i.e., sto-
chastic fluctuations in the experimental setup. We consider in
the following first the intrinsic sources. The amplitude of the
echoes is reduced in higher fields F when the high-order
terms in �� become important. Due to the quadratic correc-

tions, �k
�2��F�= �3 /8�n4kF2 and �m

�2��F�= �9 /8�n4mF2 �see Eq.
�12��, the precession frequency is not precisely reversed by
field reversal �F→−F� as is the case in the linear Stark re-
gime. Quadratic corrections thus can provide an obstacle to
time reversal. It turns out that the influence of the quadratic
corrections can be controlled and suppressed. The echo seen
in Fig. 3 for a relatively strong field is a case in point. In this
case, the quadratic terms are suppressed because the initial
extreme Stark states selected have m=Lz�0 and k=−nAz
�0 leading to a nearly perfect echo. Experimentally, prepar-
ing such an initial state in n�350 is quite a challenge. We
therefore design alternative strategies to suppress such irre-
versible dephasing due to quadratic corrections in Sec. V.

Nonadiabatic effects associated with switching on the
field at time t=0 as well as reversing it at time t=� also
contribute to irreversibility. One assumption made previously
is that the action n, i.e., Hat, is time independent before and
after the field reversal. However, Hat fluctuates in time. A
typical evolution of Hat�t� for a single trajectory is plotted in
Fig. 4�a� and displays fast and slow oscillations associated
with the Kepler orbital period ��6 ns� and about twice the
frequency of the spin precession. The frequency doubling is
due to the cylindrical symmetry of Hat. For a constant dc
field, the total Hamiltonian H is time independent while
Hat�t�=H−Fz�t� oscillates in time through z�t� with the Ke-
pler period Tn=2�n3�6 ns and the Stark period �Ts
=2� / �3nF��40 ns�. The nonadiabatic reversal �switching
time ts=500 ps� of F at t=�=500 ns induces transitions be-
tween different n levels and modifies the time average of the
unperturbed energy Hat �dark solid line�. The field reversal
modifies the precession frequency ��� � �3 /2�nF not only
in its sign but also in its magnitude, thereby breaking the
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FIG. 4. �a� Time evolution of the unperturbed energy Hat for a
single trajectory for two different switching times, ts=0.5 �black�
and 6.5 ns �gray�. �b� Time evolution of the ensemble average over
trajectories �Jx

+�t�	. The initial 1D state is subject to sudden appli-
cation of a dc field �F=20 mV /cm� and to a field reversal at t
=500 ns with ts=0.5 ns. �c� The minimum azimuthal width ��+

J

after field reversal �at the maximum echo� as a function of switch-
ing time ts. The initial state and the applied field are the same as
used in �b�.
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time-reversal symmetry. Consequently, the subsequent evo-
lution of Jx

+�t� displays a much smaller echo �Fig. 4�b�� than
seen in Fig. 3�b�. Unlike in other echo reversal operations
�e.g., NMR�, rapid nonadiabatic switching is detrimental to
preserving time-reversal symmetry. The obvious reason is
the presence of additional fast time scales �or nondegenerate
energy levels� to which couplings become possible. There-
fore, the switching time ts should be chosen to be �at least� of
the order of the orbital averaging time �Eq. �5��. Indeed, with
a nearly adiabatic field reversal �ts=6.5 ns�, the time-
averaged Hamiltonian Hat is almost preserved during the
field reversal �gray line in Fig. 4�a�� and approximate time
reversal can be achieved. In fact, the forward-backward sym-
metry becomes even better when the switching time ts is
increased to the Stark period. The minimum azimuthal width
��+

J after field reversal is plotted as a function of ts in Fig.
4�c� and shows a clear decrease of ��+

J with increasing
switching time ts. In particular, ��+

J shows local minima at
ts� iTn �i is an integer� because the energy Hat �Fig. 4�a�� �or
position z� averaged over ts becomes almost invariant for
these switching times. Since in the Bloch equation �Eq. �6��
the Kepler evolution is a neglected degree of freedom, by
choice of a suitable switching time the influence of the un-
observed environmental degree of freedom and hence this
source of decoherence can be controlled and minimized.

B. Determination of irreversible dephasing
by multiple echoes

The initial growth in the azimuthal width ���
J is con-

trolled by the spread of the frequency spectrum correspond-
ing to the total dephasing rate associated with both reversible
and irreversible dephasing. The irreversible dephasing can be
viewed as the effect of stochastic fluctuations ��stoc�t� in the
precession frequency. Accordingly, the azimuthal angle at the
time of the echo is

��
J �2�� = ��

J �0� + 

0

2�

��stoc�t�dt . �31�

This stochastic coupling to the environment makes the azi-
muthal width grow at a higher rate. The echo technique de-
scribed above allows the rate for irreversible dephasing to be
extracted from the total rate. This method can be refined by
exploiting multiple rather than single echoes. When a series
of field reversals is applied at t=� ,3� ,5� , . . . �Fig. 5�a��, mul-
tiple echoes in the evolution of the pseudospins can be ob-
served at t=2� ,4� ,6� , . . . �Fig. 5�b��. The azimuthal angle
distribution is refocused at each echo and its width shows a
series of local minima �Fig. 5�c��. Due to irreversible dephas-
ing caused by quadratic Stark effects and nonadiabatic cou-
plings during field reversal, the height of the local minima
grows. The rate of irreversible dephasing can be extracted
from the growth of these local minima in the azimuthal
width ��+

min �thick dotted line�. Assuming this growth is lin-
ear, the irreversible dephasing rate can be defined as the av-
erage slope,

�irr = ���+
min

„2�i + 1��… − ��+
min�2i��

2�
� . �32�

In Fig. 5�c�, a linear growth of the minima is observed for
t�1000 ns yielding a dephasing rate �irr=0.12 rad /�s. This
is to be compared with the total rate, �=3.1 rad /�s �thick
dashed line in Fig. 5�b��, with which the amplitude of the
beats of the pseudospin Jx

+�t� initially dephases.
The Fourier transform of �Jx

+�t�	 manifests these two
dephasing rates even more clearly. Without field reversal �see
an example of �Jx

+�t�	 in Fig. 1�c�� the Fourier transform, as
shown in Fig. 6�a�, is approximately Gaussian with a width
associated with the total dephasing rate, i.e., ��=� / �2��
�0.5 MHz, around the precession frequency �� / �2��
�13.5 MHz. In contrast, the Fourier transforms of �Jx

+�t�	
when a series of field reversals is applied exhibit a set of
discrete peaks separated by the frequency of the multiple
echo sequence, 1 / �2���1 MHz �Figs. 6�b� and 6�c��. Each
peak has a width corresponding to the irreversible dephasing
rate ��irr=�irr / �2���20 kHz and the relative height of each
peak follows the Gaussian envelope �dashed line� associated
with the total rate. For a characteristic reversal time �
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FIG. 5. �Color online� �a� Electric field sequence to observe
multiple echoes. Field reversals are at t=� ,3� ,5� , . . .. �In this plot
�=500 ns and ts=6.5 ns.� �b� Time evolution of a pseudospin Jx

+�t�.
The initial 1D state is subject to the time-dependent field depicted
in �a� with extreme values of �20 mV /cm. The thick dashed and
dotted lines are proportional to exp�−��t�2 /2� and exp�−��irrt�2 /2�,
respectively. �c� Time evolution of the azimuthal width ��+

J �t� for
the same ensemble of wave packets as in �b�. The thick dashed and
dotted lines are proportional to �t and �irrt, respectively. The
dephasing rates are estimated from this plot as ��3.1 rad /�s and
�irr�0.12 rad /�s. In �b� and �c�, vertical dotted lines indicate the
times of field reversals.
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=500 ns, the phase of the pseudospin oscillations �see Fig.
6�d�� is shifted by � at field reversals leading to the disap-
pearance of the main peak at the precession frequency
�13.5 MHz� in the Fourier spectrum. A small shift of the
reversal time to �=480 ns �Fig. 6�e�� prevents this phase
shift and the contribution near the precession frequency is
recovered.

The irreversible dephasing rates obtained by multiple ech-
oes are well defined and nearly independent of the reversal
time �. Figure 7�a� shows the evolution of the azimuthal
width for three different reversal times, �=100,200,500 ns.

The minimum azimuthal width at each echo grows linearly at
a rate �irr�0.12 rad /�s in agreement with the estimate de-
rived from the azimuthal width in Fig. 5�c�. This irreversible
rate can be reduced by choosing a larger switching time ts
�Fig. 4�. A switching time of ts=28.5 ns is found to be opti-
mal for suppression of irreversible dephasing. In this optimal
case, �irr is reduced to �irr�0.07 rad /�s �Fig. 7�b��.

C. Relation to revivals

Revivals of quantum beats �16,17� are a well-studied sig-
nature of the persistence of coherence in the time evolution
of quantum wave packets. While the quantum beats, in the
present case Stark beats, may have a classical analog, their
revivals generally do not because they rely on the discrete-
ness of the excitation spectrum. �For the comparison in Fig.
2, we introduced such discrete excitation energies into the
classical simulation through choice of the initial states in
order to disentangle the quantum effect due to discreteness
from that due to phase coherence.� Revivals are observed for
systems with discrete and nonequispaced eigenenergy spec-
tra. Only when a finite number of frequency components
contribute to the time evolution of an observable, will a
dephased ensemble rephase �with a phase shift of an integer
multiple of 2�� within a finite time and exhibit quantum beat
revivals. Stark wave packets for relatively low n levels are a
good example as they possess only a few frequency compo-
nents in their spectra. The onset of �fractional� revivals seen
for n�35 in Fig. 2�a� with a frequency spectrum consisting
of three discrete components �+= �3 /2�nF with n=34, 35,
and 36 is one such example. The key point is that the ampli-
tude of these revivals is reduced by decoherence which re-
duces the discreteness of the frequency spectrum. Thus, the
size of the revivals provides an alternative measure of deco-
herence. There are, however, important differences between
revivals and echoes. One difference is that the revival time
�R is given by the discrete frequency spectrum and cannot be
controlled. For high-lying Rydberg states, the density of dis-
crete frequencies becomes high. More specifically, for Ryd-
berg wavepackets with n=350, there are about 20–30 fre-
quency components within the Gaussian envelope depicted
in Fig. 6�a�. Correspondingly, the revival time is expected to
be more than 10 �s. Even if coherence could be, in principle,
preserved, such long time intervals are not accessible in the
current experiment. More generally, �R is of the order of the
Heisenberg time �H�n4 and thus difficult to realize in high
Rydberg states. Therefore, determination of irreversible
dephasing via revivals becomes impossible. In contrast, the
echo time can be controlled and made sufficiently short that
irreversible dephasing becomes accessible on short time
scales ��1 �s� even though the dephasing time to be mea-
sured ��irr

−1� may be much longer ��irr
−1�10 �s�. Echoes are

thus a versatile tool to measure decoherence and dephasing
on a time scale much shorter than can be achieved using
revivals.

V. CONTROLLING DEPHASING

We consider now protocols that allow the control and ma-
nipulation of dephasing in Rydberg atoms. Irreversible
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dephasing can be reduced by effectively eliminating contri-
butions due to the quadratic Stark effect or can be enhanced
by exposing Rydberg atoms to external synthesized noise
whose spectral content can be controlled.

A. Suppression of irreversible dephasing due
to the quadratic Stark effect

Experimentally, it is not easy to prepare a wave packet
like the 1D state assumed in the above discussions. While it
is feasible to produce oriented wave packets �18,19�, they are
usually less oriented than the 1D state. Because a finite range
of k and m values are excited, quadratic Stark effects play an
important role in determining the size of echoes. They can be
effectively suppressed, however, by monitoring the echo in
observables that are cylindrically symmetric about the z axis.
To illustrate this, we transform the equation of motion into a
rotating frame

K� � = Rz�� = �m
�2�t�J��, �33�

where Rz��� is the rotation matrix by an angle � about the z
axis. Since, to leading order, the quadratic Stark effect modi-
fies only the precession frequency in the Bloch equations
�Eq. �6��, the equation in the rotating frame becomes

d

dt
K� � = � �k�F�K� � � ẑ . �34�

The two pseudospins in the rotating frame, K� �, precess in
opposite directions but at identical rates �k�F�=�k

�1��F�
−�k

�2��F�. The precession of J�� with frequency �m
�2��F� in the

laboratory frame is thus removed.
We analyze now the effect of the term �k

�2��F2 in �k by
examining the time evolution of an experimentally accessible
wave packet in the rotating frame using CTMC simulations.
The wave packet is initially a mix of redshifted Stark states
characterized by the actions n=350, Lx=0, having nAx ran-
domly distributed according to a Gaussian distribution cen-

tered at k̄x=299 with spread �kx=20. �We call this initial
state a quasi-one-dimensional �quasi-1D� state.� The wave
packet is initially oriented along the x axis. Figure 8�a� dis-
plays the behavior of �Jx

+�t�	 �in the laboratory frame�. While
the initial state consists of only a single n level, sudden ap-
plication of the dc field �rise time �300 ps� induces transi-
tions between different n levels, in particular for trajectories
misaligned relative to the x axis. This broadens the distribu-
tion of precession frequencies and, consequently, the oscilla-
tion amplitude of the pseudospin is reduced. For inhomoge-
neous broadening due to the nonadiabatic field switch-on, the
n distribution, and, in turn, the frequency distribution, is bet-
ter approximated by an exponential rather than a Gaussian
function. Sudden application of the dc field transfers an en-
ergy �E�zF to the electron and the n distribution reflects
the initial distribution projected on the z axis which is closer
to exponential. Thus, the damping of the pseudospin oscilla-
tions follows a Lorentzian envelope �1 / �1+ ��t�2 /2�. After
field reversal, the damping due to inhomogeneous broaden-
ing continues. The absence of an echo results from the pres-
ence of the ��m

�2��F� contribution due to the quadratic Stark

effect. A mirror image of �Jx
+�t�	 �0� t�500 ns� is included

in the figure �in light blue or gray� to highlight the differ-
ences between the predicted continued damping and the
time-reversed �Jx

+�t�	. Switching now to observables in the
rotating frame �Eq. �33��, dephasing is markedly different:
the pseudospin �Kx

+�t�	 in the rotating frame shows a very
clear echo. We can examine the size of the echo using the
azimuthal width ��+ for the three different alignments �kx
=299,249,199� of the initial state �Fig. 8�c�� ���

=arctan�Ky
� /Kx

�� is the azimuthal angle in the rotating frame
while ��

J is the azimuthal angle in the laboratory frame�. The
minimum widths after field reversal range from ��+
=0.4 to 0.5 rad, which is slightly larger than that seen in Fig.
3�c�. Upon removing the m dependent part, �m

�2�, of the qua-
dratic correction, a strong echo is recovered. Note, however,
that the m-independent part �k

�2� is still present. The latter is
reduced by the initial alignment along the x axis. Even when
the orientation of the initial state is changed substantially, the
azimuthal width at the time of the echo is little modified
�Fig. 8�c��. Thus, by using oriented wave packets and apply-
ing a transverse dc field, the quadratic correction �k

�2��F�
does not dramatically affect the observation of echoes.

Experimentally, one cannot switch to the rotating frame
directly but one can instead focus on observables that are
cylindrically symmetric about the z axis �the dc field axis�.
They exhibit Stark echoes without being dephased by the
quadratic contribution �m

�2��F� since those variables are in-
variant under transformation from the laboratory to the rotat-
ing frame. The electron coordinate �z�t�	 and momentum
�pz�t�	 are candidates for such variables. We choose in the
following as observable the survival probability Ps�tdelay� fol-
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FIG. 8. �Color online� Calculated evolution of the pseudospins
in �a� the laboratory frame and �b� the rotating frame, and �c� of the
azimuthal width in the rotating frame. The initial state is a mix of
Stark states oriented along the x axis �n=350, Lx=0, nAx

� �−k̄x−2�kx ,−k̄x+2�kx� with �kx=20.� In �a� and �b�, the average

action is set to k̄x=299 and in �c� three different values k̄x

=199,249,299 are chosen. For comparison, a mirror image of the
first half �0� t�500 ns� of Jx

+�t� and Kx
+�t� is shown by the light

blue �gray� thick line in �a� and �b�.
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lowing application of a probe half-cycle pulse �HCP� di-
rected along the z axis at a variable time delay t= tdelay mea-
sured from the time t=0 when the sudden dc field is applied.
Ps�tdelay� is closely related to �pz	 and can be easily measured
experimentally. When the duration of the probe HCP is much
shorter than the electron orbital period, Tn=2�n3 ��6.5 ns
for n=350�, the HCP simply delivers an impulsive momen-
tum transfer or “kick,” �p=−�FHCP�t�dt, to the excited elec-
tron. Ionization is determined by the energy gain �E�pz�
= pz�p+ ��p�2 /2 which is a function of the momentum pz at
the time of the application of the HCP. The survival prob-
ability thus mirrors the evolution of �pz�t�	 of the wave
packet. The time evolution of the elongation and orientation
of the Kepler ellipse due to the Stark precession results in a
time-dependent survival probability. The survival probability
for a single classical trajectory oscillates with both the Ke-
pler and the precession frequency. Thus, the time-dependent
survival probability has �approximately� the same frequency
spectrum as that of pseudospin precession. The survival
probability can therefore be used to extract the total as well
as the irreversible dephasing rates. We note again �see the
discussion of Fig. 4� that for cylindrically symmetric observ-
ables the frequency is doubled with �s= ��+−�−��3nF be-
ing the Stark frequency corresponding to the energy splitting
between adjacent Stark states. The absolute azimuthal angles

of each pseudospin J�� are not probed separately, only their
relative angle which evolves with the doubled frequency as
�+−�−��+t−�−t=2�+t.

The calculated survival probability for the quasi-1D initial
state �Fig. 9�a�� displays fast oscillations �period �6 ns� as-
sociated with the Kepler orbit and slower variations �period
�40 ns� associated with the relative pseudospin precession.
Similarly to Jx

+�t� �Fig. 1�c��, the oscillation amplitude is
damped due to dephasing. Without field reversal the damping
continues �black line in Fig. 9�b�� while a clear echo is ob-
served following field reversal at t=500 ns �gray line in Fig.
9�b��. In this simulation the direction of the probe pulse is
also reversed following field reversal, so that symmetry is
preserved before and after the field reversal, leading to an
accurate time reversal. In order to relate Ps�tdelay� to the
Bloch equation �Eq. �6�� we average the survival probability
over the fast Kepler motion with a period Tn �Figs. 9�c� and
9�d��. As a result of this coarse graining �Eq. �5��, only the
beating associated with pseudospin precession is seen. With
doubling of the oscillation frequency relative to that seen in
Fig. 8�b� comes also the doubling of the relaxation rate. The
dephasing rates are twice as large as those ��=1.36 rad /�s
and �irr=0.36 rad /�s� derived from Fig. 8�c�.

B. External noise

In order to extend the dynamical range of relaxation rates
to be probed, we manipulate the irreversible dephasing rate
by applying external noise. “External” refers here to the ex-
ternal fields rather than to atomic degrees traced out.

The effect of colored noise on the total dephasing of Stark
beats has been studied in a controlled manner using artifi-
cially synthesized noise �20�. The noise used is generated as
a randomly alternating binary-valued electric field

Fran�t� = �
j�1

Fj��j−1�Tran

jTran �t� �35�

where

Fj = � �F �36�

and ��j−1�Tran

jTran �t� is the characteristic function of the interval
��j−1�Tran , jTran�. Fran�t� discontinuously jumps randomly
between these two values of Fj after fixed time intervals Tran
and remains constant Fran�t�=Fj during each interval �j
−1�Tran� t� jTran. We define the characteristic frequency of
this noise as �c=1 / �2Tran�=�ran /2 corresponding to the fre-
quency for an alternating sequence �F ,−�F ,�F , . . .. The
average frequency obtained using the power spectrum of
Fran�t� is in fact smaller than �c �see �20� for details�. This
random noise is superposed on the static field. Single or mul-
tiple reversal�s� of this field are considered and the ensemble
average taken over different random noise sequences for
each trajectory is calculated to quantify the rate of irrevers-
ible dephasing.

Figure 10 displays the evolution of the azimuthal width of
the initial quasi-1D state subject to a static field having mul-
tiple reversals with characteristic time �=200 ns when, in
addition, noise with amplitude �F=0.1F and �c=1 /Tn
=150 MHz or 1 / �2Tn�=75 MHz is applied. Assuming first
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FIG. 9. Calculated survival probability as a function of delay
time tdelay. The initial quasi-1D state �n=350� is subject to sudden
application �rise time �300 ps� of a dc field with F=20 mV /cm
with a superposed probe HCP ��pprobe=−0.532n� at t= tdelay. Early
�t�500 ns �a�� and late �t�500 ns �b�� times are shown in separate
frames. The gray line in �b� indicates the probability for t
�500 ns when a field reversal is applied at t=500 ns with ts

=6.5 ns. The orientation of the probe pulse is also reversed
��pprobe= +0.532n�. �c� and �d� probabilities obtained by averaging
those in �a� and �b� over a Kepler period Tn=6.5 ns. The oscillation
amplitude and the size of the echo are damped as �1 / �1+2��t�2�
�dashed line� and �1 / �1+2��irrt�2� �dotted line�, respectively. The
dephasing rates are obtained from Fig. 8 as �=1.36 rad /�s and
�irr=0.36 rad /�s.
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for simplicity that noise would leave the initial n distribution
created by the nonadiabatic switch-on invariant, the time
evolution of the azimuthal angle for a single trajectory in the
presence of noise is given to order ��F by

�+�t� = �+��F = 0�t +
3

2
n�Fran	tt + O��F2� , �37�

where �Fran	t= t−1�0
t Fran�t��dt�. The azimuthal width in the

presence of noise is increased to

��+�t� = t����F = 0�2 +
9

4
n2�

�=1

N�

�Fran
� 	t

2, �38�

where the average is taken over stochastic realizations of the
random field ��=1,2 , . . . ,N��. The time-average random
field �Fran	t vanishes in the limit t→�. For short periods the
square deviation ��=1

N� �Fran
� 	t

2 decays inversely with time as
��=1

N� �Fran
� 	t

2= ��F�2Tran / t. Using the noise-free dephasing rate
���F=0�=1.36 rad /�s �derived from Fig. 8� we can esti-
mate the initial growth in azimuthal width using Eq. �38�
�this is illustrated by the upper panels in Fig. 10�.

One limitation of Eq. �38� is the assumption that the
spread in n is unaffected by the noise. The latter assumption
depends critically on the color, i.e., the frequency distribu-
tion, of the noise. By tuning the artificially synthesized noise
spectrum relative to the excitation spectrum of the high Ry-
dberg states, the excitation dynamics can be significantly in-
fluenced. Briefly, when the characteristic frequency �c of the
noise satisfies the resonance condition �c

−1= jTn �j is an odd
integer�, the noise and the Kepler motion of the electron
constructively interfere, leading to excitation of the electron
�a change in n� modifying, in turn, the precession frequency

�s�3nF. Consequently, the wave packet shows enhanced
dephasing. On the other hand, for an even integer j in the
resonance condition, the electronic motion destructively in-
terferes with the noise, leading to little change in n and little
additional dephasing. At late times, the transitions between
different n levels induced by the noise becomes significant
and the evolution of the azimuthal angle is modified to

�+�t� � �+��F = 0�t +
3

2
n�Fran	tt +

3

2
��n�Ft �39�

where �n denotes noise-induced broadening of the n distri-
bution. For �c=150 MHz, the constructive interferences be-
tween Kepler motion z�t� and the random field Fran�t� in-
duces transitions and further accelerates dephasing as can be
already observed at early times �t�50 ns, denoted by an
arrow in Fig. 10�. It can be seen more clearly in the irrevers-
ible dephasing rate extracted from the local minima in ��+
at the time of echoes at t�400, and 800 ns. The irreversible
dephasing rate is increased by the nonvanishing time-average
field �Fran	t �similar to the total dephasing rate �Eq. �38��� as

��+�t� = t��irr��F = 0�2 +
9

4
n2�

�=1

N�

�Fran
� 	t

2. �40�

For �c=75 MHz, this estimate reproduces the irreversible
rate indicating that the broadening �n is suppressed for an
extended period. On the other hand, irreversible dephasing is
faster for �c=1 /Tn=150 MHz. Thus, by tuning the charac-
teristic noise frequency to induce �n transitions, the revers-
ibility of the dynamics can be effectively destroyed.

VI. EXPERIMENTAL REALIZATION

The apparatus used to investigate Stark echoes experi-
mentally is described in detail elsewhere �19,21�. Briefly,
quasi-one-dimensional Rydberg atoms oriented along the x
axis are first produced by photoexciting potassium atoms to a
mix of the lowest-lying redshifted states in the n=350 Stark
manifold in a weak ��250 �V cm−1� dc field �directed along
the x axis� �21�. A much larger dc field F=20 mV cm−1 is
then suddenly applied �rise time �0.3 ns�Tn� in the z direc-
tion �Fig. 3�a�� to create a Stark wave packet comprising a
coherent superposition of Stark states with a narrow range of
n. The wave packet is subject to a single field reversal or to
multiple field reversals at t=� ,3� , . . . with a switching time
of ts�7 ns�Tn. The echo is monitored by applying a probe
HCP of duration Tp�0.6 ns and amplitude sufficient to ion-
ize �50% of the atoms, along the z axis after a variable time
delay �delay and measuring the overall survival probability
�after the dc field has returned to zero� using field ionization
�8�. The total duration of the dc field is limited to �1 �s by
the output characteristics of the pulse generators used to es-
tablish the field.

A. Single-reversal measurement

Figure 11�a� shows the measured survival probability fol-
lowing a single field reversal as a function of time delay
�delay between the application of the dc field and the probe
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FIG. 10. �Color online� Calculated evolution of the azimuthal
width ��+�t� for the initial quasi-1D state when subject to a static
field with multiple reversals at t=200 and 600 ns �dotted line�, and
when noise Fran�t� is superposed with �c=75 MHz �solid line�, and
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of the time interval 0� t�200 ns �indicated by the dashed square�.
The light blue �gray� lines correspond to the analytical predictions
�Eq. �38�� with ���F=0�=1.36 rad /�s for the upper panels and
�Eq. �40�� with ���F=0�=3.6 rad /�s for the lower panel �only
predictions for �c=75 MHz are included.�
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pulse. An echo similar to that seen in Figs. 9�c� and 9�d� is
clearly observed. Some differences are apparent, however,
such as the reduced amplitude of the beats and the small shift
in the time-averaged survival probability before and after
field reversal. The former is accounted for by uncertainties of
the distribution of quasi-1D states initially prepared. The re-
sults in Fig. 9 were derived using a mix of the redshifted
states in the Stark manifold centered around k�299 and hav-
ing an average scaled dipole moment �d0	�−1.3. This dis-
tribution is based on calculated oscillator strengths for exci-
tation from the ground state. The actual mix of states excited
in the experiment, however, depends on the effective laser
linewidth ��12 MHz� governed mostly by the laser and
atom beam divergences and by the exact laser tuning. Fur-
thermore, even though stray fields in the experimental region
can be reduced to �50 �V cm−1 �21�, their presence still
leads to uncertainties in the magnitude and direction of the
applied Stark field. These effects will reduce the average
dipole moment and the amplitude of the oscillations in the
survival probability.

A small increase in the average survival probability at the
point of field reversal is observed when the probe pulse is
applied after field reversal. This is because the pulse when
applied before field reversal leads to production of a range of
higher-n states that do not behave adiabatically when the
field is reversed and can be ionized by field reversal. To

preserve the symmetry relative to the point of field reversal,
in the calculations the orientation of the probe pulse was
reversed when applied after the field reversal �Fig. 9�. Ex-
perimentally, it is, in principle, possible to follow a similar
protocol by performing two separate measurements: one
without field reversal for �delay�500 ns and one with a field
reversal for �delay�500 ns. In such a protocol, however, it is
difficult to maintain coherence between the two measure-
ments since a slight change of the dc field strength or the
probe kick strength will induce additional decoherence. One
more practical way to eliminate the shift in the survival prob-
ability is to split the data into two parts, before and after the
field reversal, and subtract the time-averaged probability
from each of them �Fig. 11�b��. The small shift of the aver-
age survival probability is removed and the amplitude of the
oscillations before and after field reversal can be directly
compared. Due to the reduced dipole of the initial state, the
echo is less obvious than in Fig. 9. However, when compared
with the survival probability without field reversal, it is clear
that the wave packets are rephased and the survival probabil-
ity shows a recovery of the oscillation amplitude. By exam-
ining the size of echoes as a function of field reversal time it
is possible to extract the rate of irreversible dephasing �22�.

B. Measurements with multiple reversals

Data obtained for multiple field reversals at t
=� ,3� ,5� , . . . are shown in Fig. 12 for �=100 and 200 ns. As
in the case of single reversal, the survival probability is split
into several segments for adjacent field reversals, i.e., 0� t
��, �� t�3�, 3�� t�5� ,¯. In each segment, the average
probability is subtracted such that the variations in the echo
amplitude can be directly compared. For �=100 and 200 ns,
a Lorentzian envelope is fitted to the decay of the echoes and
the irreversible dephasing rate estimated as �irr=0.6 rad /�s.
This is slightly larger than that extracted from the CTMC
simulation in Fig. 9 �0.36 rad /�s� and can be attributed
partly to contributions associated with additional “noise” ex-
isting in the experimental setup not accounted for in the
simulations and partly to the uncertainty of the average di-
pole of the initial state. The latter has, indirectly, an influence
on the irreversible dephasing rate: the smaller the average
dipole is, the less aligned is the initial state. In turn, the
k-dependent part of the second-order Stark contributions of
the precession frequency, �k

�2�, become larger and induce
stronger irreversible dephasing �see Sec. V�. Nevertheless,
extraction of atomic irreversible dephasing times on a multi-
microsecond time scale is possible and the results agree with
simulations to within a factor 2.

C. Noise-induced dephasing

Noise-induced irreversible dephasing can be enhanced by
adding artificially synthesized noise. This allows study of the
stochastic interactions with the environment in a controlled
manner. The noise is produced by superposing the output
from a �gated� random pulse generator on the dc field while
maintaining the time-averaged dc field experienced by the
atoms unchanged. The generator divides time into a series of
bins of adjustable width and in each randomly assigns an

0.4

0.5

0.6

P
s(

τ d
el

ay
)

−0.1

0

0.1

0 500
DELAY TIME (ns)

−0.1

0

0.1

P
s
(τ

d
el

ay
)−

〈P
s

〉 τ

(a)

(b)

(c)

FIG. 11. �Color online� �a� Measured survival probability for the
quasi-1D initial state subject to sudden application of a dc field
�F=20 mV /cm and rise time of 300 ps� with field reversal at �
=500 ns �switching time ts=7 ns�. A probe HCP with scaled mo-
mentum transfer �p0=−0.532 and pulse duration of 600 ps is ap-
plied at a variable delay time. �b� Measured probabilities in �a� are
split into two parts, t�500 ns and t�500 ns and for each part the
oscillations in survival probability are shifted such that their aver-
age is zero. �c� Measured probability as in �b� but the field is re-
versed at t=300 ns. The arrows indicate the times of the field re-
versal. The light blue �gray� lines in �b� and �c� show the survival
probabilities observed without field reversal. All data are smoothed
over an orbital period, �7 ns.
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output of 0 or V. V is chosen such that the peak-to-peak
amplitude of the noise is �5–10 % that of the time-averaged
dc field. The survival probabilities shown in Fig. 13 were
averaged over many cycles each using a different random
sequence of noise. The characteristic frequency of the noise
was �c=150 MHz. Compared to Figs. 11�a� or 12�a�, the
initial damping of the oscillations is much more rapid indi-
cating that both reversible and irreversible dephasing is en-
hanced by the fluctuating field. Since the noise frequency is
resonant with the Kepler orbital frequency, the induced tran-
sitions between different n levels are expected to accelerate
irreversible dephasing. For small noise amplitudes ��F /F
=5% in Figs. 13�a� and 13�c�� the wave packet remains at
least partly coherent for extended periods and echoes can be
observed at t�500 ns in Fig. 13�a� and �800 ns in Fig.
13�c�. For 10% noise amplitude, irreversible dephasing is
much more rapid. While small echoes can be still seen but at
t�500 ns in Fig. 13�b�, almost no trace of echoes is ob-
served at t�800 ns. In all cases, the agreement between
measurements and simulations is remarkable.

VII. CONCLUSIONS AND OUTLOOK

We have demonstrated that by reversing the applied field
the pseudospins associated with Rydberg Stark wave packets
can be rephased to generate quantum beat echoes. Multiple
reversals lead to a series of echoes whose amplitudes de-

crease with time. From their decay rate, the irreversible
dephasing rate can be determined. The irreversible dephasing
rate can be increased by the presence of noise and is sensi-
tive to its characteristic frequency spectrum. When the noise
frequency resonantly matches the energy difference between
neighboring n levels, the irreversible dephasing rate is en-
hanced not only due to the fluctuations in the dc field mag-
nitude but also due to transitions to adjacent levels that
modify the pseudospin precession frequencies.

In the present protocol, time reversal is achieved by re-
versing the direction of the external dc field. However, this
operation reverses the arrow of time only for certain degrees
of freedom, the precession of pseudospins. The resulting
echo can thus be used as a measure for coherence of the
dynamics of pseudospins with other atomic degrees of free-
dom treated as environmental degrees of freedom. When the
pseudospins are coupled to neglected degrees of freedom,
those which are not time reversed by a field reversal, the size
of the echo is reduced. This can be identified as intra-atomic
irreversible dephasing. The dephasing times due to intra-
atomic couplings estimated classically are comparable to the
quantum break time. It would therefore be interesting to in-
vestigate any quantum effects on the dephasing time by treat-
ing the intra-atomic couplings quantum mechanically. It is,
however, experimentally challenging to measure small
changes in dephasing times on the order of microseconds.

The coherence of pseudospins, or equivalently, of electric
dipole moments of Rydberg atoms may be of interest for the
study of ultracold Rydberg atoms. The average �coarse-
grained� electric dipole moment of an atom affects the
eigenenergy spectrum of other neighboring atoms resulting
in phenomena such as the dipole-dipole blockade �23�. Infor-
mation concerning coherent dynamics in such a strongly cor-
related system might be extracted by examining the dynam-
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FIG. 12. �Color online� Measured �black� and calculated �light
blue or gray� survival probabilities after subtraction of the average
values �see text� for the quasi-1D initial state subject to sudden
application of a dc field �F=20 mV /cm and rise time of 300 ps� �a�
without field reversal and with multiple reversals for �= �b� 100,
and �c� 200 ns. The damping of the oscillation amplitude has an
envelope with a Lorentzian form �1 / �1+2��irrt�2� with �irr

=0.6 rad /�s �dashed lines in �b� and �c��. The arrows indicate the
times of field reversals. The probe HCP �pulse duration �600 ps�
has a scaled momentum transfer �p0=−0.53 in �a� and −0.46 in �b�
and �c�. All data are smoothed over an orbital period �7 ns. The
calculations assume a mixture of initial quasi-1D states with an
average dipole moment �d	=−0.75.

0 500

−0.1

0

0.1

−0.1

0

0.1

0 500

TIME (ns)

(A
V

E
R

A
G

E
S

U
B

T
R

A
C

T
E

D
)

150MHz, 5%

150MHz, 10% 150MHz, 10%

150MHz, 5%

(a)

(b)

(c)

(d)

S
U

R
V

IV
A

L
P

R
O

B
A

B
IL

IT
Y

FIG. 13. �Color online� Measured �black� and calculated �light
blue or gray� survival probabilities for the quasi-1D initial state
��d	=−0.75� subject to sudden application of a dc field �F
=20 mV /cm and rise time of 300 ps� with a field reversal at �
=300 �a�, �b� or 500 ns �c�, �d� �indicated by arrows� and switching
time ts=7 ns in the presence of noise with amplitude �F /F
= �0.05 �a�, �c� or �0.1 �b�, �d� and characteristic frequency �c

=150 MHz. The probe HCP used has a scaled momentum transfer
�p0=−0.46. All data are smoothed over an orbital period �7 ns.
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ics in the “reduced” Hilbert space. The echo technique can
be used to probe the interaction strength between atoms
through deviations from the behavior expected for isolated
atoms. In such a setting, the present treatment of intra-atomic
decoherence should be extended to interatomic decoherence
involving the relevant degrees of freedom of the dipole-
coupled atomic pair.

Our present protocol for generating dipole echoes in Ry-
dberg atoms bears considerable resemblance to that used to
generate a spin echo �4�. One significant difference is that for
the latter time reversal is achieved by reversing the orienta-
tions of spins relative to the applied magnetic field, which is
kept constant. This reversal is very likely to preserve the
inhomogeneity of the magnetic field and thus the inhomoge-
neous broadening is reversible. In the case of Stark echoes,
however, the time reversal is implemented by modulating the
dc field and, consequently, the inhomogeneity in the field
may not be perfectly preserved before and after field rever-
sals. Thus, the broadening, conventionally considered to be
“inhomogeneous,” may contribute to irreversible dephasing.
Similar to a spin echo, a � pulse �an alternating field perpen-
dicular to the dc field� could be used to flip the orientations

of pseudospins to achieve time reversal. However, for the
Stark precession, such time reversal is quite challenging

since two pseudospins J�+ and J�− precessing in opposite di-
rections have to be manipulated simultaneously to observe
echoes. The observation of echoes in the current protocol
proves that external sources for decoherence are reasonably
well under control in the present experimental apparatus.
Only with the application of relatively strong additional
noise does the dynamics become completely irreversible de-
stroying the echo.
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