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We describe a protocol to generate transiently localized circular wave packets in very-high-n Rydberg states.
These are created from strongly polarized quasi-one-dimensional Rydberg states by applying a transverse
pulsed electric field. The resulting wave packet becomes transiently localized as the result of focusing and
travels in a nearly circular Bohr-like orbit around the nucleus for several orbital periods. The localization
properties can be controlled by carefully choosing the shape of the field pulse, in particular, its rise and fall
times. Remarkably, the wave packets exhibit classical revivals after the initial dephasing on time scales shorter
than those expected for quantum revivals.
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I. INTRODUCTION

Controlling and manipulating the electronic states of mi-
croscopic and mesoscopic systems is an active field of re-
search. Atoms in high-lying Rydberg states with large values
of principal quantum number n provide a valuable mesos-
copic system in which to explore such control. Various tech-
niques have been devised to create different stationary Ryd-
berg states including stationary circular states where the
electron is placed in a state with extremely high values of
one component of the angular momentum �Li�� � �n−1��
�1–5�. Interest in circular states stems from their unique dy-
namical properties. The high centrifugal barrier keeps the
electron far away from the �nonhydrogenic� core resulting in
their remarkable stability. Radiative transitions are effec-
tively limited to �n= �1, which is exploited in cavity-
quantum electrodynamics studies �6�.

The development of ultrafast electromagnetic pulses has
opened up the possibility of engineering “nonstationary” Ry-
dberg states, i.e., wave packets. Techniques for producing
and probing Rydberg wave packets have become feasible
only recently �7–10� using pulses whose time scales are
smaller than the electron Kepler period, Tn=2�n3 �atomic
units are used throughout�. Transiently localized wave pack-
ets that move in near-circular orbits and resemble a quasi-
classical electron moving in a Bohr-like orbit are difficult to
produce experimentally and have principally been the object
of theoretical study �11,12�. However, we recently reported
the experimental realization of such “Bohr-like” wave pack-
ets in very-high-n �n=306� Rydberg atoms �13�. The forma-
tion of these wave packets was based on a multistep proto-
col. Initially, stationary quasi-one-dimensional �quasi-1D�
Rydberg atoms strongly oriented along a given axis �the +x
axis� are created �14�. A transverse “pump” electric field
pulse is then rapidly applied along a perpendicular axis �the
z axis�. This creates a Stark wave packet �15,16� that under-
goes periodic changes in its y component of angular momen-
tum, Ly. Rapidly switching off the “pump” field prevents
further evolution in Ly creating a wave packet with a well-
defined eccentricity. By carefully choosing the duration of

the pump pulse a nearly circular wave packet can be realized
traveling clockwise �or anticlockwise� in the xz plane that
subsequently localizes in azimuth to form a Bohr-like state.

Here we present a detailed analysis of the wave-packet
dynamics underlying this protocol using both theory and ex-
periment. We demonstrate that the observed localization of
the wave packet is associated with classical focusing near
caustics. Moreover, we find this focusing to be remarkably
sensitive to the shape and the fall time of the pump pulse
which control the spread in energy �or n� of the wave packet.
Under appropriate conditions classical revivals of the wave
packets are observed which are to be distinguished from the
well-known quantum revivals seen for lower n. The classical
revivals appear on shorter time scales than their quantum
counterparts and are therefore easier to observe with very
high n, n�300, atoms where the quantum revival time TR
�nTn /3 is �440 ns.

II. THEORY

The principles underlying the present protocol can be il-
lustrated by following the evolution of a single elongated
Coulomb orbit when exposed to an electric pump pulse
Fz

pump. The dynamics of the electron is governed by the Stark
Hamiltonian

HStark�t� = Hat + zFz
pump�t� =

p2

2
−

1

r
+ zFz

pump�t� , �1�

where r�= �x ,y ,z� and p� = �px , py , pz� are its coordinate and
momentum, respectively, and Hat is the free-atom Hamil-

tonian. To first order in Fz
pump, the angular momentum L� =r�

� p� , and the Runge-Lenz vector A� = p� �L� − �1 /r�r� precess
about the pump field, i.e., the z axis, following the Bloch
equations �17,18�,

d

dt
�L� � nA� � �

��S�t�
2

�L� � nA� � � ẑ , �2�

where n=1 /	−2Hat and �S�t�=3nFz
pump�t� is the Stark fre-

quency which coincides with the energy splitting between
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adjacent quantum Stark states. To simplify the discussion we
first consider the evolution of a Coulomb orbit in a fixed

�time-independent� field. The z components of both L� and A� ,
Lz and Az, are constants of motion while the dynamics of the
other components, Lx, Ly, Ax, Ay, resemble that of a harmonic

oscillator. For example, if at t=0 A� and L� are parallel to the
x and y axes, respectively, the Bloch equation �Eq. �2�� has
the solution

A� = − x̂ cos��St/2�, L� = ŷn sin��St/2� . �3�

This precessional motion is illustrated in Fig. 1 for an elec-
tron with principal action �or quantum number� ni=306 ini-
tially in an L=0 Kepler ellipse represented by a line oriented

along the positive x axis �A� =−x̂�. We refer to this classical
initial “orbit” as a “one-dimensional” �1D� state to highlight
its similarity to states used in reduced-dimension models.
The latter have been shown to capture the essential physics
of elongated parabolic states with large electric dipole mo-
ments. We emphasize that the dynamics in the present de-
scription is fully three dimensional and that the simulations
of the experiments employ realistic three-dimensional en-
sembles. As shown in Fig. 1�a�, if such a 1D state is suddenly
exposed to a pump field Fz

pump=−10 mV /cm along the z axis,
i.e., a scaled field 
F0 
 =ni

4 
Fz
pump 
 =0.017, the orbit begins to

precess and change its shape. The dynamics proceeds in the
xz plane �y= py =0, Az=Lz=0�. The electron orbit �orbital pe-
riod Tni

=2�ni
3=4.3 ns� changes from being highly elliptic to

being nearly circular �Ly �−ni� on a time scale of one-half a
Stark period TS /2�� / �3ni 
Fz

pump 
 ��42.5 ns �one-quarter of

the precession period in Eq. �3��. The key to the present
protocol is that by suddenly switching off the pump field at
t= toff=TS /2 further evolution of the orbit is halted leaving
the electron moving counterclockwise in a nearly circular
orbit.

Another important factor in the success of the present
protocol is that electron trajectories starting at different po-
sitions on the initial orbit �usually expressed by their “mean
anomalies” or Kepler times �� end up in nearly the same
circular orbit at approximately the same time TS /2. Consider
a distribution of initial conditions sampled from a microca-
nonical ensemble with well-defined angular momentum L

�0 and Runge-Lenz vector A� �−x̂ using a classical trajec-
tory Monte Carlo �CTMC� approach �19�. As seen in Fig.
1�b�, while the initial density of points is largest near the
outer turning point �the apocenter� where the electron moves
slowest, the final density of points at t=TS /2 is nearly uni-
formly distributed around a circle reflecting the fact that
electrons in circular orbit travel with a constant velocity.
However, what is not evident from Fig. 1�b� is that the en-
semble created after turn off of the pump pulse is nonstation-
ary, i.e., a wave packet. As will be discussed, this results
from small position-dependent changes in the electron en-
ergy associated with the �sudden� turn off of the pump field
which translates into a position dependence in the subse-
quent orbital frequencies, ��	i�=n�	i�−3. When that part of
the ensemble orbiting at the higher frequencies catches up
with that part orbiting more slowly the ensemble becomes
transiently localized forming a Bohr-like wave packet in a
nearly circular orbit �13�.

The time evolution of the ensemble can be made more
explicit by examining the time evolution of the angular prob-
ability density 
�	�, where 	 is the azimuthal angle, i.e., 	
=arctan�z /x�. This is displayed in Fig. 2�a� as a function of
time after turn off of the pump pulse. In the following, the
scaled variables �denoted by a subscript 0� x0=x /ni

2, p0
=nip, and t0= t / �2�ni

3�= t /Tni
are used. The essential dynam-

ics occurs in the azimuthal degree of freedom which depends
linearly on time,

	�t� = 	i + ��	i��t − toff� , �4�

where toff corresponds to the time at which the pump field
was switched off. Each electron with an initial azimuthal
angle 	i has a unique angular velocity ��	i�. Note that for
circular orbits the azimuthal angle is identical to the mean
anomaly of the Kepler orbit.

The behavior of the mean value of the azimuthal angle is
shown, on a longer time scale, in Fig. 2�b�. It too depends
linearly on time as �	�= �	i�+ ����t− toff�, where �����ni
=ni

−3. �Mapping 	 onto the principal branch �−�, �� �or its
first Brillouin zone� gives rise to the apparent discontinuous
behavior seen in Fig. 2�b��. As evident from Figs. 2�a� and
2�c�, the width of the angular distribution, i.e., its standard
deviation, �	, exhibits successive minima indicating that the
wave packet periodically localizes in 	. The smallest value
of �	, which corresponds to optimal localization, is reached
at tL�6Tni

, i.e., six orbital periods after turn off of the pump
field, when its width ��	� is reduced to �1 radian. There-
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FIG. 1. �Color online� Time evolution of a Rydberg electron
initially in a linear ni=306 1D state oriented along the x axis in a
field Fz

pump=−10 mV cm−1 that is suddenly turned on at t=0 and is
directed along the z axis. �a� Time evolution of a single classical
trajectory. �b� Snapshots of the ensemble of trajectories originating
at t=0 on the 1D state with random Kepler time � �see text�. The
various snapshots are taken at the times indicated which extend to
one-half of the Stark precession period TS /2�42.5 ns. Scaled units
x0=x /ni

2 and z0=z /ni
2 are used.
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after, the wave packet dephases but periodically rephases at
times trev

�i� = �2i+1�tL, �i=0,1 , . . . �. We refer to this periodic
relocalization as “classical” revivals. �These are to be distin-
guished from quantum revivals which occur on much longer
time scales.� The localization at successive classical revivals,
however, becomes less pronounced, i.e., the width ��	�i in-
creases with i.

For any particular electron trajectory, the x and z coordi-
nates are given by

„x�t�,z�t�… � n2
„cos 	�t�,sin 	�t�… �5�

and are 90° out of phase from each other. The time depen-
dence of the expectation values of the x and z coordinates of
the ensemble are shown in Figs. 3�a� and 3�b�. Their behav-
iors approximately mirror that predicted by Eq. �5� exhibit-
ing fast oscillations with the average Kepler frequency. How-
ever, the amplitudes of the oscillations are modulated and
follow the behavior of the width, �x�z, of the wave packet
in the xz plane, shown in Fig. 3�c�, or the angular width �see
Fig. 2�c��.

The classical localization of the wave packet following
the pump pulse is a consequence of focusing of the classical
ensemble. This can be understood by analyzing the focal
points �caustics� of the system �20�. The search for focal
points is greatly simplified when considering an initial 1D
state. The “location” of the electron within the initial linear
orbit can be characterized by the Kepler time, �, immediately
before application of the pump pulse �at t=0�. The Kepler

time is defined by the implicit Kepler equations �=ni
3��

−sin �� and x=ni
2�1−cos �� with −1 /2
� /Tni


1 /2. �� is
proportional to the angle variable conjugate to the principal
action ni and referred to as the “mean anomaly.” In turn, � is
called the eccentric anomaly.� In the absence of the pump
pulse the principal action n is a constant of motion, the elec-
tron motion being effectively one-dimensional and described
by the time evolution of x�t� for the linear orbit. For the
circular orbit into which the linear orbit evolves, the relevant
variable is 	�t�. The time evolution of the azimuthal angle
�or any other variable� is characterized by a unique function
	�t ,�� of time and the initial position in the orbit, �. The
angular probability density at a time t is given by


�	,t� = � 
���
 �	

��

−1

= const �
 �	

��

−1

, �6�

where 
�	 /��
 is the Jacobian of the transformation and the
sum extends over all the initial values of � leading to the
same final value of 	� �−� ,��. For an initial stationary mi-
crocanonical ensemble the probability density of the intrinsic
time is uniform, i.e., 
���=const �19�. The distribution func-
tion 
�	 , t� is therefore simply given by the Jacobian of the
transformation. In particular, zeros of the Jacobian �i.e.,

�	 /��
=0� represent focal points and lead to singular behav-
ior in 
�	 , t�.

Figure 4 illustrates the behavior of the function 	�t ,�� at
selected times following turn off of the pump pulse �in con-
trast to Fig. 2, the azimuthal angle is not reduced to the �−�,
�� interval�. At the end of the pump pulse, i.e., at t= toff, the
azimuthal angle has a linear dependence 	 /��2� /Tni
+const, leading to the nearly uniform distribution visible in

FIG. 2. �Color online� Time evolution following sudden turn off
of the pump field for �a� the azimuthal angular distribution of the
wave packet, �b� the average value of the azimuthal angle, and �c�
the width of the angular distribution �see text�. The initial state is
the ni=306 1D state as in Fig. 1 and the pump pulse has a peak field
of −10 mV cm−1 and a duration of 42.5 ns. The scaled time after
turn off of the pump pulse is t0= �t− toff� /Tni

= �t− toff� / �2�ni
3�. The

azimuthal angles are measured from the +x axis. Note that the time
scale in the upper frame is different from that of the lower two
frames.
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FIG. 3. �Color online� Time evolution following sudden turn off
of the pump field for �a� the expectation value of x, �b� the expec-
tation value of z, and �c� the width of the wave packet in the xz
plane given by the product of the widths �standard deviations� in x
and z. The initial state is the ni=306 1D state as in Fig. 1. The pump
pulse has a peak field of −10 mV cm−1 and a duration of 42.5 ns.
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Figs. 1 and 2. For several orbital periods after turn off of the
pump field 	�t ,�� is a monotonic function of � until it de-
velops an inflection point at �t− toff��4Tni

�both the first and
second derivatives of 	�t ,�� vanish�. At later times the func-
tion 	�t ,�� develops both a maximum and a minimum and,
therefore, 
�	 /�� 
 =0 at two values �1, and �2, which persist
for all times. The point of maximum localization occurs at
t�6Tni

as the inflection point splits into a maximum and a
minimum �i.e., when �1 and �2 separate from each other�.
About 80% of the wave packet is focused within an angular
range of �1 rad �denoted by the shaded area in the figure�.
At later times the probability density develops two peaks as
seen in Fig. 2�a�, which are directly related to the maxima
and minima of 	�t ,��.

The characteristic properties of this classical phase-space
distribution �or wave packet� are directly related to the prob-
ability densities 
�E� and 
�Ly� for the binding energy E
�Hat and the y component of the angular momentum Ly
created by the pump field. As for the angular probability
density 
�	 , t� �Eq. �6��, 
�E� and 
�Ly� are given directly by
the functions E�t ,�� and Ly�t ,�� displayed in Fig. 5. In con-
trast to 	�t ,��, these functions are time independent after the
pump field is turned off, i.e., E�t ,��=E�toff ,�� for t� toff. The
final ensemble of points encompasses a narrow range of en-
ergies �corresponding to 301
n
311� and angular mo-
menta �−311
Ly 
−300�. In addition, E�toff ,�� and
Ly�toff ,�� have a maximum and a minimum and, conse-
quently, focal points. The corresponding energy distribution
is displayed in Fig. 6 and is characterized by two peaks
�square root singularities associated with the minima and
maxima in Fig. 5� separated by the energy difference �E.
The mean binding energy of the wave packet �E��Eni

is
associated with the fast oscillation evident in Figs. 3�a� and
3�b� while the width �E determines the frequency of the

amplitude modulation and the localization times.
The transient localization of the wave packet results be-

cause, following turn off of the pump field, phase points, i.e.,
electrons, at different points around the orbit rotate with
slightly different Kepler frequencies �, determined by the
binding energy through, �= �−2E�3/2. As will be explained
later, points near the maximum energy �n=311� are initially
located on the opposite side of the orbit to those points with
near the minimum energy �n=301� and have smaller angular
velocity. Focusing occurs as the faster moving �lower-n�
phase-space points catch up with the slower-moving
�higher-n� points. Since these groups of phase points are ini-
tially separated by an azimuthal angle of �	��, the first
localization time can be estimated from the condition

��tL = ��− 2Emin�3/2 − �− 2�Emin + �E��3/2�tL = � . �7�

To first order in �E /Eni
this leads to

������������������������
������������������������
������������������������

�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
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FIG. 4. �Color online� Evolution of the azimuthal angle 	�� , t�
as a function of the Kepler time � for the selected times �t− toff�
indicated following turn off of the pump field. The shaded horizon-
tal region for �t− toff�=6Tni

encompasses about 80% of the wave
packet which is focused within an angular width of �1 rad �the
apparent discontinuity can be removed by a transformation modulo
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FIG. 5. �Color online� Angular momentum �a� and energy �b� of
electrons in the ensemble in Fig. 1�b� after the pump field is turned
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tL/Tni
�

1

6ni
2�E

, �8�

which approximately agrees with the values obtained using
numerical calculations. Localization is then lost but is sub-
sequently recovered when the fastest phase points overlap
with the slowest phase points for the second time, third time,
etc., giving rise to classical revivals at times trev= �2i+1�tL.
These revivals are due to the finite width �E of the final
electron energy distribution which, as shown in Fig. 6, has
sharp cutoffs at Emin and Emax and is strongly peaked at its
extremes due to the focal points in 
�E�. In general, classical
revivals appear for any ensemble of points having an energy
distribution with sharp cutoffs �for example, a rectangular
distribution�. However, the two peaks evident in the energy
distribution in Fig. 6 enhance the amplitudes of the revivals
and decrease the rate at which they decay, which is deter-
mined by the width of each peak. These classical revivals,
which result from the finite bandwidth �E of a continuous
energy distribution, are to be distinguished from quantum
revivals which are associated with the unequal spacing of the
distribution of discrete energy levels.

It is interesting to analyze the degree of control that can
be achieved over the localization times as well as the degree
of localization by optimizing the pump pulse. Possible con-
trol parameters associated with the pump pulse are its dura-
tion, strength, rise time �trise�, and fall time �tfall�. The sign of
the pulse can be used to create wave packets moving clock-
wise or counterclockwise. For example, a negative �positive�
value of Fz

pump leads to a wave packet that propagates coun-
terclockwise �clockwise� for a pulse duration of TS /2. Within
the range of validity of first-order degenerate perturbation
theory, the Bloch equation �Eq. �2�� remains valid for a time-
dependent field F�t� and thus for a time-dependent Stark fre-
quency �S�t�=3niF�t�. The precession angle ��S
=arctan�Ly / �niAx�� �see Eq. �3�� is determined by the integral
over time ��S=���S�t� /2�dt. To maximize 
Ly
, pulse shapes
such that ��S�� /2 must be used, which makes the eccen-
tricity of the Kepler ellipses insensitive to the shape of F�t�.
However, the width in energy, �E, of the wave packet �or
phase-space distribution� depends strongly on the pulse
shape as it is governed by degrees of freedom not repre-
sented by the Bloch equation. Because HStark=Hat=E for
zero field �both before and after the pump field�, the pulse
shape dependence of �E can be derived from the dynamics
of the Stark interaction in Eq. �1�, i.e.,

dHStark

dt
= z�t�

dFz
pump�t�
dt

. �9�

For simplicity, we first consider the sudden turn on and
turn off of the pump pulse, �trise= tfall=0�. At t=0,
HStark=−�2ni

2�−1. The value of HStark for an orbit elongated
along the x direction with z�0 remains essentially unaf-
fected during the sudden turn on of the Stark interaction �Eq.
�9�� as the latter vanishes for z�0. After precession the orbit
encompasses a range of z coordinates and the Stark interac-
tion becomes strongly dependent on the fall time tfall. When
the pump field is turned off suddenly �tfall�0� at t= toff, i.e.,

dFz
pump�t� /dt=Fz

pump��t− toff�, and the wave packet is spread
around a circular orbit �z�toff�=n2 sin 	�, the final energy of a
trajectory is

Esudden�	� = −
1

2ni
2 + Fz

pumpz�toff� � −
1

2ni
2 + Fz

pumpni
2 sin 	 .

�10�

The 	 dependence of the energy, E�	�, leads to a distribution
of final energies of width �E. The largest positive �negative�
energy changes occur when 	= �� /2 �i.e., z�toff�= �n2� re-
sulting in a width,

�E = 2
Fz
pump
ni

2 �11�

or ni
2�E=�E0�2F0=2ni

4Fz
pump. The same difference in azi-

muthal angle, i.e., �	=� was used to estimate the classical
revival time in Eq. �7�.

This analysis can be extended to finite rise and fall times.
As long as these are short compared to the Stark precession
time TS, the Kepler ellipse does not appreciably change its
shape or orientation during the rise and fall times. Therefore,
the final energy width can be determined from the change of
HStark during the fall time −tfall /2
 �t− toff�
 tfall /2, i.e., in-
tegrating Eq. �9� for a trajectory on a fixed circular orbit
z�t�=ni

2 sin�ni
−3t� during the fall time. In the following the

fall time is defined as the time required for the amplitude of
the pulse to decrease from its maximum value to zero.

Figure 7�a� illustrates the dependence of the width �	 of
the angular distribution on the fall time for both a linear and
sinelike fall, F�t�� �1−sin���t− toff� / tfall��. The seemingly
random dependence on tfall can be accounted for by consid-
ering the induced energy spread. Figure 7�b� shows that the
results for different fall times are similar when plotted as a
function of �t0�E0�, the product of scaled evolution time
after turn off and the scaled energy width �E0. The sensitiv-
ity to tfall is due to the nonmonotonic dependence of �E on
the fall time �see Fig. 8�. For a linear fall the energy width
maximizes for ultrashort fall times, tfall�Tni

, and minimizes
near multiples of the Kepler period, tfall�kTni

, k=1,2 , . . .. In
turn, for a sinelike fall �E minimizes near tfall��k
+1 /2�Tni

. These observations follow from Eq. �9� assuming
an approximately circular trajectory during the fall time. For
a linear turn off

ni
2�Elinear � 2ni

4
Fz
pump

 sin��tfall/Tni

�

�tfall/Tni


 , �12�

while a sinelike turn off leads to

ni
2�Esine � 2ni

4
Fz
pump

 cos��tfall/Tni

�

1 − �tfall/Tni
�2 
 . �13�

The time tL at which the circular wave packet achieves
maximum localization can be extended �reduced� by decreas-
ing �increasing� the strength of the pump, 
Fz

pump

=max�
Fz

pump�t�
�. This results because the final energy width
�E is linearly dependent on 
Fz

pump
, i.e., tL�1 /�E
�1 / 
Fz

pump
. This can be seen in Fig. 9 which shows the time
evolution of the angular width �	 of the wave packet for
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three different field strengths �1, 5, and 10 mV cm−1� plotted
as a function of scaled evolution time t0 multiplied by the
scaled field strength. Note that while the localization times
�i.e., the times where ��	� possesses local minima� are sen-
sitive to tfall, the functional form of the switch-off, and the
strength of the pump field, the spatial width of the wave
packet at the time of maximum localization is not strongly
dependent on the strength of the pulse or the fall time.

One remarkable prediction contained in Fig. 8 is that un-
der appropriate conditions both the principal action and an-
gular momentum widths can become smaller than unity. This
suggests the possibility that a classical-to-quantum crossover
might be observable even at ni�300. Whereas classical me-
chanics always yields a wave packet which dephases due to a
finite spread in energy, quantum mechanics would predict a
nondispersive wave packet by populating only two n levels
or even a stationary circular state within a single n level.
This would occur when the width of the classical energy
distribution is comparable to or smaller than the quantum
level splitting �the Kepler frequency�, i.e., �E
ni

−3. These
quantum effects are different from those appearing when
many energy levels are populated beyond the so-called quan-
tum break time where classical and quantum behavior di-
verge. For circular wave packets the observable �z�t�� will
exhibit such divergence when �full� quantum revivals appear

near TR�niTni
/3 �7,21,22�. We note that due to the symme-

try of circular orbits observables such as �z�t�� barely show
fractional revivals which would point to the break down of
classical-quantum correspondence at earlier times. For
high-n Rydberg atoms the revival time is large and is diffi-
cult to observe experimentally.
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FIG. 7. �Color online� �a� Pump electric field and time scales.
�b� Angular width of the wave packets created by a pump field of
−10 mV cm−1 pulse for the different fall times indicated as a func-
tion of scaled time �t0= �t− toff� /Tni

�, �c� same data in �b� but as a
function of the scaled time multiplied by the scaled energy width of
the wave packet. The solid �dashed� lines correspond to a linear
�sinelike� rise and fall of the pump pulse. The curves have been
smoothed by time averaging over one Kepler period. The initial
state is the 1D orbit as in Fig. 1�b�.
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�dashed� lines correspond to a linear �sinelike� rise and fall of the
pump pulse. The squares in �a� are for a quasi-1D state. �The large
angular momentum width associated with the product state, �Ly

�70, is too large to fit on the scale of �b�.� The horizontal lines
indicate the widths corresponding to changes of one and ten in the
quantum numbers n �in �a�� and l �in �b�� for ni=306.
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FIG. 9. �Color online� Angular width of the wave packets cre-
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III. EXPERIMENTAL REALIZATION

Oriented Rydberg atoms with large dipole moments can
be produced by using a narrow-linewidth laser tuned to pho-
toexcite blueshifted or redshifted states in the Stark manifold
in a weak dc field. The quantum states that best approximate
the linear classical 1D state discussed in the preceding sec-
tion are the extreme Stark states. However, these states are
difficult to produce experimentally due to the small oscillator
strengths for their excitation and the small spacing between
adjacent Stark states �compared to the effective laser width�.
Nonetheless, quasi-one-dimensional �quasi-1D� states with
large dipole moments, �x� /ni

2�1.25, can be produced �14�.
These states can be modeled classically using the subset of a
microcanonical ensemble


q1D�r�,p�� = C��Hat +
1

2ni
2��

Lx
min

Lx
max

�Lx��Ax
min

Ax
max

�Ax� , �14�

where C is a normalization constant and �a
b is the character-

istic function of the interval �a ,b�. Experimentally �14� at
ni=306 photoexcitation leads to creation of an ensemble of
quasi-1D states comprising of an incoherent mix of about 36
low-lying redshifted states with −292
niAx
−220 and
−3 /2
Lx
3 /2. This is referred to in the following as the
“quasi-1D state.”

Application of a pump field to such a quasi-1D state �Fig.
10�a�� leads to the formation of a nearly circular wave packet
that exhibits maximum transient localization at a time similar
to that of a true 1D state. This is due to the fact that the
resulting energy distributions have very similar widths �Fig.
10�b��. However, quasi-1D states give rise to a much broader

angular momentum distribution involving �70 states �Fig.
10�c�� and, consequently, much smaller classical revivals.
For comparison, Fig. 10 includes results for the extreme
Stark state with −306
niAx
−304 and −1 /2
Lx
1 /2 in
Eq. �14�. The behavior for this state is very similar to that of
the 1D state. The dependence of the transient localization
time for the quasi-1D state on the strength and the fall time
of the pump pulse is very similar to that of the 1D state. The
energy width �E also exhibits similar oscillatory behavior as
tfall is increased �see Fig. 8�a��. The width of the angular
momentum distribution remains very broad, �Ly �70, and,
in contrast to the true 1D state is nearly independent of the
fall time �Fig. 8�b��. This happens because the final width
�Ly is primarily governed by the initial L distribution of the
quasi-1D state.

To experimentally test the theoretical predictions
quasi-1D Rydberg atoms were formed by using an extra-
cavity doubled CR699-21 Rh6G dye laser to photoexcite po-
tassium atoms contained in a thermal-energy beam, in a
weak dc field of �400 �V cm−1 that defined the x axis along
which atoms were initially oriented �see �14� for details�.
Photoexcitation produces an incoherent statistical mixture of
�36 oriented stationary Stark states with an average dipole
moment �x��1.25ni

2 �14� and 
m 
 �1 in the ni�306 mani-
fold �due to the ground-state hyperfine structure of potassium
75% of the laser excited atoms have ni=306 and 25% ni
=308�. The quasi-1D atoms were then subjected to the pump
field �directed along the z axis� that was turned on rapidly,
i.e., trise�Tni

. After a predetermined time �typically TS /2� the
pump field was rapidly turned off �tfall�Tni

�. The subsequent
behavior of the wave packet was monitored using probe
pulses applied along the x or z axes. The number of surviving
atoms was determined by selective field ionization in which
a slowly varying ramped electric field was applied to the
atoms and the liberated electrons detected by a particle mul-
tiplier.

The probe pulses used to examine the spatial evolution of
the wave packet were applied following a variable time de-
lay, td, after turn off of the pump pulse at t= toff. These probe
pulses have short rise and fall times, �0.5 ns, and a duration
of 6 ns ��Tni

�. Their amplitude, 100 mV cm−1, was chosen
such that they typically ionized �50% of the initial Rydberg
atoms. The survival probability provides an indirect measure
of the average electron position coordinates x�tprobe� or
z�tprobe� since only those electrons with energies Hat

+z�tprobe�Fz
probe �or Hat+x�tprobe�Fx

probe� that lie above the top
of the barrier �−2	
Fprobe
� can be ionized �23�. As evident
from Figs. 11�a� and 11�b� the measured and calculated sur-
vival probabilities are in good agreement and mirror the an-
ticipated behavior of �z� and �x�. The CTMC calculations are
undertaken using fields with a sinelike fall that closely mim-
ics the experimentally measured field profiles. The buildup
of strong periodic oscillations in the survival probability and
the 90° phase shift between measurements with the probe
field oriented along the x and z axes confirm the production
of a localized Bohr-like wave packet in near-circular orbit
around the core ion. Oscillations damp after several orbits as
a result of dephasing due to the distribution of excited states
in the wave packet. Nonetheless, at late times ��35 ns� evi-
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FIG. 10. �Color online� �a� Angular width of the wave packets
created by sudden application and turn off of a pump field of
−10 mV cm−1 to a 1D state, an extreme Stark state and a quasi-1D
state in ni=306 �see text�. The curves have been smoothed by time
averaging over one Kepler period. The resulting energy and angular
momentum distributions are displayed in �b� and �c�, respectively.
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dence of a damped classical revival is seen when probing
along the z axis, although not when probing along the x axis.
This discrepancy can be attributed, at least in part, to the fact
that the z axis is an axis of symmetry of the apparatus
whereas the x axis is not. Calculations showed that to gener-
ate pulsed fields along the x axis the associated electrode
�inset in one wall of the apparatus� must be positioned off
axis. The direction of the resulting field, however, is sensitive
to the position of this and other electrodes. The amplitude of
the variations in survival probability observed with the probe
field applied along the z axis is somewhat larger than with
the field applied along the x axis �see Fig. 11� suggesting that
its direction might not be completely aligned with the true x
axis.

Figure 11�c� shows that, as predicted, the time evolution
of the survival probabilities depends sensitively on the
strength of the pump field. The optimum localization times in
the experiment can be inferred indirectly from the time at
which the amplitude of the oscillations in survival probabil-
ity are maximum �following the discussion of Figs. 2, 3, and
11�. The localization times indirectly inferred from the mea-
surements are presented in Fig. 12 and display the 1 /Fz

pump

dependence predicted by calculations of the minimum angu-
lar width. Again, the experimental data are in good agree-
ment with CTMC simulations. As noted previously, the lo-
calization time depends sensitively on the fall time and the
shape of the pump pulse. As expected, Fig. 13 shows that the
measured localization times are in good agreement with
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FIG. 11. �Color online� Experimental �symbols� and calculated
�thin lines� survival probabilities as a function of the time delay
between turn off of the pump field and application of a probe field
of 6 ns duration and amplitude −100 mV cm−1 directed along the x
and z axes. �a� Fz

pump=−20 mV cm−1 and the probe field applied
along the z axis, �b� as in �a� with the probe field applied along the
x axis, �c� Fz

pump=−10 mV cm−1 and probe fields applied along both
the x and z axes. Also shown in �a� and �b� are the expectation
values of the z and x coordinates of the wave packet �thick solid
lines, right-hand axis�. The vertical lines are shown to visualize the
90° phase shift between the x and z coordinates shown in �b� and
�c�. Both the pump pulse and the probe pulse are turned on and off
suddenly.
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1 / 
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 behavior. Experimental localization times are inferred
from the times at which the amplitude of the oscillations in the
survival probability are maximum. The vertical error bars indicate
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FIG. 13. �Color online� Classical maximum localization times
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pump=−10 mV cm−1 as a function of the fall time of the pump
pulse for a linear �dashed line� and a sinelike fall �solid line� and
experimentally inferred values �symbols�. The figure includes ex-
perimental data for Fz
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 behavior. The
inset shows the fit �solid line� to the measured profile �symbols�
obtained using the sinelike approximation for a 2.3 ns fall time �see
text�. The experimental fall times �from 100% to 0% of the pulse
amplitude� are determined from this fit and the horizontal error bars
of �10% indicate the range of fall times that provide a good fit.
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those predicted classically using a sinelike fall which, as seen
in the inset, matches well the experimentally measured pulse
profile.

IV. CONCLUSIONS AND OUTLOOK

A protocol has been described and experimentally real-
ized for producing nearly circular Bohr-like wave packets.
The characteristics of the wave packets can be controlled by
the strength, duration, shape, and fall time of the pump pulse.
The basic features of the protocol can be understood by con-
sidering the classical dynamics of a single extremely elon-
gated �L=0� Coulomb orbit suddenly exposed to a transverse
electric field that is maintained for one-half of a Stark period.
The resulting wave packet contains two focal points that pe-
riodically overlap leading to a series of transient localization
times.

A classical description should eventually fail. For the
present nearly circular wave packets there might be two av-
enues for observing this breakdown. The first is to use longer
fall times for the pump pulse such that �in this near adiabatic
limit� the wave packet encompasses only one n level �i.e.,
�n
1 in Fig. 8�. However, experimental studies with long
fall times are difficult because laser excitation leads to two
groups of atoms with different values of ni. The second pos-
sible avenue is to reduce the rate of decoherence of the wave
packet such that quantum revivals become visible �7,21�.
Given that circular wave packets are relatively robust against

noise, there is hope that quantum revivals might become vis-
ible even for �mesoscopic� very-high-n, n�300, Rydberg at-
oms. However, this would require that the decoherence of the
electronic degree of freedom be suppressed for �100 orbital
periods. This is challenging as it requires elimination of all
stray fields including the small dc field used to create the
quasi-1D states, which remains on during each experimental
cycle.

The production of localized wave packets that move in
nearly circular orbits might also open up an opportunity to
study correlated two-electron wave packets in planetary at-
oms �24,25� containing an outer electron with principal
quantum number nout much larger than that of the inner elec-
tron, nin, each far from the ground state �i.e., nout�nin�1�.
The present n�306 wave packets have an orbital period of
4.4 ns that is long enough for current laser technology to
excite an inner electron whose polarization would be locked
by the transient position of the outer electron and could lead
to long-lived phase-locked two-electron wave packets.

ACKNOWLEDGMENTS

Research supported by the NSF under Grant No.
0650732, the Robert A. Welch Foundation under Grant No.
C-0734, the OBES, U.S. DOE to ORNL, which is managed
by the UT-Batelle LLC under Contract No. AC05-
00OR22725, and by the FWF �Austria� under Contact No.
SFB016.

�1� C. H. Cheng, C. Y. Lee, and T. F. Gallagher, Phys. Rev. Lett.
73, 3078 �1994�.

�2� J. C. Day, T. Ehrenreich, S. B. Hansen, E. Horsdal-Pedersen,
K. S. Mogensen, and K. Taulbjerg, Phys. Rev. Lett. 72, 1612
�1994�.

�3� J. Hare, M. Gross, and P. Goy, Phys. Rev. Lett. 61, 1938
�1988�.

�4� R. Lutwak, J. Holley, P. P. Chang, S. Paine, D. Kleppner, and
T. Ducas, Phys. Rev. A 56, 1443 �1997�.

�5� D. Delande and J. C. Gay, Europhys. Lett. 5, 303 �1988�.
�6� J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.

73, 565 �2001�.
�7� J. A. Yeazell and C. R. Stroud, Phys. Rev. Lett. 60, 1494

�1988�.
�8� R. R. Jones and L. Noordam, Adv. At., Mol., Opt. Phys. 38, 1

�1998�.
�9� A. ten Wolde, L. D. Noordam, A. Lagendijk, and H. B. van

Linden van den Heuvell, Phys. Rev. Lett. 61, 2099 �1988�.
�10� F. B. Dunning, J. C. Lancaster, C. O. Reinhold, S. Yoshida, and

J. Burgdörfer, Adv. At., Mol., Opt. Phys. 52, 49 �2005�.
�11� Z. D. Gaeta, M. W. Noel, and C. R. Stroud, Phys. Rev. Lett.

73, 636 �1994�.
�12� I. Bialynicki-Birula, M. Kalinski, and J. H. Eberly, Phys. Rev.

Lett. 73, 1777 �1994�.
�13� J. J. Mestayer, B. Wyker, J. C. Lancaster, F. B. Dunning, C. O.

Reinhold, S. Yoshida, and J. Burgdörfer, Phys. Rev. Lett. 100,

243004 �2008�.
�14� C. L. Stokely, J. C. Lancaster, F. B. Dunning, D. G. Arbo, C.

O. Reinhold, and J. Burgdörfer, Phys. Rev. A 67, 013403
�2003�.

�15� M. T. Frey, F. B. Dunning, C. O. Reinhold, and J. Burgdörfer,
Phys. Rev. A 55, R865 �1997�.

�16� S. Yoshida, C. O. Reinhold, J. Burgdörfer, W. Zhao, J. J.
Mestayer, J. C. Lancaster, and F. B. Dunning, Phys. Rev. Lett.
98, 203004 �2007�.

�17� M. Born, The Mechanics of the Atom �G. Bell and Sons, Lon-
don, 1926�.

�18� I. C. Percival and D. Richards, J. Phys. B 12, 2051 �1979�.
�19� R. Abrines and I. C. Percival, Proc. Phys. Soc. London 88, 861

�1966�.
�20� D. G. Arbo, C. O. Reinhold, J. Burgdörfer, A. K. Pattanayak,

C. L. Stokely, W. Zhao, J. C. Lancaster, and F. B. Dunning,
Phys. Rev. A 67, 063401 �2003�.

�21� M. Mallalieu and C. R. Stroud, Phys. Rev. A 49, 2329 �1994�.
�22� C. O. Reinhold, J. Burgdörfer, M. T. Frey, and F. B. Dunning,

Phys. Rev. A 54, R33 �1996�.
�23� B. E. Tannian, C. L. Stokely, F. B. Dunning, C. O. Reinhold,

and J. Burgdorfer, Phys. Rev. A 64, 021404�R� �2001�.
�24� M. Kalinski, J. H. Eberly, J. A. West, and C. R. Stroud, Phys.

Rev. A 67, 032503 �2003�.
�25� S. N. Pisharody and R. R. Jones, Science 303, 813 �2004�.

TAILORING VERY-HIGH-n CIRCULAR WAVE PACKETS PHYSICAL REVIEW A 78, 063413 �2008�

063413-9


