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Semiclassical approaches of molecular collisions as proposed by Miller and Marcus involve phase indices,
related to focal and turning points along trajectories contributing to S matrix elements. The main purpose of the
work is to revisit the previous approaches in the case of two degrees of freedom rotationally inelastic collisions
so as to make phase indices explicitly appear from first principles. Classical S matrix theory �CSMT� and three
semiclassical initial value representation �SCIVR� treatments, respectively involving simple, double, and triple
integrals, are considered. The phase index is either the Maslov index of the classical configuration space Green
function �CSMT and the first two SCIVR methods�, or the Maslov index of the Van Vleck–Gutzwiller space-
time propagator �third SCIVR method�. In order to assess the validity of the four previous approaches, their
predictions are compared with exact quantum scattering results for interaction potentials leading to strong
quantum interferences. The Gaussian weighting procedure, recently introduced in the quasiclassical trajectory
method, is used here for practical CSMT calculations. We finally discuss the standard application of CSMT in
the light of the previous developments and results.
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I. INTRODUCTION

State resolved integral and differential cross sections as
well as rate constants of molecular collisions can be ex-
pressed in terms of scattering S matrix elements which play,
therefore, a central role in the description of molecular reac-
tion dynamics �1�.

Assuming that for a given process, the electronic problem
has been solved within the Born-Oppenheimer approxima-
tion so the interaction forces between nuclei are known
�2–5�, state-of-the-art descriptions of S matrix elements are
in principle performed within the framework of exact quan-
tum scattering �EQS� approaches �6–13�. However, despite
the impressive progress of computer performances achieved
in the last three decades, these approaches can hardly be
applied to more than three-atom systems as the basis sizes
necessary for converging the calculations are usually pro-
hibitive.

A popular alternative is the quasiclassical trajectory
�QCT� method �14–16�. It is intuitive, easy to implement,
much less time consuming than EQS approaches and for the
latter reason, applicable to complex processes involving
polyatomic species. However, the QCT method does only
provide an estimation of the moduli of S matrix elements, not
their phases. In addition to that, there is no guarantee on the
accuracy of the former when interference effects are strong.
For such reasons, the QCT method may lead to rather poor
predictions.

By the end of the 1960s, QCT calculations on realistic
triatomic reactions were almost routine �17,18� while EQS
calculations could only be done for inelastic collisions in
reduced dimensionality �19�. Pioneering works were then
performed in the early 1970s by Miller �20–33� and Marcus
�34–47� in order to develop semiclassical descriptions of
molecular collisions combining the conceptual and numeri-

cal advantages of classical mechanics with the quantum prin-
ciple of superposition. These works led to classical S matrix
theory �CSMT� and the first semiclassical initial value rep-
resentation �SCIVR� treatments �21,35� which had profound
influences on the understanding of molecular collisions
�48–50�.

After a few applications �21,32,51–53�, these approaches
were nearly abandoned in the late 1970s, mainly because the
increase of computing power at that time led many people to
develop EQS treatments. Two decades later, however, the
patent limitation of the applicability of EQS methods to
small systems triggered off a strong rebirth of interest for
semiclassical approaches with the hope to apply them to
polyatomic processes in the relatively near future. But basic
problems inherent to the semiclassical description should
first be solved or clarified. In this paper, we focus our atten-
tion on one of them, the phase index problem.

The phase index, related to the number of catastrophes
�focal and/or turning points� encountered along classical
paths �see Sec. III�, is crucial for an accurate description of
interference effects �54–56�. This index is generally called
the Maslov index, in honor of Maslov who did basic research
in semiclassical mechanics in the 1960s �57�. We shall indif-
ferently call it the phase or Maslov index in the following.

Though initially, the Maslov index was not explicitly
taken into account in CSMT and SCIVR treatments, it was
finally added to these formulations �43,47,58–61�. However,
it seems to us, after many difficult readings, that it was more
an ad hoc addition suggested by previous standard works on
propagators and Green functions �54–56� than a correction
arising from first-principle derivations �62�. The aim of the
present work is to perform such derivations for a rotationally
inelastic collision involving two degrees of freedom. We in-
deed believe that putting semiclassical collision theory on as
firm theoretical grounds as is possible increases the chances
for its successful application to realistic molecular collisions.
The reasons for choosing the previous model system are dis-
cussed at the end of the work �see Sec. IX�.*Corresponding author. l.bonnet@ism.u-bordeaux1.fr
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The spirit of our approach is the following: Miller showed
how S matrix elements can be expressed in terms of the
Green function in configuration space �32�. Besides, in his
seminal theory on energy spectrum according to classical
mechanics, Gutzwiller derived the classical limit of the pre-
vious Green function which involves a clearly defined phase
index �54–56,63�. By combining the two previous works, we
show that the indices appearing in CSMT and the one-
dimensional �1D� and 2D SCIVR approaches respectively
involving one- and two-dimensional integrals are all equal to
the Maslov index of the Green function. The proof is
achieved within the central approximation of semiclassical
mechanics, i.e., the stationary phase approximation �SPA�
�54–56�. For completeness, we also consider the 3D SCIVR
approach of Skinner and Miller �64,65� for which the phase
index is now the Maslov index of the Van Vleck–Gutzwiller
space-time propagator �54–56�.

We are aware of efficient SCIVR theories using either the
Herman-Kluk propagator �66,67� or alternative ideas
�68–70� and avoiding the Maslov index issue. However, our
main objective is to arrive at a clear derivation of CSMT, for
the latter played a central role in the derivation of the recent
and promising Gaussian weighted trajectory �GWT� method
�71–73�. This approach was indeed applied to several realis-
tic triatomic processes �never studied by an alternative semi-
classical treatment� and the state resolved integral cross sec-
tions predicted were found to be in good to close agreement
with EQS and experimental results �74–77�. Since CSMT
might keep playing a key role in the development of the
GWT method, contributing to the strengthening of its basis
seems important to us. The study of the three previously
mentioned SCIVR approaches is then in the logical continu-
ity of the previous contribution.

The paper is organized as follows. The system of interest
is presented in Sec. II. CSMT is revisited in Sec. III and the
three SCIVR treatments of interest are derived in Secs.
IV–VI. The exact time-dependent quantum scattering ap-
proach used to check the validity of the previous semiclassi-
cal treatments is presented in Sec. VII. Semiclassical and
quantum predictions are compared and discussed in Sec. VIII
in the case of interaction potentials leading to strong quan-
tum interferences. The application of CSMT to vibrationally
inelastic and reactive processes is briefly discussed in Sec.
IX and Sec. X concludes.

II. SYSTEM OF INTEREST

We consider the collision between atom A and the rigid
diatom BC, at the end of which the rotational state of the
diatom may have changed. Both A and the center of mass G
of BC are supposed to lie on a fixed x axis of the laboratory
frame. The system is represented in Fig. 1. The space coor-
dinates of the problem are R, the distance between A and G,
and �, the angle between the x axis and BC �bold symbols
are used for vectors throughout this work�. The conjugate
momenta of R and � are P and J, respectively. The four
previous coordinates form a set of canonical variables satis-
fying the Hamilton equations �78–80�

Ṙ =
�H

�P
, Ṗ = −

�H

�R
�1�

and

�̇ =
�H

�J
, J̇ = −

�H

��
. �2�

H is the classical Hamiltonian given by

H = T + V �3�

with

T =
P2

2�
+

J2

2I
. �4�

T is the kinetic energy and V�V�R ,�� is the interaction
potential energy, different from zero when A and BC are
sufficiently close the one to each other �a few Å�. � is the
reduced mass of A with respect to BC and I is the moment of
inertia of BC. I is equal to mr2 where m and r are the reduced

mass and length of BC, respectively. Given that P=�Ṙ and
J= I�̇ �see the left side of Eqs. �1� and �2��, T also reads

T =
1

2
��Ṙ2 + I�̇2� �5�

or

T =
1

2
�PṘ + J�̇� . �6�

The atom-diatom system being isolated,

H = E �7�

at any instant, E being the total energy of the process.
The Lagrangian of the system is

L = 2T − H . �8�

The developments of the next section will show the inter-
est of considering the scaled variable

r = ��

I
�1/2

R �9�

rather than R itself. From Eqs. �3�, �5�, �8�, and �9� and given
that the conjugate momentum p of r is defined by �78,79�

p =
�L

�ṙ
, �10�

we arrive at

FIG. 1. �Color online� Molecular system considered in this
work.
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p = Iṙ = � I

�
�1/2

P . �11�

The kinetic terms �4�–�6� read then

T =
p2 + J2

2I
, �12�

T =
I

2
�ṙ2 + �̇2� �13�

and

T =
1

2
�pṙ + J�̇� , �14�

respectively.
The initial collision energy is denoted Ec. BC starts in the

rotational state �j1	 and ends in the analogous state �j2	. Their
associated wave functions are


��jk	 = �k��� =
1

�2��1/2eijk�, �15�

k=1,2.
We note that J is a classical angular momentum while j1

and j2 are quantum numbers.
E, Ec, and j1 are related by

E = Ec +
�2j1�j1 + 1�

2I
. �16�

III. FROM SPACE-TIME PROPAGATOR TO S MATRIX
ELEMENTS

A. From Miller to Gutzwiller

1. S matrix elements and Green function

The S matrix element Sj2j1
�E� is defined as the probability

amplitude that BC starts in �j1	 and ends in �j2	. Its square
modulus gives the final rotational state population Pj2j1

�E�
which is the essential observable of the process of interest.

Miller showed in the framework of formal collision
theory that Sj2j1

�E� can be written as �32�

Sj2j1
�E� = a�

0

+�

dteiEt/�
R2j2�e−iĤt/��R1j1	 �17�

with

a =
��1�2�1/2

i�
ei��1R1−�2R2�/� �18�

�this expression only differs from Miller’s one �32� by the
irrelevant phase factor i�. Both R1 and R2 have infinite values

�a few tens of Å in practice�. Ĥ is the Hamiltonian operator
deduced from Eq. �3� by the correspondence principle �see
Sec. VII�. t is time and � is Planck constant divided by 2�.
The quantity

�1 = − �2�Ec�1/2 = − �2��E −
�2j1�j1 + 1�

2I
�
1/2

�19�

is the initial value of the translational momentum while the
quantity

�2 = �2��E −
�2j2�j2 + 1�

2I
�
1/2

�20�

is the final value consistent with j2.
We shall now use r instead of R in the S matrix element

�17�. This amounts to replace there the propagator


R2j2�e−iĤt/��R1j1	 by its expression in terms of


r2j2�e−iĤt/��r1j1	. To this aim, let us consider the wave packet
	�R , t� satisfying the standard relation

	�R2,t� =� dR1
R2�e−iĤt/��R1		�R1,0� . �21�

Setting


�r,t� = 	�R,t� , �22�

we have from Eqs. �9� and �21�


�r2,t� =� dr1� I

�
�1/2


R2�e−iĤt/��R1	
�r1,0� . �23�

Now, given that


�r2,t� =� dr1
r2�e−iĤt/��r1	
�r1,0� , �24�

we arrive at


R2�e−iĤt/��R1	 = ��

I
�1/2


r2�e−iĤt/��r1	 . �25�

Equation �17� can thus be rewritten as

Sj2j1
�E� = b�

0

+�

dteiEt/�
r2j2�e−iĤt/��r1j1	 �26�

with

b = ��

I
�1/2

a . �27�

By using the closure relation

1 =� d�k��k	
�k� , �28�

k=1,2, the propagator 
r2j2�e−iĤt/��r1j1	 can be expressed in

terms of the space-time propagator 
r2�2�e−iĤt/��r1�1	 as


r2j2�e−iĤt/��r1j1	 =� d�2d�1
j2��2	
r2�2�e−iĤt/��r1�1	

�
�1�j1	 . �29�

From Eqs. �26� and �29�, Sj2j1
�E� may then be rewritten as
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Sj2j1
�E� = b� d�2d�1
j2��2	
�1�j1	G��2,�1�r2,r1,E�

�30�

where

G��2,�1�r2,r1,E� = �
0

+�

dteiEt/�
r2�2�e−iĤt/��r1�1	 �31�

is the Green function.

2. Classical Green function

The Van Vleck–Gutzwiller semiclassical approximation

of the space-time propagator 
r2�2�e−iĤt/��r1�1	 is
�54–56,63�


r2�2�e−iĤt/��r1�1	sc = �
Traj

���1/2

2�i�
ei�W/�−�
/2�, �32�

where

� = det�Mt� , �33�

Mt =� −
�2W

�rt�r1
−

�2W

�rt��1

−
�2W

��t�r1
−

�2W

��t��1

� , �34�

W = �
0

t

d�L �35�

and the index 
 is the sum of the numbers of time each
eigenvalue of M�

−1 changes sign when � runs from 0 to t.
Note that within the above notations, r�=r1 and ��=�1 when
�=0 while r�=r2 and ��=�2 when �= t. At the instant when

 increases by one unit �or two, but very rarely�, the trajec-
tory touches a so-called caustic and � diverges �54–56�. The
sum is over the whole set of classical paths going from
�r1 ,�1� to �r2 ,�2� in the period of time t. W, the time inte-
gral of the Lagrangian given by Eqs. �3�, �8�, and �14�, is the
usual action integral �78,79�.

With 
 kept at zero, propagator �32� is the celebrated Van
Vleck semiclassical propagator �reduced to one term only�.
However, this propagator is only valid for the short times
where the first caustic has not been touched. Beyond the
latter, neglecting 
 does not allow for a correct treatment of
interference effects. The crucial addition of 
 is due to
Gutzwiller �63�, Pechukas having also contributed a few
times later to its introduction �81�. More details on 
 and its
equivalent in momentum or mixed spaces can be found in
�54–56,82–87�.

A second basic contribution from Gutzwiller �63� was the
derivation of the classical Green function within the SPA
introduced in the next subsection. This derivation consists in
replacing in Eq. �31� the exact propagator by its approxima-
tion �32� and performing the integration with respect to time
within the SPA. The final result is

G��2,�1�r2,r1,E�sc

=
1

�2�i��1/2 �
Traj
�� 1

ṙ�1ṙ�2

�J�1

���2
�

��1

�1/2

ei��/�−��/2�.

�36�

The sum is now over the whole set of classical paths going
from �r1 ,�1� to �r2 ,�2� at the energy E and in a period of
time t� t��2 ,�1 �r2 ,r1 ,E�. For each path, a local orthonor-
mal coordinate system �r� ,��� such as the one represented in
Fig. 2 is used. In addition to the reference path from �r1 ,�1�
to �r2 ,�2�, a neighboring path of energy E is considered,
which starts from �r1 ,�1� in a slightly different direction.
The running point of the reference path is represented twice
by the intermediate positions �r�� ,���� and �r�� ,���� corre-
sponding to the instants �� and ��. The local coordinate sys-
tem �r� ,��� at these points is represented. The r� axis is
tangential to the trajectory and makes the angles ��� and ���
with the r axis in �r�� ,���� and �r�� ,����. The running point
of the neighboring path is also represented twice by Q� and
Q� corresponding to �� and ��, respectively. While the run-
ning point of the reference trajectory is, by definition, always
at the origin of the local frame, we clearly see that the run-
ning point of the neighboring path moves in the local frame.
Q� is for instance in the positive quadrant while Q� is in the
negative one. Last but not least, the convention adopted here
is that the local frame is fixed in �r ,��. As a consequence,
the velocities along the two previous paths is the same in
�r ,�� and �r� ,���. More details on this local frame are given
further below.

ṙ�1 and ṙ�2 in Eq. �36� are the moduli of the velocity vec-
tors in �r1 ,�1� and �r2 ,�2�, respectively. ��J�1 /���2���1

is
the inverse ratio of the first derivative of �� in �r2 ,�2� with

FIG. 2. �Color online� A given classical path in the �r ,�� plane
goes from �r1 ,�1� to �r2 ,�2� at the energy E. A neighboring path of
energy E is also shown, which has in �r1 ,�1� a slightly different
direction. The running point of the first path is represented twice by
the intermediate positions �r�� ,���� and �r�� ,���� corresponding to
the instants �� and ��. The local coordinate system �r� ,��� at these
points is represented. More details are given in the text. We note
that the scale along the r coordinate is not linear, the distance be-
tween the dashed curves being huge.
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respect to J� in �r1 ,�1� for fixed values of ��1 and the
energy E �see further below for the practical evaluation of
this quantity�. � is a new action integral related to W by the
Legendre transformation

� = W + Et . �37�

From Eqs. �6�, �8�, �14�, �7�, and �35�, � is found to be given
by

� = �
0

t

d��PṘ + J�̇� = �
0

t

d��pṙ + J�̇� . �38�

The index � is equal to the number of times the trajectory
touches a caustic or a turning point, i.e., the number of times
the derivative ����� /�J�1���1

changes sign between �r1 ,�1�
��=0� and �r2 ,�2� ��= t�. An alternative and insightful deri-
vation of Eq. �36� was given by Möhring et al. �88�.

In the following, we shall replace the Green function in
Eq. �30� by its classical limit �36� and perform the double
integral with respect to �2 and �1 within the SPA. This will
lead to the Miller-Marcus expression of classical S matrix
elements with a clear definition of phase indices.

Before doing that, we spend some time on the practical
calculation of � which will prove to play a central role in the
determination of Sj2j1

�E�.

3. Practical calculation of �

A practical calculation of � requiring the propagation of
the monodromy matrix is, for instance, given by Eckhardt
and Wintgen �89�. However, we shall use here a more pedes-
trian approach that we have found interesting from the nu-
merical point of view.

It is clear from Fig. 2 that the transformation between the
local orthonormal frame �r� ,��� and the initial frame �r ,��
at the particular instant t=� is given by

� r − r�

� − ��
� = �cos �� − sin ��

sin �� cos ��
�� r�

��

� . �39�

As previously stated, �r� ,��� is chosen to be the origin of the
local frame. The velocity vector being �ṙ� , �̇��, the angle ��

between the r axis and the r� axis is defined by �see Fig. 2�

cos �� =
ṙ�

�ṙ�
2 + �̇�

2�1/2
=

p�

�p�
2 + J�

2�1/2 �40�

and

sin �� =
�̇�

�ṙ�
2 + �̇�

2�1/2
=

J�

�p�
2 + J�

2�1/2 . �41�

The second equalities come from the fact that p�= Iṙ� and
J�= I�̇�.

The local frame being supposed to be fixed, r�, ��, and ��

in Eq. �39� are now considered as time-independent param-
eters. From Eqs. �13� and �39�, we have thus

T =
I

2
�r�̇

2 + ��̇
2� �42�

and using Eqs. �3� and �8�, and the basic relations �78,79�

p� =
�L

�r�̇

, J� =
�L

���̇

, �43�

giving the conjugate momenta of r� and ��, we arrive at

�p

J
� = �cos �� − sin ��

sin �� cos ��
�� p�

J�

� �44�

and

T =
p�

2 + J�
2

2I
. �45�

As previously stated, the initial value r1 of r is very large
�infinite in principle�. At time zero therefore V is zero and
T=E. By construction, J�1=0 and from Eq. �45�,

p�1 = �2IE�1/2. �46�

Similar arguments lead to

p�2 = �2IE�1/2. �47�

We wish now to calculate the quantity ����� /�J�1���1
whose number of zeros between �r1 ,�1� and �r2 ,�2� is just
�. We shall therefore consider a second trajectory starting
from �r1 ,�1� with J�=�J�1, instead of J�=J�1=0. How-
ever, the second path has to be on the energy shell H=E as
well �� is the Maslov index in the time-independent repre-
sentation�. Since this path starts from the same configuration
space point, the kinetic energy T �see Eq. �45�� must be the
same for both paths. The second trajectory should thus start
with p�1+�p�1 satisfying

�p�1 + �p�1�2 + �J�1
2 = p�1

2 �48�

leading to

�p�1 � −
�J�1

2

2p�1
�49�

when neglecting �p�1 with respect to p�1. Equations �46� and
�49� prove that �p�1 is always negligible with respect to
�J�1. We may thus start the second trajectory with p�1 and
�J�1 �instead of p�1+�p�1 and �J�1�. The initial dynamical
situation is depicted in Fig. 3.

Let us now express the initial conditions of the pair of
trajectories in the original �R ,� , P ,J� phase space where we
shall run trajectories in practice. For the reference path, these
conditions are �R1 ,�1 , P1 ,J1� and for the neighboring path,
we shall call them �Rn1 ,�n1 , Pn1 ,Jn1�. From Eqs. �11�, �12�,
�40�, and �41�, and the fact that T=E, the value �1 of � at
time zero is completely specified by

cos �1 =
P1

�2�E�1/2 �50�

and

sin �1 =
J1

�2IE�1/2 . �51�

Similar arguments lead to
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cos �2 =
P2

�2�E�1/2 . �52�

Since both paths start from the same configuration space
point, Rn1=R1 and �n1=�1. From Eq. �11�, Eq. �44� with p�

replaced by �2IE�1/2 �see Eq. �46�� and J� replaced by �J�1
and from Eqs. �50� and �51�, we arrive at

Pn1 = P1 − � �

2E
�1/2�J�1

I
J1 �53�

and

Jn1 =
�J�1

�2�E�1/2 P1 + J1. �54�

The two classical paths are then run according to standard
numerical methods �14–16�, thus giving �R� ,�� , P� ,J�� and
�Rn� ,�n� , Pn� ,Jn��. ����, deduced from Eqs. �9�, �40�, and
�41�, and the inverse of Eq. �39�, reads

���� = − sin ����

I
�1/2

�Rn� − R�� + cos ����n� − ���

�55�

with

cos �� =
�I/��1/2P�

�IP�
2/� + J�

2�1/2 �56�

and

sin �� =
J�

�IP�
2/� + J�

2�1/2 . �57�

The expected number � of zeros of ����� /�J�1���1
between

�=0 and �= t is finally given by the number of zeros of ����

during the same period of time, in the limit where �J�1 tends
to zero in Eqs. �53� and �54�.

B. From Gutzwiller to Miller and Marcus

The goal of the present section is to recover the CSMT
expression of Miller and Marcus from the classical Green
function of Gutzwiller with a clear definition of the phase
index. To achieve this goal, we have to replace the Green
function in Eq. �30� by its classical limit �36� and perform
the double integral with respect to �2 and �1 within the SPA.
A few considerations, however, are first necessary.

1. From local to fixed frame derivatives

As a first step, we wish to express ����2 /�J�1���1
in Eq.

�36� in terms of �2 and �1. This is a simple matter if we note
from Figs. 3 and 4 that

�J1 = − cos ��J�1 �58�

�the minus sign comes from the fact that �J1 is negative� and

���2 = cos �2��2. �59�

Since

� = �1 − � , �60�

we arrive at

� ���2

�J�1
�

��1

= cos �1 cos �2� ��2

�J1
�

�1

. �61�

We have thus related the partial derivative in the local frame
to its analog in the fixed frame.

From Eqs. �50� and �52�, and owing to the fact that

J1 = � −
��

��1
�

�2

�62�

�this standard relation comes directly from Eq. �38��, Eq.
�61� finally reads

FIG. 3. �Color online� Initial dynamical conditions of the refer-
ence trajectory and a neighboring one in the fixed frame �r ,�� and
in the local frame �r� ,���. Both paths start from the point �r1 ,�1�
of the frame �r ,��, also origin of the frame �r� ,���. The reference
path, with initial momentum vector p�1, is along the r� axis while
the second path, with initial momentum vector p�1+�J�1, makes
with the previous path an infinitesimal angle. The relevant angles �1

and � are shown as well as the projection �J1 of �J�1 on the �
axis. We note that in the present case, �J1 is negative.

FIG. 4. �Color online� Final dynamical conditions of the refer-
ence trajectory and a neighboring one in the fixed frame �r ,�� and
in the local frame �r� ,���. The reference path runs through the
point �r2 ,�2� while the second path is parallel to the reference path
in the limit where �J�1 tends to zero. The angle �2 is shown as well
as the infinitesimal angular differences ��2 and ���2.
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� ���2

�J�1
�

��1

= −
P1P2

2�E
� �2�

��2��1
�−1

. �63�

For fixed values of the parameters r2, r1 and E, P1 , P2, and �
are completely specified by �2 and �1 as well as the trajec-
tory number if several trajectories go from �r1 ,�1� to �r2 ,�2�
at E. The expected link between ����2 /�J�1���1

and the
integration variables �2 and �1 is thus clearly determined.

2. Applying the stationary phase approximation

A few more manipulations before applying the SPA may
help to clarify the developments. From Eqs. �3�, �8�, and
�42�, and the left identity of Eq. �43�,

p� = Iṙ� , �64�

which, together with Eq. �46�, leads to

ṙ�1 = �2E/I�1/2. �65�

Similar arguments and Eq. �47� lead to

ṙ�2 = �2E/I�1/2. �66�

Taking into account these expressions as well as Eq. �63� in
Eqs. �30� and �36� leads to

Sj2j1
�E� =� d�2d�1c��2,�1�d��2,�1� �67�

with

c��2,�1� =
1

�2�i��1/2
1

2�i
ei��1R1−�2R2+�j1�1−�j2�2�/� �68�

and

d��2,�1� = �
Traj
��1�2

P1P2

�2�

��2��1
�1/2

ei��/�−��/2�. �69�

We are now ready to perform, within the SPA, the double
integration with respect to �2 and �1 in Eq. �30�, or equiva-
lently, in Eq. �67�.

With f being a function of two variables x and y and s a
sufficiently small parameter, the SPA states that

� dxdyeif�x,y�/s � �
k

2�is

��k�1/2ei�fk/s−��k/2�, �70�

where �xk ,yk� is the kth stationary point of f , fk= f�xk ,yk�,

�k = det�Mk� , �71�

Mk =� �
�2f

�x2�
k
� �2f

�x�y
�

k

� �2f

�x�y
�

k
� �2f

�y2�
k

� , �72�

and �k is the number of negative eigenvalues of Mk �54–56�.
Equations �70�–�72� are obtained by limiting f to its sec-

ond order development around the stationary points. For suf-
ficiently small values of s, the rate of oscillation of the phase

exp(if�x ,y) /s� increases so much with the distance from a
stationary point that only the close neighborhoods of station-
ary points significantly contribute to the phase integral. The
SPA is thus a good approximation only whether the second
order development of f is valid in the previous neighbor-
hoods. In the contrary case, it is necessary to consider higher
order developments of f leading to expressions differing
from Eqs. �70�–�72�. We shall not do this in the present
work, however, for the SCIVR approaches presented in Secs.
IV–VI allow us to go around this difficulty in a satisfying
and simpler way.

In Eqs. �67�–�69�, the small parameter s is of course � and
as far as applying the SPA is concerned, the relevant part of
the phase is

f��2,�1� = � + �j1�1 − �j2�2. �73�

The stationary phase condition defines the values �2k and
�1k of �2 and �1 contributing to Sj2j1

�E�. These values sat-
isfy the relations

�j2 = � ��

��2
�

�1

��2k,�1k� �74�

and

�j1 = � −
��

��1
�

�2

��2k,�1k� . �75�

Now, from Eq. �62� and its companion

J2 = � ��

��2
�

�1

�76�

�just as Eq. �62�, this standard relation comes from Eq. �38��,
it appears quite clearly that Eqs. �74� and �75� define classi-
cal paths starting from �R1 ,�1k� with

J1 = �j1 �77�

and

P1 = − �2��E −
�2j1

2

2I
�
1/2

= �1 �78�

and reaching �R2 ,�2k� with

J2 = �j2 �79�

and

P2 = �2��E −
�2j2

2

2I
�
1/2

= �2 �80�

after visiting the interaction region. Equations �78� and �80�
are deduced from Eqs. �4�, �77�, and �79� and the fact that in
�R1 ,�1k� and �R2 ,�2k�, T=E.

From Eqs. �67�–�80�, we find

Sj2j1
�E� = � �

2�i
�1/2

g�
k

hkok �81�

with

g = ��1�2

�1�2
�1/2

ei���1−�1�R1−��2−�2�R2�/�, �82�
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hk = � � �2�

��2��1
�

k

det�Mk�
�

1/2

, �83�

Mk =� � �2�

��2
2 �

k
� �2�

��2��1
�

k

� �2�

��2��1
�

k
� �2�

��1
2 �

k

� , �84�

ok = ei���k+�1R1−�2R2+J1�1k−J2�2k�/�−��k/2� �85�

and

�k = �k + �k. �86�

�k is the number of negative eigenvalues of Mk, which can be
rewritten as

Mk = � � �J2

��2
�

�1

k � −
�J1

��2
�

�1

k

� −
�J1

��2
�

�1

k � −
�J1

��1
�

�2

k � �87�

when taking into account Eqs. �62� and �76�. We shall come
back to this index in the next section.

One notes that the summation �Traj in Eq. �69� and the
summation �k for each trajectory due to the SPA �70� lead to
an overall summation �k in Eq. �81�.

We shall now simplify hk �see Eq. �83��. We first note
from Eqs. �62� and �87� that this quantity can be rewritten as

hk = �− ��J1/��2��1

k

det�Mk�
�1/2

�88�

with

det�Mk� = − � �J2

��2
�

�1

k � �J1

��1
�

�2

k

− �� �J1

��2
�

�1

k �2

. �89�

We next consider the first order developments

�2 = �2k + � ��2

��1
�

J1

k

��1 − �1k� + � ��2

�J1
�

�1

k

�J1 − �j1�

�90�

and

J2 = �j2 + � �J2

��1
�

J1

k

��1 − �1k� + � �J2

�J1
�

�1

k

�J1 − �j1� �91�

of �2 and J2 in terms of �1 and J1 around ��1k ,�j1�. For
fixed values of R1 and R2 and given that

P1 = − �2��E −
J1

2

2I
�
1/2

, �92�

�2 and J2 do only depend on �1 and J1.
From Eq. �90�, we get

� �J1

��1
�

�2

k

= − � ��2

��1
�

J1

k � �J1

��2
�

�1

k

. �93�

Replacing �J1−�j1� in Eq. �91� by its expression in terms of
�1 and �2 deduced from Eq. �90�, we also find

� �J2

��2
�

�1

k

= � �J2

�J1
�

�1

k � �J1

��2
�

�1

k

; �94�

det�Mk� �see Eq. �89�� can thus be rewritten as

det�Mk� = �� �J2

�J1
�

�1

k � ��2

��1
�

J1

k

− 1��� �J1

��2
�

�1

k �2

. �95�

In addition to that, it is well known that for a two degrees of
freedom system, the Hamiltonian flow is area preserving, by
virtue of Liouville theorem �90�. Therefore d�2dJ2 and
d�1dJ1 are equal, implying that

��
��2

��1
�

J1

k � ��2

�J1
�

�1

k

� �J2

��1
�

J1

k � �J2

�J1
�

�1

k � = 1. �96�

Replacing 1 in Eq. �95� by the above Jacobian leads to

det�Mk� = � �J2

��1
�

J1

k � �J1

��2
�

�1

k

. �97�

From Eqs. �88� and �97�, hk finally reads

hk = �� �J2

��1
�

J1

k �−1/2
. �98�

Another route to demonstrate this result is to consider J1 and
J2 as functions of �1 and �2 �instead of �2 and J2 as func-
tions of �1 and J1�. J1 and J2 are then given by the first order
developments

J1 = �j1 + � �J1

��1
�

�2

k

��1 − �1k� + � �J1

��2
�

�1

k

��2 − �2k�

�99�

and

J2 = �j2 + � �J2

��1
�

�2

k

��1 − �1k� + � �J2

��2
�

�1

k

��2 − �2k�

�100�

around ��1k ,�2k�. Using the fact that ��J2 /��1��2
is the op-

posite of ��J1 /��2��1
�see Eqs. �62� and �76��, these devel-

opments lead to

�1 = �1k +
��J2/��2��1

k �J1 − �j1� − ��J1/��2��1

k �J2 − �j2�

��J2/��2��1

k ��J1/��1��2

k + ���J1/��2��1

k �2 .

�101�

By comparing the derivative of �1 with respect to J2 at fixed
J1 and Eqs. �88� and �89�, one recovers Eq. �98�.

From Eqs. �81�–�85�, Eq. �98� and the identity
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� + �1R1 − �2R2 + J1�1 − J2�2 = �̄ = − �
0

t

d��RṖ + �J̇�

�102�

obtained by integration by part, Sj2j1
�E� takes the compact

form

Sj2j1
�E� = g�

k
�� 2�i

�
� �J2

��1
�

J1

k ��−1/2

ei��̄k/�−��k/2�

�103�

which is the first key expression of the paper. Noting from
Eq. �102� that

�1 =
��̄

�J1
, �104�

Eq. �103� can be rewritten as

Sj2j1
�E� = g�

k

� �

2�i
� �2�̄

�J2�J1
�

k

�1/2

ei��̄k/�−��k/2� �105�

or from Eqs. �77� and �79�,

Sj2j1
�E� = g�

k

� 1

2�i�
� �2�̄

�j2�j1
�

k

�1/2

ei��̄k/�−��k/2�,

�106�

which reminds us of the Van Vleck–Gutzwiller space-time
propagator in one dimension �55,56�. The reader interested in
the general analysis of the semiclassical form of matrix ele-
ments is referred to the major work by Miller on correspon-
dence relations �32�. We hope that considering j2 and j1 as an
integer on the left-hand side of Eq. �106� and real on the
right-hand side is not confusing. This expression is, however,
only of formal interest, contrary to Eq. �103�.

The sum in Eqs. �103� and �106� is recognized as the
classic Miller-Marcus CSMT expression but the phase index
�k has now a clear mathematical definition. In addition to
that, a supplementary factor g has emerged from the devel-
opments. From Eqs. �19�, �20�, �78�, and �80�, it is, however,
clear that the amplitude of this factor �see Eq. �82�� is sig-
nificantly lower than one only when �j1� and/or �j2� are close
to jmax= �2IE�1/2 /�. As a consequence, keeping g at 1 �its
phase is irrelevant� will be an excellent approximation pro-
vided that jmax is not too small �91�.

In such a case, the link between CSMT and the purely
classical description clearly appears as follows: from Eq.
�103�, the final probability Pj2j1

�E�= �Sj2j1
�E��2 of measuring

the rotational quantum number j2 turns out to be

Pj2j1
�E� = �

k
�� 2�

�
� �J2

��1
�

J1

k ��−1

�107�

when discarding the interference terms. This expression sup-
poses them to be quenched as is typically the case when the
collision proceeds through a long-lived complex and reso-

nances dominate the dynamics. The �̄k’s and �k’s are then
randomly distributed, thus leading to Eq. �107�. However, a

still intriguing fact is that related expressions work quite well
for direct processes like the reaction O�3P�+HCl→OH+Cl
�75� which proceeds through a simple barrier and should thus
not involve too many resonances.

Equation �107� is strictly equivalent to �72,73�

Pj2j1
�E� =

1

2�
�

0

2�

d�1�„J2��1�/� − j2… �108�

with J2 rewritten as J2��1� for clarity’s sake. It is indeed
straightforward to go from Eq. �108� to Eq. �107� by using
the standard theorem

�„f���… = �
k

�f���k��−1��� − �k� , �109�

where f��k�=0 �92�. Pj2j1
�E� is recognized to be the classical

density of probability that the rotational action J2��1� /�, i.e.,
the classical equivalent of the rotational quantum number, is
equal to j2. Pj2j1

�E� according to Eq. �108� is thus not a
probability in the classical sense. However, Eq. �108� is the
result of quantum mechanics within the SPA, valid in the
limit where � tends to zero �as compared to �jmax�. In this
limit, the sum over the integer j2 and the integral with re-
spect to the real j2 are equal. Pj2j1

�E� is therefore normalized
to unity and the density of probability becomes a probability.

In practice, the Dirac distribution in Eq. �108� is replaced
by a Gaussian function the width � of which is sufficiently
small to account for quantization, and sufficiently large to
converge the results �71�. We then have

Pj2j1
�E� =

1

2�3/2�
�

0

2�

d�1e−„J2��1�/� − j2…
2/�2

�110�

which may be solved by Monte Carlo integration. � is often
kept at �0.05 in the calculations �74–77�. We shall later use
this Gaussian weighting �GW� procedure for the practical
calculation of S matrix elements.

3. �k is null

Let us rewrite Mk, given by Eq. �87�, as

Mk = �m11 m12

m21 m22
� . �111�

The two eigenvalues �− and �+ of Mk are given by

2�� = m11 + m22 � �1/2, �112�

where the discriminant � is given by

� = �m11 + m22�2 − 4 det�Mk� = �m11 − m22�2 + 4m12
2 .

�113�

The second identity comes from the fact that in the present
case, m12 and m21 are equal �see Eq. �87��. This identity
shows that � is positive and therefore �− and �+ are real �this
property is typical of symmetric matrices�.

If det�Mk� is positive, it is clear from Eq. �112� and the
left identity of Eq. �113� that the two eigenvalues have the
sign of m11+m22. From Eq. �97�, det�Mk� can be rewritten as
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det�Mk� = � �J2

��1
�

J1

k �� ��2

�J1
�

�1

k

�114�

while from Eqs. �87�, �93�, and �94�, m11+m22 can be trans-
formed to

m11 + m22 = �� �J2

�J1
�

�1

k

+ � ��2

��1
�

J1

k ��� ��2

�J1
�

�1

k

.

�115�

In Fig. 5, two paths coming from R1 are scattered by a po-
tential wall �this is not necessarily a hard wall�. In panel �a�,
the blue path, labeled k, is defined by J1=0 and a given value
of �1 while the green path is defined by J1=0 and �1+��1
�with ��1 positive�. The wall being convex in the part seen
by the trajectories, they eventually diverge in such a way that
J2 is larger for the green path than for the blue one. Conse-
quently, both ��J2 /��1�J1

k and ���2 /��1�J1

k are positive.
In the lower panel, the blue path is defined by J1=0 and a

given value of �1 while the green path is defined by �J1
�positive� and �1. Since the distance between the two vertical
dashed lines is huge and �J1 is infinitesimal, the two paths
are �almost� parallel when touching the wall. For the same
reason as in Fig. 5�a�, they eventually diverge in such a way
that both ��J2 /�J1��1

k and ���2 /�J1��1

k are positive.
In Fig. 6, the paths rebound against a concave part of the

wall and J2 is now lower for the green paths than for the blue
ones. The four previous partial derivatives are thus negative.

That these quantities have the same sign will be numerically
illustrated in Sec. VIII.

From Eqs. �114� and �115�, both det�Mk� and m11+m22
turn out to be positive, and so are �− and �+. Since �k is
defined as the number of negative eigenvalues of Mk, �k is
null.

Last but not least, it can be easily verified that modifying
the conventions regarding the signs of ��1 and �J1 or con-
sidering a topologically more complex interaction does not
change the final result.

As a conclusion, the phase index �k of classical S matrix
elements is equal to the Maslov index �k of the classical
configuration space Green function.

IV. 1D SCIVR TREATMENT

We now consider the 1D SCIVR description of Sj2j1
�E�

which goes beyond CSMT as far as the accuracy of the pre-
dictions are concerned.

Just as for CSMT, the starting point of this description is
the set of Eqs. �67�–�69�. However, instead of integrating
over both �2 and �1 within the SPA, we shall only integrate
over �1.

For the function f of a single variable x and s a suffi-
ciently small parameter, the SPA states that

� dxeif�x�/s � �
k
�2�is

�fk��
�1/2

ei�fk/s−�nk/2�, �116�

where xk is the kth stationary point of f , fk= f�xk�, fk�
= f��xk�, and nk is 0 if fk� is positive, 1 in the contrary case
�54–56�.

FIG. 5. �Color online� Examples of reflected paths with same
initial conditions except a difference of ��1 �a� and �J1 �b�. See text
for more details.

FIG. 6. �Color online� Same as Fig. 5.
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In Eqs. �67�–�69�, the small parameter s is again � and
regarding the application of the SPA, the relevant part of the
phase is now

f��1� = � + �j1�1. �117�

The stationary phase condition defines the values �1k’s of �1
contributing to Sj2j1

�E� through

�j1 = − � ��

��1
�

�2

��2,�1k� . �118�

This relation, together with Eq. �62�, imply that J1 is given
by Eq. �77�. Hence R1, �1k, J1 and P1, given by Eq. �78�, are
the initial conditions of the classical paths reaching the con-
figuration space point �R2 ,�2� after visiting the interaction
region.

For a given R1 and the values of J1 and P1 mentioned
above, the value of � in R2 is a function of �1, denoted
���1�. A plausible shape is represented in Fig. 7. The values
�1k leading to ���1� equal �2 are shown. In each branch k,
�1k can be seen as a function of �2. A sum over these
branches of a given integral over �2 can thus be transformed
in a single integral over �1. This is the IVR trick, initially
introduced by Miller �21�. The terminology initial value rep-
resentation comes from the fact that the resulting integrand is
now depending on the quadruplet �R1 ,�1 , P1 ,J1� of initial
conditions.

Integrating over �1 in Eq. �67� within the SPA precisely
leads to a sum over k of integrals over �2. Using the IVR
trick, the previous quantity can thus be expressed as a simple
integral over �1. The integrand involves the term
��2� /��1

2��2
, i.e., the opposite of ��J1 /��1��2

�see Eq. �62��.
The latter satisfies Eq. �93�, used to simplify the integrand.
The manipulations pose no difficulty and lead to the second
key expression of the paper:

Sj2j1
�E� =

1

2�i
�

0

2�

d�1���1�2

�1P2

��2

��1
�

J1

�1/2
ei��/�−���+n�/2�

�119�

with

� = ��1 − �1�R1 + �P2 − �2�R2 + �J2 − �j2��2 + �̄ .

�120�

In the above expressions, P2, �2, �, n, J2 and �̄ are implicit
functions of �1.

n is zero if ��2� /��1
2��2

is positive, i.e., if ��J1 /��1��2
is

negative. From Eq. �93�, this amounts to stating that n is zero
if ���2 /��1�J1

and ���2 /�J1��1
have the same sign. Following

the reasoning of the previous section based on Figs. 5 and 6,
this is just the conclusion we arrive at. As a matter of fact,
the phase index reduces to �, as in CSMT.

Since in most cases, �1 and �1 are very close, we can
rewrite Sj2j1

�E� as

Sj2j1
�E� =

1

2�i
�

0

2�

d�1���2

P2

��2

��1
�

J1

�1/2
ei��/�−��/2�

�121�

with

� = �P2 − �2�R2 + �J2 − �j2��2 + �̄ . �122�

This expression bears some common features with Miller’s
one �see Eq. 29 in �21�� and is in even closer agreement with
an expression derived by Connor and Marcus �see Eqs. �2.5�
and �2.6� in �36��. However, the phase index is now clearly
specified.

V. 2D SCIVR TREATMENT

The starting point is still the set of Eqs. �67�–�69� but
instead of applying the SPA, one replaces the integration
variable �2 by J1 which, together with R1, �1, and Eq. �92�,
determine the initial conditions of the trajectory. Conse-
quently, the sum over trajectories in Eq. �69� disappears. Us-
ing the fact that �2� /��2��1 is equal to the opposite of
��J1 /��2��1

�see Eq. �62��, we arrive after a few steps of
algebra at the third key expression of the work, i.e.,

Sj2j1
�E� =� d�1dJ1q��1,J1�u��1,J1� �123�

with

q��1,J1� =
1

�2�i��1/2
1

2�i
ei��1R1−�2R2+�j1�1−�j2�2�/�

�124�

and

u��1,J1� = ���1�2

P1P2

��2

�J1
�

�1

�1/2
ei��/�−��/2�. �125�

In the above expressions, P1, P2, �2, �, and � are implicit
functions of both �1 and J1. The phase index is again �.

VI. 3D SCIVR TREATMENT

We turn back to the initial Eqs. �17� and �18�. By using
the closure relation �28�, we arrive at

FIG. 7. �Color online� Schematic representation of � in R2 as a
function of �1. Different colors �or grey intensities� correspond to
different branches. Three of them are represented here.
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Sj2j1
�E� =

a

2�
� dtd�2d�1v�t,�2,�1� �126�

with

v�t,�2,�1� = eiEt/�ei�j1�1−j2�2�
R2�2�e−iĤt/��R1�1	 .

�127�

The Van Vleck–Gutzwiller semiclassical approximation of
the space-time propagator is �54–56,63�


R2�2�e−iĤt/��R1�1	sc = �
Traj

���1/2

2�i�
ei�W/�−�
/2�, �128�

where

� = det�Mt� , �129�

Mt =�−
�2W

�Rt�R1
−

�2W

�Rt��1

−
�2W

��t�R1
−

�2W

��t��1

� , �130�

W = �
0

t

d�L , �131�

and the index 
 is the sum of the numbers of time each
eigenvalue of M�

−1 changes sign when � runs from 0 to t.
Note that within the above notations, R�=R1 and ��=�1
when �=0 while R�=R2 and ��=�2 when �= t.

From the identities P1=−��W /�R1�R2
and J1

=−��W /��1��2
, deduced from Eqs. �3�, �6�, �8�, and �131�,

we arrive at

�−1 = det�Mt
−1� = �

�R2

�P1

�R2

�J1

��2

�P1

��2

�J1

� . �132�

We now follow the approach by Skinner and Miller �64,65�.
Including the right-hand side of the identity

1 =� dRt��Rt − R2� �133�

in the integrand of Eq. �126�, accounting for Eq. �128� and
integrating over t using theorem �109� leads to

Sj2j1
�E� =

a

4�2i�
�
Traj

� dR2d�2d�1w�R2,�2,�1�

�134�

with

w�R2,�2,�1� =
���1/2

�Ṙ2�
ei��Et+W�/�+j1�1−j2�2−�
/2�. �135�

We now replace the integration variables R2 and �2 by P1
and J1, which, together with R1 and �1, determine the initial
conditions of the trajectory. For similar reasons as in sec. IV,

the sum over trajectories in Eq. �134� disappears. Noting that

dR2d�2 = ��−1�dP1dJ1 �136�

with �−1 given by Eq. �132�, we finally arrive at the fourth
key expression of the paper, i.e.,

Sj2j1
�E� =

�a

4�2i�
� dP1dJ1d�1y�P1,J1,�1� �137�

with

y�P1,J1,�1� =
��−1�1/2

P2
ei��Et+W�/�+j1�1−j2�2−�
/2�. �138�

In the above expression, �−1, P2, W, t, �2, and 
 are implicit
functions of P1, J1, and �1.

VII. EXACT QUANTUM SCATTERING CALCULATIONS

The quantum scattering calculations have been performed
by using a time-dependent method based on the multicon-
figuration time-dependent Hartree �MCTDH� propagation
scheme �93–96�. Only the key features of the MCTDH
method will be exposed here, all the details of it being re-
viewed in the previous references.

The wave function describing the time-evolution of a
f-dimensional system is expanded in a basis of time-
dependent wave functions, called single particle functions
�SPFs�, as follows:

	�Q1, . . . ,Qf,t� = �
j1=1

n1

¯ �
j f=1

nf

Aj1¯j f
�t��


=1

f

� j

�
��Q
,t�

= �
J

AJ�J. �139�

The Qk’s denote the f configuration space coordinates, Aj1¯j f
the expansion coefficients, and � j


�
� the SPF for each degree
of freedom �97�. These SPFs are in turn expanded in a regu-
lar time-independent basis set �i


�
��Q
�:

� j

�
��Q
,t� = �

i
=1

N


ci
j

�
� �t��i


�
��Q
� . �140�

The �i

�
��Q
� are usually chosen as the basis functions of a

discrete variable representation �DVR� and the size of the
SPF expansion in Eq. �140� is determined by the phase space
spanned by the system for the degree of freedom 
. It is
important to note that the SPFs are one-dimensional basis
functions, so that the wave function is described by an ex-
pansion in Hartree products, each of the Hartree products
representing a configuration within a multiconfigurational
scheme. As a consequence, the correlation between the vari-
ous degrees of freedom is represented by the multiconfigu-
rational nature of Eq. �139�. The correct description of the
correlation between the degrees of freedom converges with
the number of SPFs �number of configurations�. A balance
has to be found between the correct description of the corre-
lation and the computational time which increases with the
number of SPFs.
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The equation of motion for the expansion coefficients and
the SPFs are derived from the Dirac-Frenkel variational prin-

ciple 
�	�Ĥ− i �
�t �		=0 leading to a set of coupled equations

which requires less computational effort than standard meth-
ods for high-dimensional problems. The reason is that the
wave function can often be expanded in a much lower num-
ber of SPFs, n
, than the number of basis functions, N
, used
in standard wave-packet propagation schemes. By increasing
the number of SPFs one can obtain a more and more accurate
determination of the dynamical quantities and the wave func-
tion converges to the exact solution �the MCTDH method
naturally converges to standard methods for n
=N
�.

To summarize, the MCTDH method is a quantum wave-
packet propagation scheme based on wave functions ex-
panded in a reduced basis set �SPFs� variationally optimized
in time, in order to keep the size of the problem as small as
possible. In practice, the interest of using SPFs is a reduction
of the amount of memory required to store the wave function
as well as a reduction of the computational time used for the
propagation.

Molecular scattering can be described within MCTDH by
propagating a wave packet initially located in the reagents up
to the products where it is finally analyzed.

As far as our model system is concerned, the initial wave-
packet function is given by

	�R,�;t = 0� = G0�R��1��� . �141�

G0�R� is a Gaussian wave-packet defined as

G0�R� = ��2���−1/2 exp�− �R − R1

2�
�2
exp�− iP0�R − R1�� .

�142�

The width �, the initial momentum P0, and the initial posi-
tion R1 are the parameters defining the initial wave packet.
These values are respectively kept at 0.8, −6.7 and 10 in
atomic unit.

�1���, given by Eq. �15�, is the wave function corre-
sponding to the rotational state �j1	.

The SPFs used to describe the wave function are repre-
sented by different DVR and/or fast fourier transform �FFT�
representations.

The quantum Hamiltonian is given by

Ĥ = −
�2

2�
�R −

�2

2I
�� + V , �143�

where �R and �� are the Laplacians associated with R and
�.

The state-selected scattering probabilities are computed
with the help of a complex adsorbing potential �CAP� lo-
cated in the asymptotic region defined by R larger than Ras
=15 a.u., combined with a flux analysis procedure �98�. The
CAP used to adsorb the scattered back wave packet is a
one-dimensional potential function of the following form:

iWR�R� = i��R − Ras����R − Ras� . �144�

The parameters Ras, �, and � respectively define the starting
point, strength, and order of the CAP. � is kept at 0.0029 and
� at 2. � is the Heaviside step function.

VIII. COMPARISON BETWEEN CSMT, SCIVR, AND EQS
RESULTS

CSMT and the three previously derived SCIVR ap-
proaches are now applied to the atom rigid rotor collision
governed by the potential

V = e−��R−� cos ��. �145�

While � is kept at 2 Å−1, � is kept at the three different
values 0.1, 0.3, and 1.02 Å corresponding to increasing cou-
plings between the R and � coordinates in the interaction
region. j1 is zero, E is equal to 0.5 eV, � is kept at 2 /3 amu,
m at 1 /2 amu, and r is equal to 1 Å. These parameters lead
to strong quantum interferences, as shown further below.

The collision function, i.e., the final value J2�J2��1� of J
in terms of the initial angle �1, is represented in Fig. 8,
together with the phase index �. R1 and R2 were both kept at
200 Å �as explained further below, such large values are un-
necessary for getting accurate transition probabilities�, and
Eqs. �77� and �78� define the rest of the initial conditions.
The collision function involves smooth oscillations and the
phase index increases or decreases by one unit at each extre-
mum of the former. Both quantities are symmetric with re-
spect to �, as expected from the form of V.

Quantities proportional to the four partial derivatives of
Sec. III B 3 are represented in Fig. 9 for � kept at 0.1. These
quantities are in fact the partial derivatives divided by their
absolute values in �1 equal to zero, and multiplied by 1
���J2 /��1�J1

k , red curve �curve starting at 1��, 2 ����2 /��1�J1

k ,
green curve �curve starting at 2��, 3 ���J2 /�J1��1

k , blue curve

FIG. 8. �Color online� Collisional function �magenta curves� and
the Maslov index � �green steps� for the interaction potential �145�
�see text for the values of the mechanical parameters used in the
calculations�. The three panels correspond to � equal 0.1 �upper
panel�, 0.3 �middle panel�, and 1.02 Å �lower panel�, respectively.
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�curve starting at 3��, and 4 ����2 /�J1��1

k , magenta curve
�curve starting at 4��. Since the four derivatives have quite
different values, the previous rescaling was necessary to rep-
resent their shapes in the same graphic while being still able
to distinguishing them. As a matter of fact, the four deriva-
tives turn out to have the same sign, in agreement with the
conclusions of the reasoning developed in Sec. III B 3.

The � values were chosen in such a way that J2 is not too
close to an integer at the extrema. We know from Sec. III B 2
that the classical paths mainly contributing to S matrix ele-
ments are those satisfying the boundary conditions �77� and
�79�, i.e., connecting integer actions of the reagents and in-
teger actions of the products. There will therefore be no
value of k in Eq. �103� for which ��J2 /��1�J1

k tends to zero. In
other words, the probability amplitudes carried by the previ-
ous paths will not tend to infinity. This is a prerequisite for
avoiding any rainbow effect in CSMT predictions �32,49,50�.

We intentionally considered a system not involving any
resonance, or equivalently, trapped trajectory, for it is well
known that up to the present, semi-classical approaches have
failed at reproducing EQS results when resonances dominate
the dynamics �24,61�. The basic reason is that the collision
function has a fractal structure in resonance regions �24,99�.
Therefore Eq. �79� has an uncountable number of roots for
which ��J2 /��1�J1

k tends to infinity. The problem is thus nu-
merically intractable. As far as SCIVR approaches are con-
cerned �see Eqs. �121�, �123�, �125�, �137�, and �138��, the
problem is similar as the amplitude factor of the integrand
diverges for trapped trajectories. As most realistic systems
involve strong resonances, building a method circumventing
the resonance problem is a major challenge of semiclassical
collision theory.

Extrema of J2 correspond in fact to focal points at infinity.
In other words, if the reference path of Sec. III A 3 corre-

sponds to an extremum of J2, its neighboring trajectories will
cross it at infinity. Considering the case where � gains one
unit at a given value �1

g of �1 when increasing the latter, the
crossing, or focal, or conjugate point will first appear at in-
finity for �1

g exactly and then move inward when keeping �1
increasing. On the contrary, a decrease of � by one unit
corresponds to a focal point disappearing at infinity.

We have found it necessary to keep R1 and R2 at very
large values �more than �100 Å� to find a close correspon-
dence between extrema of the collision function and jumps
of the phase index. However, predicting accurate values of �
in the neighborhood of the extrema is not a necessary con-
dition to obtain accurate rotational state distributions in the
cases considered; as stated above, the extrema do not corre-
spond to integer values of J2 and therefore, according to
CSMT, trajectories associated with these extrema do not sig-
nificantly contribute to S matrix elements. There is thus no
need to accurately know � around the extrema and therefore
to take R1 and R2 at very large values when calculating S
matrix elements.

As far as CSMT is concerned, the classical paths contrib-
uting to Sj2j1

�E� are usually determined either by graphically
solving Eq. �79� or by building a root-search algorithm.
Sj2j1

�E� is then calculated from Eq. �103� �for simplicity’s
sake, we keep the g factor at 1, an excellent approximation in
the cases presently considered�. However, we have found it
quite convenient to rewrite Eq. �103� as

Sj2j1
�E� = �

0

2�

d�1� �

2�i�� �J2

��1
�

J1

��1/2

��„J2��1� − �j2…e
i��̄/�−��/2� �146�

�it is indeed an easy task to prove this result using Eq. �109��
and replace the Dirac distribution by a numerically friendly
Gaussian function leading to

Sj2j1
�E� = �

0

2�

d�1� �

2i�� �J2

��1
�

J1

��1/2 1

��

�e−�J2��1� − �j2�2/�2
ei��̄/�−��/2�. �147�

CSMT is thereby transformed to a SCIVR method going
around the root-search problem. We note that in the case of
resonances, Eq. �147� also suffers from the divergence of the
integrand amplitude for trapped trajectories. On the other
hand, a great advantage of the GW-QCT method �see Eq.
�110�� is that it is divergence free.

CSMT results are totally independent of the values of R1
and R2 provided that they are larger than �5 Å, the distance
beyond which V can be considered as zero. On the other
hand, SCIVR results depend significantly on R1 and R2 �even
when these are larger than �5 Å�. The reason is that the
phases in the integrands of Eqs. �121�, �123�, and �137� de-
pend strongly on the previous distances. Therefore the con-
tribution of each trajectory to Sj2j1

�E� evolves in terms of R1

and R2. If an infinite number of trajectories could be run, the
total sum of their contributions would not depend on R1 and
R2, but this will not be so if this number is finite �as is
necessarily the case�. For the present study, we run between

FIG. 9. �Color online� Quantities proportional to the four partial
derivatives ��J2 /��1�J1

k �red curve �curve starting at 1��, ���2 /��1�J1

k

�green curve �curve starting at 2��, ��J2 /�J1��1

k �blue curve �curve
starting at 3��, and ���2 /�J1��1

k �magenta curve �curve starting at 4��
in terms of �1. � is kept at 0.1. See text for more details.
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�1000 �1D SCIVR� and �50 000 �3D SCIVR� trajectories.
In addition to that, the 2D and 3D SCIVR results also depend
on the boundaries of integration along the J1 axis �2D ap-
proach�, and in the �P1 ,J1� plane �3D approach�. We then
found it reasonable to retain those values of R1, R2 and the
previous boundaries which better comply with the unitarity
of the S matrix, and finally re-normalized the populations to
make their sum equal to 1 exactly.

These quantities are shown in Fig. 10 �magenta and blue
curves�, together with the EQS predictions �green curves�.
As previously stated, they show strong interference patterns.
The good to close agreement found between semiclassical
expectations and exact quantum results is pleasing �we also
used Filinov filtering �65,100–102�, but this procedure did
not seem to improve the results�. We note the quantitative
jump when going from CSMT to the 1D-SCIVR treatment
while the improvement of the results when going from the
latter to the 3D-SCIVR treatment is necessarily more mod-
erate; 1D-SCIVR results are already very satisfying, which is
quite encouraging as far as multidimensional processes are
concerned. It is fascinating that classical mechanics plus the
superposition principle lead to such a level of description of
quantum interferences, especially when they are so strong.

For � equal to 0.1 and 0.3, the collision function is a
simple sinusoid �see Fig. 8� and Eq. �79� has only two roots.
This situation reminds us of the much studied vibrationally
inelastic collision on the Secrest-Johnson potential energy
surface �PES� �21�. The Maslov index � is one unit larger
when J2 decreases than when J2 increases �see Fig. 8�. It is a
simple matter to show that in such a case, Pj2j1

�E� reads

Pj2j1
�E� = p1 + p2 + 2�p1p2�1/2 sin���̄2 − �̄1�/�� ,

�148�

where

pk = �2�i

�
�� �J2

��1
�

J1

k ��−1

, �149�

k=1,2, is the �density of� probability carried by the kth tra-
jectory �21,32,49,50�. The first and second roots correspond
to J2 increasing and decreasing, respectively. This amounts
to taking the Maslov index at 0 when J2 increases and 1 in
the contrary case. p1+ p2 is the classical population �see Eq.
�107�� while the sinus term represents the quantum interfer-
ence. This expression allows us to nicely interpret the differ-
ences between the classical and quantum mechanical predic-
tions.

For � equal to 1.02, there are either two or four or six
roots. In the two roots case, Eq. �148� is still valid. In the
four and six roots cases, the expressions of Pj2j1

�E� are more
complex and not considered here.

One might think, from previous works �32,49,50�, that
taking � at 0 when J2 increases and 1 in the contrary case is
a general rule. However, the lower panel of Fig. 8 shows that
� takes successively the values 1, 2, 3, 2, 3, 2, 1, or equiva-
lently, 0, 1, 2, 1, 2, 1, 0. The previous rule is therefore only
valid in the two roots case. In the four and six roots cases,
applying it leads to results in complete disagreement with

EQS results. In general, � should be calculated according to
the method of Sec. III A 3 or any alternative one.

IX. REMARKS ON THE APPLICATION OF CSMT TO
VIBRATIONALLY INELASTIC AND REACTIVE

PROCESSES

Let us consider a collinear inelastic atom-diatom colli-
sion. The usual Jacobi coordinates �R ,r� are considered as
well as their conjugate momenta �P , p�. The difference with
the previous system is that � is now fixed at zero while r is
allowed to vary. An alternative to r and p are the angle-action
coordinates q and n �32,49,50�. q is the vibrational phase of
the diatom and n is its vibrational action. The initial and final
vibrational quantum numbers are denoted n1 and n2, respec-
tively. By using different approaches, Miller and Marcus
showed that the S matrix element Sn2n1

�E� is given by

Sn2n1
�E� = �

k
�2�i�� �n2

�q1
�

n1

k ��−1/2
ei��̄k−��k/2� �150�

with �̄k equal to

�̄ = − �
0

t

d��RṖ + qṅ� �151�

for the kth trajectory �20,34�. Actions are expressed in � unit
and times 0 and t correspond to R equal to the large values
R1 and R2, respectively. In the same spirit as for rotational
transitions, the classical paths contributing to the sum are
those starting with n equal to n1 and ending with n equal to
n2.

Miller arrived at the above result by showing the close
link between generating functions in classical mechanics and
unitary transformations in quantum mechanics �20,32�. Later,
he gave a second derivation of the above expression which
starting point is the formal equivalent of Eq. �17� for vibra-
tionally inelastic collisions. Our approach was of course
mainly inspired by his second derivation. Marcus arrived at
about the same conclusions by a WKB type approach �34�.
However, the phase index was not initially present in these
approaches, and we added it in Eq. �150�.

In order to justify this index from first principles, we tried
to extend the developments of Sec. III to the present situa-
tion, without success, however. The basic reason is that the
previous developments involve the semiclassical Green func-
tion �36� in the �R ,�� plane, the equivalent of which would
be the semi-classical Green function in the �R ,q� plane. The
problem is that the latter might be meaningless, as defining
coordinates parallel and perpendicular to a given classical
path in the �R ,q� plane is quite problematic. R and q can
hardly be mixed. This is actually the reason why we chose an
atom-rigid rotor collision for our study of the phase index
problem.

In the case of the Secrest-Johnson PES, the collision func-
tion is a simple sinusoid leading to two roots. We thus ap-
plied the analogs of Eqs. �148� and �149� with the same
convention as previously, i.e., the first and second roots cor-
respond to n2 increasing and decreasing, respectively. How-
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FIG. 10. �Color online� Rotational state distributions found from CSMT �magenta curves�, three SCIVR treatments �blue curves�, and
EQS �green curves� calculations for the interaction potential �145� �see text for the values of the mechanical parameters used in the
calculations�.
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ever, we only recovered part of the populations of Ref. �21�.
On the other hand, the remaining populations were recovered
when using the opposite convention. But in doing that, the
previously correct populations turned out to be wrong. It
seems therefore that if the magnitudes of interference terms
are correctly described by this approach, their signs remain
uncertain.

An alternative approach suggested by Stine and Marcus
�47� and used later by van de Sand and Rost �60� is as fol-

lows: Sn2n1
�E� is still given by Eq. �150� with �̄k equal to

�̄ = − �
0

t

d��RṖ + rṗ� �152�

or

�̄ = − �
0

t

d��RṖ − pṙ� �153�

for the kth trajectory. Moreover, trajectories are started at an
inner turning point. The first trajectory is, for instance,
started at R1, and the last one at R1+�R with �R such that
the two previous trajectories are in fact the same. Trajecto-
ries are also stopped at an inner turning point in the final
channel. The Maslov index � is then calculated in the �R ,r�
plane using, for instance, a method similar to the one of Sec.
III A 3. We applied this method to the Secrest-Johnson PES
using the Gaussian weighting procedure and this time, all the
populations were found to be in close agreement with those
of Ref. �21�. In addition to that, the method can be used as
such for reactive collisions �47�.

However, for the present time, we are not aware of any
real justification of the method from first principle.

X. CONCLUSION

Semiclassical approaches of molecular collisions pio-
neered by Miller and Marcus in the early 1970s need phase
indices, related to focal and turning points along trajectories
contributing to S matrix elements. These indices are crucial

for accurate descriptions of quantum interferences.
The main purpose of the work was to revisit the previous

approaches in the case of a two degrees of freedom rotation-
ally inelastic collision so as to make phase indices explicitly
appear from first principles.

Classical S matrix theory �CSMT� and three semiclassical
initial value representation �SCIVR� treatments, respectively
involving simple, double, and triple integrals, were consid-
ered. The phase index is either the Maslov index of the
classical configuration space Green function �CSMT and
the first two SCIVR methods�, or the Maslov index of the
Van Vleck–Gutzwiller space-time propagator �third SCIVR
method�.

The validity of the four previous approaches was checked
by comparing their predictions with exact quantum scattering
results for interaction potentials leading to strong quantum
interferences. There is a net improvement of the predictions
when going from CSMT to the 1D-SCIVR treatment while
the improvement is more moderate when going from the 1D
to 3D-SCIVR treatment. The fact that 1D-SCIVR results are
already very satisfying is quite encouraging as far as multi-
dimensional processes are concerned.

The Gaussian weighting procedure, limited to the quasi-
classical trajectory method up to now, was used in this work
for practical CSMT calculations.

Standard applications of CSMT were finally discussed in
the light of the previous developments and results.

The interaction potentials considered in this work do not
lead to resonances. Extending the applicability of the previ-
ously discussed approaches to situations where resonances
play a non-negligible role is a challenge of molecular colli-
sion theory.
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