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We study the double ionization by electron impact of the ground state of heliumlike atoms and propose a
scaling law for fully differential �e ,3e� cross sections. Within the first Born approximation, cross sections are
calculated with a three-body Coulomb �3C� double-continuum wave function and initial states represented by
highly accurate wave functions, which satisfy all two-body Kato cusp conditions. We first consider the helium
atom in the kinematical and geometrical conditions of the only absolute, high incident energy, experimental
data available: our calculations confirm unambiguously that satisfying or not Kato cusp conditions is not a
relevant feature of the ground state. Other heliumlike atoms are then considered. Under similar conditions,
cross sections for H− are much larger than for helium while the reverse is true for positive ions; a comparison
with the rare other theoretical calculations is performed. Finally, within our theoretical framework, we propose
an approximate scaling law for �e ,3e� cross sections for heliumlike positive ions, and confirm it by
calculations.
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I. INTRODUCTION

The theoretical study of the double ionization of atoms by
electron impact ��e ,3e� experiments� allows one to gain in-
formation on correlated systems �1�. In the case of two-
electron atomic targets, such as helium, one deals with a pure
four-body Coulomb problem which, for high incident ener-
gies, can be reduced to a three-body problem from a theoret-
ical point of view. However, even in this case, no exact wave
function is known for either the scattering or the bound
states. Hence, approximate wave functions are used, and
�e ,3e� cross sections on helium obtained with a different
theoretical description of the initial and final states are gen-
erally not in agreement with each other. Moreover, when
these are compared with high energy absolute experimental
data on helium �2,3�, a rather confusing picture emerges; this
is the subject of many recent studies �see, e.g., �4�, and be-
low�. Many ingredients enter the calculation of fivefold dif-
ferential cross sections �FDCS� and it is important to under-
stand which one is important for the theoretical description
of experimental data.

In this work, we take as final state the so-called three-
body Coulomb �3C� �or Brauner-Briggs-Klar �BBK�� model
�5,6� of the double continuum. This model has known limi-
tations; however, it has the merit of diagonalizing the three-
body Hamiltonian, and hence satisfies exactly the so-called
Kato two-body cusp conditions �7�, and has the correct
asymptotic behavior when all interparticle distances are
large. Moreover, being analytical, it is practical for studying
the ionization of a variety of atoms and molecules. In the
case of two-electron atoms considered here, the analytical
character will allow us to investigate a scaling law for their
double ionization by electron impact.

The first aim of this paper is to focus on the initial bound
state of helium, and, in particular, on the role of its behavior
near the two-body coalescence points. The cusp conditions

have a fundamental importance at high energy regimes in
photo-double ionization �8�, and it is interesting to investi-
gate whether the same is true in �e ,3e� processes. The sec-
ond aim is to provide cross section predictions for �e ,3e�
processes on two-electron ions belonging to the heliumlike
isoelectronic sequence. While charged targets are experimen-
tally more difficult to deal with, it is interesting to study the
nuclear charge �Z� dependence of the cross sections shapes
and magnitudes. Indeed, the relative importance of the
electron-electron correlation in the initial state, with respect
to the electron-nucleus interaction, is largest for the ion H−

and decreases as Z increases. For H−, FDCSs larger than for
helium are expected while the reverse is true for heliumlike
positive ions. Scaling laws for heliumlike ions have been
investigated for �e ,2e� �9� and �� ,2e� �10,11� but not for
�e ,3e� processes. Here we provide an approximate scaling
law for FDCS, which is based on the 3C model.

Let us start from the helium atom. A great amount of
ground state wave functions have been presented in the lit-
erature, and many different types of constructions have been
used to approximately include the correlation. In most of the
advanced trial functions �e.g., �12,13�� used in ionization
studies, the variational parameters are optimized in order to
yield a very accurate ground state energy, without any atten-
tion to the behavior near the two-body coalescence points or
to the large distance behavior. In general they do not satisfy
Kato’s cusp conditions. On the other hand, relatively simpler
functions �e.g., �14�� fulfilling these conditions have been
proposed and used, but give—in comparison—a less accu-
rate energy. In a recent publication �15�, the role of the be-
havior of the ground state wave functions near the two-body
coalescence points was investigated in �e ,3e� calculations
for helium within the 3C model. To this effect, the authors
have built new variational bound wave functions, which
yield very accurate ground state energies and at the same
time satisfy almost exactly Kato cusp conditions. The func-
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tions were built as the sum of a relatively large number of
products of exponentials in the three Hylleraas coordinates;
since the authors found it very difficult to fulfill the cusp
conditions locally, they use a weaker condition, i.e., an aver-
aged formulation. In order to eliminate any doubts and pro-
vide a definitive answer on this issue, we construct and use
here trial wave functions, which satisfy these conditions ex-
actly. A first step towards this aim was presented recently �4�
with the systematic use of trial wave functions satisfying the
cusp conditions and with different functional and asymptotic
behaviors; however, similarly to the Le Sech trial wave func-
tion �14�, the ground state energy was still quite far from the
numerically exact value. In this paper we shall consider two
sets of trial functions, which yield accurate energies, in order
to answer the question of whether or not the exact fulfillment
of Kato’s cusp conditions is important for describing the
double ionization of helium at high incident energy.

For �e ,3e� processes on helium, calculated FDCSs can be
compared with those measured by Lahmam-Bennani et al.
�2,3� for high incident energy �5599 eV� and ejected energies
of E1=E2=10 eV �small momentum transfer�. These copla-
nar measurements allow one to make a detailed study—both
in shape and magnitude—of the double ionization process.
On the theoretical side, there have been published calcula-
tions based on the convergent close-coupling �CCC� ap-
proach �3,16�, the J-matrix method to Faddeev-Merkuriev
differential equations �17,18�, a wave-packet evolution ap-
proach �19�, and the distorted wave approaches �with the
“pure” 3C model �15,20–24� or variants with effective
charges �2,25,26��. Since the experimental energy of the in-
coming projectile is high, the comparison between the theo-
retical calculations and the measured data can be performed
within the frame of a first Born approximation �FBA� in the
interaction of the projectile with the target atom; indeed, ex-
plicit second Born calculations showed that little difference
is observed with either the CCC �27� or a distorted wave
approach �28�. Even within the FBA, the FDCSs obtained
with a different theoretical description of the initial and final
states are not in agreement with each other, and yield a rather
confusing picture. The results presented within the Born-
CCC approach, in combination with the 20-parameters Hyl-
leraas function, show an overall shape agreement but present
important magnitude disagreements �factor 3 �3� or 2.2 �16��.
Calculations with the J-matrix approach �17� �where the ini-
tial and final wave functions are represented by an infinite
expansion in a Laguerre basis� yield a reasonable agreement
in the �e ,3e� cross sections magnitude, but to a lesser extent
for their shapes. It should be noted that previous published
calculations �18�, where the pseudostates method was em-
ployed, showed important magnitude disagreements with ex-
perimental data, similarly to the CCC approach. Recently, a
purely numerical calculation based on a wave-packet evolu-
tion approach has yielded results that are close, in both shape
and magnitude, to those found with the CCC approach. Fi-
nally, the calculations performed with distorted wave ap-
proaches lead to different and divergent conclusions. The
combination of the 3C model for the ejected electrons with
different double bound initial wave functions yields results
that depend on the level of correlation included in the initial
state. Agreement in shape, but disagreement in magnitude

�factor 1.5–2� is found when comparing the calculations and
the experimental data �2�, when highly correlated double
bound wave functions like that of Le Sech �14�, Bonham and
Kohl �12�, or Hylleraas-like are used for the initial channel
�15,21,22,28�. On the other hand, overall agreement in both
shape and magnitude is found �20,21,23� when using simpler
wave functions, like that proposed by Pluvinage �29� �which
diagonalizes the three two-body Coulomb potentials� or oth-
ers with a similar analytical structure. It is worth underlying
that all the 3C results, published by several groups and ob-
tained with independent numerical codes, are consistent with
each other �unfortunately some initial confusion arose from
those published in �2� with a wrong magnitude�.

The second aim of this paper is to investigate �e ,3e� cross
sections for other two-electron ions. As far as we know, only
few publications have dealt with the fully differential double
ionization of heliumlike ions �30–35�; this is probably due to
the lack of experimental data to compare with. Moreover,
when the target is charged, the incident and scattered elec-
trons should be described by Coulomb rather than plane
waves, adding an extra difficulty to the theoretical model. If,
however, the incident and scattered energies are sufficiently
high, the corresponding Sommerfeld parameters are suffi-
ciently small, so that the use of plane waves should not affect
the results. For fixed kinematical and geometrical conditions,
the cross sections for positive ions are expected to decrease
as the nuclear charge increases. On the other hand, for H−,
cross sections larger than for helium are expected; calcula-
tions for this ion have been presented in �30–34�. In Ref.
�30�, the 3C model and an initial bound state of moderate
quality were used. In the other publications �31–34�, cross
sections were calculated with simplified versions of the 3C
model, in which the electron-electron interaction in the
double continuum is either neglected �two Coulomb waves;
named here 2C model� or described only by a Gamow factor
�named here 2CG model�. From the study of �e ,3e� cross
sections, for example, for helium, it is known that such poor
descriptions of the double continuum yield large differences
when compared to the 3C model, and cannot reproduce the
proper shapes and order of magnitude of experimental data.
That said, the advantage of these simplified models of the
double continuum permitted an interesting analytical inves-
tigation of the cross sections �31�, or the inclusion of the
projectile-target Coulomb interaction �32,33�. As Li+ is con-
cerned, FDCS have been calculated with a 2CG or 2C model
�34,35�; in �35�, the projectile-target Coulomb interaction is
described with Coulomb waves. No other heliumlike positive
ions have been studied, probably because the cross section is
too small to be measurable. Hence, except for the work on
H− by Lamy et al. �30�, only poor models of the double
continuum have been considered for heliumlike ions. To fill
this gap, we consider here the ions H−, and Li+ up to F7+, and
calculate FDCS within the 3C model and initial states of
good quality. We shall first consider some of the kinematical
and geometrical situations discussed in Refs. �30–35�. Next,
we propose a situation in which the momentum transfer is
kept constant. In this way, the cross sections for different
targets will depend essentially on the target wave functions
�and hence test the electron-electron correlation� and on the
Sommerfeld parameters connected to the ejected electrons.
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Finally, thanks to the analytical character of the 3C model
and by adequately scaling the incident and the ejected ener-
gies, we identify an approximate scaling law for FDCS of
heliumlike ions; our 3C calculations confirm its validity.

The rest of the paper is arranged as follows. In Sec. II, we
briefly recall the theory for the evaluation of the fivefold
differential cross section within the FBA. We next describe
the final double continuum state in the 3C model, the double
bound initial state wave functions considered, and the nu-
merical technique used for the evaluation of cross sections.
The results of our calculations for the helium atom and he-
liumlike ions are presented in Sec. III. A summary is given in
Sec. IV.

Atomic units are used throughout ��=me=e=1�.

II. THEORY

The fully differential cross section for the ejection of two
electrons from a two-electron atom by electron impact, the
�e ,3e� reaction, is given by

d5�

d�0d�1d�2dE1dE2
= �2��4k0k1k2

ki
�Tfi�k0,k1,k2��2. �1�

Here ki and k0 are the momenta of the incoming and outgo-
ing projectile, k1 and k2 are the momenta of the ejected
electrons after the collision �energy E1, E2�; d�0, d�1, and
d�2 denote, respectively, the solid angle elements for the
scattered and the two ejected electrons. Let r1 and r2 repre-
sent the coordinates of two ejected electrons relative to the
infinitely heavy nucleus, r12=r1−r2 the electron-electron
relative vector, and r0 be the coordinate of the projectile. We
shall restrict the present investigation to high incident ener-
gies Ei, so that the FBA for the transition matrix Tfi may be
taken,

Tfi = � 1

�2��3/2eik0·r0� f
−�r1,r2��−

Z

r0
+

1

�r0 − r1�

+
1

�r0 − r2�
� 1

�2��3/2eiki·r0�i�r1,r2�� , �2�

where Z is the nuclear charge of the target. In this nine-
dimensional integral, �i�r1 ,r2� and � f

−�r1 ,r2� are the exact
initial and final channel wave functions for the two-electron
system under consideration. The integration over the projec-
tile coordinates �r0� can be performed analytically, using Be-
the’s integral, so that the transition amplitude reduces to a
six-dimensional integral

Tfi =
1

2�2q2 	� f
−�r1,r2��− Z + eiq·r1 + eiq·r2��i�r1,r2�
 , �3�

where q=ki−k0 is the momentum transferred from the pro-
jectile to the target atom.

A. Final state

The dynamics of the two escaping electrons is represented
here by the 3C model �6�. Taking into account exchange
between electrons 1 and 2, this final state model is given by

a symmetrized version of the C3 �or BBK� double-
continuum wave function �5�

� f
− = N3C

1
�2

�eik1·r1eik2·r2D��1,k1,r1�D��2,k2,r2�

+ eik1·r2eik2·r1D��1,k1,r2�D��2,k2,r1��D��12,k12,r12� ,

�4�

where

N3C = e−��/2��1��1 − i�1�e−��/2��2��1 − i�2�

	e−��/2��12��1 − i�12� , �5�

and the Coulomb distortion factor is given by

D��,k,r� = 1F1„i�,1,− i�kr + k · r�… , �6�

The Sommerfeld parameters � j =−Z /kj �j=1,2� and �12
=1 / �2k12�, with the relative momentum defined as k12= �k1
−k2� /2, are directly related to the corresponding Coulomb
potentials.

Since they are solutions of the same three-body Hamil-
tonian, the exact double-continuum state � f

−�r1 ,r2� and the
initial ground state �i�r1 ,r2� are orthogonal. However, since
in each case we do not know the exact solutions, orthogonal-
ity is broken, but can be restored through an artificial
Schmidt orthogonalization

	� f
−�� = 	� f

−� − 	� f
−��i
	�i� . �7�

In the case of helium, and for the �e ,3e� processes under
scrutiny here, this operation does not much affect the shapes
of the cross sections but gives a magnitude change of 10–
15 % depending on the ejected angles �20,21�. On the other
hand, the orthogonalization procedure has a dramatic effect
for other two-electron ions; if the final state is not orthogo-
nalized to the initial state an enormous spurious contribution
appears in cross sections, giving rise to important shape and
magnitude differences.

B. Initial state

The study of the Coulomb singularities has led Kato �7� to
provide mathematical conditions that �i must satisfy �the
so-called two-body cusp conditions� in order to eliminate
these singularities.

� ��̄i

�r1



r1→0
= − Z�i�0,r2,r12� , �8a�

� ��̄i

�r2



r2→0
= − Z�i�r1,0,r12� , �8b�

� ��̄i

�r12



r12→0
=

1

2
�i�r,r,0� with r = �1

2
�r1 + r2�� ,

�8c�

where �̄i means the average of �i over a very small sphere
of radius r1 �respectively, r2 or r12� keeping the other values
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fixed. Relations �8a�–�8c� provide the linear behavior that �i
must have close to the two-body coalescence points.

For the initial ground state �i we consider here two sets
of trial wave functions, which depend on the three interpar-
ticle distances r1 ,r2 ,r12. They are constructed with an angu-
larly correlated configuration interaction approach, which
uses two basis sets with functions satisfying exactly the three
cusp conditions. The first one uses parameter-free basis func-
tions, which diagonalize the three-body Hamiltonian �36�


n1,n2,n12

C3 = �n1
�Z,r1��n2

�Z,r2�1F1�− n12,2,−
r12

n12
� ,

where

�ni
�Z,rj� = e−Zrj/ni

1F1�1 − nj,2,
2Zrj

nj
�, j = 1,2, �9�

are the unnormalized L=0 hydrogenic solutions of principal
quantum numbers n1 and n2. The distortion factor

1F1�−n12,2 ,−
r12

n12
�, with n12 a positive integer, emerges from

the study of the double-bound analog of the C3 double-
continuum function �37�, and is actually a Laguerre polyno-
mial Ln12

�1� �−
r12

n12
�; for the first two used below we have

L1
�1��−r12�=1+

r12

2 and L2
�1��−

r12

2 �=1+
r12

2 +
r12

2

24 . The second basis
functions, proposed by Gasaneo and Rodriguez and col-
leagues �GR� in �38,39�, read


n1,n2

GR = �n1
�Z,r1��n2

�Z,r2�
2� + 1 − e−�r12

2�
.

They have a correlation factor tending to one at large
electron-electron distances and involve a nonlinear parameter
�. With a configuration interaction approach, it is possible to
generate highly correlated wave functions for S bound states
of heliumlike atoms. Even when a limited number of con-
figurations is included, rather good energy values for the
ground and excited states are obtained �36,38�; a systematic
improvement is obtained by the inclusion of more configu-
rations. The linear coefficients of the configuration interac-
tion approach are obtained by solving a generalized eigen-
value problem �see �36,38� for more details�. By
construction, the states obtained form an orthogonal set and
satisfy all two-body cusp conditions, and hence deal exactly
with the three Coulomb singularities.

Generally, if a trial wave function, which satisfies cusp
conditions, is multiplied by a function ��r1 ,r2 ,r12� such that
it behaves as ��r1 ,r2 ,r12�→1+O�r1

2 ,r2
2 ,r12

2 � near the two-
particle coalescence points, the new function also complies
with Kato’s conditions. This can be easily achieved with a
function ��r1 ,r2 ,r12� given as a power series as long as the
first power of the coordinates is not included. This technique
was successfully employed with the 
n1,n2

GR basis to construct
wave functions for two-electron atoms �38–40�.

Here we propose to use it also for the diagonal functions

n1,n2,n12

C3 �see also �40��. Hence, we construct the following
two trial wave functions:

�C3N = N �
n1,n2,n12


n1,n2,n12

C3 �
ijk�1

cijk
n1n2n12r1

i r2
j r12

k , �10�

�GRN = N �
n1,n2


n1,n2

GR �
ijk�1

cijk
n1n2r1

i r2
j r12

k , �11�

where N stands for the overall normalization factor �the N in
the labels C3N and GRN indicates the number of linear co-
efficients included�.

Since we are interested here only in the ground state, the
best compromise—between energy precision and the number
of terms—is found when taking only n1=1 and n2=1 �if one
should also study excited states, other n1sn2s configurations
should be included; see �36��, and n12=1 ,2 for the �C3N

functions. We thus consider the following trial wave func-
tions:

�C3N = Ne−Z�r1+r2���1 +
r12

2
� �

ijk�1
cijk

111r1
i r2

j r12
k

+ �1 +
r12

2
+

r12
2

24
� �

ijk�1
cijk

112r1
i r2

j r12
k 
 , �12�

�GRN = Ne−Z�r1+r2�2� + 1 − e−�r12

2�
�

ijk�1
cijk

11r1
i r2

j r12
k . �13�

We have selected some of them, which involve a reasonable
number of terms and, at the same time, yield quite accurately
the ground state energy. For the GRN wave functions, the
linear coefficients cijk

11 , the nonlinear parameter �, the nor-
malization factors, and the ground state energies have been
given in Table 4 of �38�; here we shall use the three functions
with N=9 �EGR9=−2.903 27�, N=14 �EGR14=−2.903 42�,
and N=29 �EGR29=−2.903 60�. In Table I, we provide the
linear coefficients cijk

11n12, the normalization factors, and the
ground state energies, for three C3N wave functions for he-
lium �N=6,12,14�. With both sets of wave functions, the
corresponding ground state energies converge progressively
towards the numerically exact value �41� as N increases. In
Sec. III, we shall also consider the heliumlike ions H−, and
Li+ up to F7+. As we found that the cross sections calculated
with GRN or C3N initial states are not much different when
N is sufficiently large, we have chosen to present our results
with the best C3N function provided here, i.e., �C3−14. The
linear coefficients cijk

11n12, the normalization factors N, and the
ground state energies for these targets are given in Table II.

C. Numerical technique

To calculate the integral �3�, rather than using a direct
six-dimensional numerical quadrature, which is computa-
tionally expensive, we take advantage of the analytical form
of the integrand. Indeed, with either type of initial state wave
function �GRN or C3N�, the integrand contains only expo-
nentials and powers of the coordinates r1, r2, and r12 so that
one may reduce the six-dimensional numerical quadrature to
a two-dimensional one. The method is based on the compu-
tation of the term D=e−ar1e−br2e−cr12 / �r1r2r12� whose third-
order derivative �with respect to a, b, and c� yields the
simple function e−ar1e−br2e−cr12. Thus we rewrite each of the
terms r1

i r2
j r12

l e−ar1e−br2e−cr12 appearing in �i as a mixed de-
rivative of D of order K= i+ j+ l+3. We calculate them using
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the automatic differentiation tool Rapsodia �42,43� that pro-
vides high-order derivative computations in complex arith-
metic. The details and efficiency of the method have been
illustrated in �44�.

It should be underlined that the use of a two-dimensional
quadrature is a great advantage. It allows us to calculate

differential cross sections within the second Born approxi-
mation �as done, for example, in Ref. �28��, which would be
otherwise numerically prohibitive. We recall here that, for
the ionization of an atom or a molecule, the second Born
approximation is necessary if one wants to take into account
the two-step mechanisms, which are particularly important at
lower incident energies �see, e.g., �45,46��.

III. RESULTS

A. Helium

We have calculated FDCS for helium within the 3C model
and with the initial ground state wave functions given in the
previous section. The kinematical situations are those of the
only absolute coplanar �e ,3e� measurements �2�: incident en-
ergy Ei=5599 eV, two ejected electrons detected with equal
energy �10 eV�, and the projectile is scattered with an angle
of 
0=0.45° �small momentum transfer of q=0.24 a.u.�; the
cross sections were measured at 20 angles 
1 of one of the
ejected electrons as a function of the angle 
2 of the other
ejected electron �all angles are measured in the same sense
with respect to the incident beam direction�. For illustration
purposes, we have selected the two ejected angles 
1, which
correspond to the direction of the momentum transfer 
1
=
q=319° and its opposite 
1=139°; similar results are
found for 16 out of 20 geometrical situations presented in
Ref. �2�. Our calculated FDCSs are plotted in Fig. 1. For
both cases, the left �right� panels—presented on the same
scale—correspond to the use of �GRN ��C3N� initial wave
functions. Small magnitude variations are observed with
varying N; all results are, however, similar, within a class
and between the two classes of initial states �the results ob-
tained with the best functions, shown with solid lines are
even seen to merge at zero degrees in the top panel�.

TABLE I. Linear coefficients cijk
11n12, the normalization factors

N, and the ground state energies for helium �Z=2�, corresponding
to three C3N wave functions �C3N with N=6, 12, and 14.

�C3-6 �C3-12 �C3-14

N 5.138720 12.50438 14.34774

c000
111 0.8213211 0.7370965 0.7019935

c200
111 0.0922038 0.0898866 0.1521548

c220
111 −0.1400670 −0.1718711

c300
111 0.0017437

c400
111 0.0025777

c002
111 0.0274772 0.0203784

c202
111 0.0001778 0.0006772

c222
111 −0.0032172 −0.0043226

c000
112 −0.5495211 −0.6266880 −0.6054576

c200
112 −0.0567421 −0.0689263 −0.1361976

c220
112 0.1324576 0.1647337

c300
112 0.0007997

c400
112 −0.0011150

c002
112 −0.0189300 −0.0100536

c202
112 0.0004286 0.0002263

c222
112 0.0014618 0.0020219

	−E
 2.9019 2.90314 2.90337

	−E
exact 2.903724

TABLE II. Linear coefficients cijk
11n12, the normalization factors N, and the ground state energies for H− �Z=1�, and Li+ �Z=3� up to F7+

�Z=9�, corresponding to the wave function �C3-14.

H− Li+ Be2+ B3+ C4+ N5+ O6+ F7+

N / �4Z3� 0.0374172 1.48981 4.82531 14.6963 38.9182 90.6382 190.489 369.076

c000
111 −0.8973923 0.5222125 0.2903529 0.1483667 0.0800407 0.0463863 −0.0286010 0.0185499

c200
111 −0.0415472 0.1788254 0.1417413 0.0972278 0.0675705 0.04893533 −0.0368282 0.0286103

c220
111 0.0590762 −0.4325322 −0.6184454 −0.6786570 −0.6950873 −0.6995784 0.7003351 −0.6996425

c300
111 0.0508682 0.0081242 0.0087077 0.0071055 0.0055805 0.0044367 −0.0035965 0.0029691

c002
111 0.0875540 0.0346836 0.0293156 0.02010317 0.0136315 0.0095273 −0.0068844 0.0051234

c202
111 0.0068327 0.0024414 0.0025570 0.0019397 0.00135696 0.0009219 −0.0006078 0.0003799

c222
111 0.0004985 −0.0182506 −0.0369923 −0.0528111 −0.0667786 −0.0801030 0.0931841 −0.1061381

c000
112 0.3983318 −0.4860190 −0.2779669 −0.1440492 −0.0783453 −0.0456379 0.0282376 −0.0183593

c200
112 −0.0079989 −0.1699190 −0.1376899 −0.0954659 −0.0667415 −0.0485088 0.0365916 −0.0284709

c220
112 −0.0527623 0.4240615 0.6117701 0.6741871 0.6920865 0.6974908 −0.6988301 0.6985237

c300
112 −0.0551156 −0.0066679 −0.0080166 −0.0067890 −0.0054232 −0.0043512 0.0035464 −0.0029381

c002
112 −0.0845409 −0.0242275 −0.0225054 −0.0162567 −0.0114064 −0.0081695 0.0060131 −0.0045402

c202
112 −0.0019394 −0.0001095 −0.0001227 0.0000195 0.0001599 0.0002667 −0.0003426 0.0003947

c222
112 −0.0001276 0.0104637 0.0237988 0.0366252 0.0488337 0.0609381 −0.0730922 0.0853106

	−E
 0.526438 7.27948 13.6551 22.0304 32.4057 44.7809 59.156 75.5311

	−E
exact 0.5277 7.2799 13.6556 22.0309 32.4062 44.7814 59.1566 75.5317
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As mentioned in the Introduction, the FDCS obtained
with highly correlated ground state wave functions repro-
duce rather well the shapes, but have a magnitude 1.5 to 2
larger than the experimental data. Our results confirm this
trend. The improvement of the ground state energy, which
intrinsically means a better description of the correlations,
does not have much influence on the results. Moreover, if we
compare the present results with those �not shown here� ob-
tained with other trial wave functions, which do not satisfy
cusp conditions exactly, we see that no substantial differ-
ences appear.

Hence, it can be concluded that, when combined with the
3C model, whether the initial state satisfies Kato cusp con-
ditions or not does not matter in these high incident energy
�e ,3e� processes with the two electrons escaping at 10 eV.
This can be related to what is known from studies of double
photoionization for which the cusp conditions have funda-
mental importance at high energy regimes �8� �the electron-
nucleus and electron-electron cusp conditions playing a role
at different energy regimes�. For two electrons ejected with
relatively low energy �10 eV� in a �� ,2e�, and thus similarly
for a �e ,3e�, process we do not expect the electron-electron
cusp behavior to play a crucial role.

B. Other heliumlike ions

We now turn to the study of �e ,3e� processes on helium-
like ions. When the target is charged, the incident and scat-
tered electrons should be described by Coulomb waves,
rather than plane waves, as they feel the long range Coulomb
field. This adds an extra difficulty to the theoretical model.
If, however, the incident and scattered energies are suffi-
ciently high, the corresponding Sommerfeld parameters are
sufficiently small, and the results should not be much af-
fected. We shall thus neglect this effect, and use the final
state model described in Sec. II. As double bound initial
states we take here the �C3−14 wave functions; we have
checked that the results do not vary much when using other
�C3N or �GRN wave functions, as illustrated above for he-
lium.

As there are no measured data for these targets, the choice
of geometrical and kinematical situations is not dictated by
the experiments. Within the coplanar geometry and for two
electrons ejected with equal energy E1=E2=10 eV, many
possibilities for E0 �or Ei� and 
0 can be considered. In what
follows we shall select three different choices. The first two
are related to previously published results, while the third
one is a new proposal. To make the reading easier, the geo-

FIG. 1. �Color online� Fivefold differential cross section �FDCS� for �e ,3e� ionization of the helium ground state, as a function of the
angle of one of the ejected electrons 
2, with 
1=
q=319° �bottom panels� and 
1=
q−180° =139° �top panels�. The incident electron �at
5599 eV� is scattered at 0.45°, and the two ejected electrons escape with equal energy �10 eV�. The absolute experimental data �2� are shown
with full squares. The calculated FDCSs are obtained within the C3 model and several initial state wave functions: with �GRN �left panels�
and with �C3N �right panels� initial wave functions.
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metrical and kinematical values of all cases investigated here
are summarized in Table III.

A first choice is to keep for other heliumlike ions the same
conditions as those used in the measurements for helium �2�,
i.e., E0=5500 eV and 
0=0.45°. This is actually what was
proposed in the paper by Lamy et al. �30�, where H− and He
were studied under the same conditions �which are similar to
those of the experiments �2� performed a few years later�.
Since the double ionization energies change with the target’s
nuclear charge Z, the modulus and the direction of the mo-
mentum transfer q change �see Table III, entry Fig. 2�. For
illustration purposes, we take one of the ejected electrons
taken in the direction of the momentum transfer �
1=
q�, and
in Fig. 2 we plot the calculated FDCSs for H−, He, and Li+

versus the 
2−
q. This artificial rotation, which is different
for each target, facilitates the visual comparison as the sym-
metry with respect to 
q is restored. In order to put all results
on the same scale, the FDCS for H− has been divided by 200,
and that of Li+ multiplied by 100; the helium data are those
reported in Fig. 1. Similarly to them, the FDCS for H− and
Li+ present two maxima approximately in the direction per-
pendicular to the momentum transfer. The fact that the cross
section for H− is much larger than for helium has been ob-
served already in Ref. �30�; actually, our results are very

similar to theirs, the difference being related to their use of a
different �poorer� initial state, and slightly different geo-
metrical and kinematical conditions. The figure also shows
that the Li+ cross sections are much smaller than for helium;
this has been observed in �34� but with a simplified 3C
model, the 2CG model. It should be noticed here that our
FDCSs differ substantially from those of �34�, not only in the
magnitude but also in the angular distribution. We should
also add that the Gamow factor related to �12 plays an im-
portant role for two electrons ejected at 10 eV, as its square
modulus peaks at 
2=
q−180° and is responsible for the
central peak.

A second choice, considered by Muktavat and Srivastava
�34�, is to keep the same incident energy �Ei=5599 eV� for
all targets, but change the scattering angle 
0 in such a way
that the modulus q is kept constant; the direction of q, how-
ever, changes �see Table III, entry Fig. 3�. In order to observe
any dependence on the momentum transfer q, we consider
three of the values chosen in �34�: q=0.24, q=0.43, and q
=1.98 a.u. �note that it is not possible to find a 
0 value
corresponding to q=0.24 a.u. in the case of Li+�. In Fig. 3 we
plot the FDCS calculated for 
1=
q, as a function of 
2−
q;
each panel corresponds to a value of q, and cross sections are
multiplied for Li+ or divided for H− by factors as indicated.
As the value of q increases, the FDCS magnitude decreases
and the angular distributions change. For the largest value
considered a unique maximum appears; this maximum is re-
lated to the domination of the electron-electron Gamow fac-
tor, which peaks at 180°. Once again our 3C results differ
substantially, in both magnitude and shapes, from those of
�34� obtained with the 2CG model.

A third choice, proposed here, is to choose the scattered
energy E0 and the scattering angle 
0 in such a way that the

TABLE III. Kinematical and geometrical conditions correspond-
ing to Figs. 2–5.

Target E0 �eV� E1=E2 �eV� 
0 �deg� q �a.u.� 
q �deg�

Fig. 2 H− 5500 10 0.45 0.24 292

He 5500 10 0.45 0.17 319

Li+ 5500 10 0.45 0.43 338

Fig. 3 H− 5565 10 0.656 0.24 285

He 5500 10 0.45 0.24 319

H− 5565 10 1.203 0.43 279

He 5500 10 1.108 0.43 295

Li+ 5381 10 0.457 0.43 338

H− 5565 10 5.600 1.98 275

He 5500 10 5.596 1.98 278

Li+ 5381 10 5.534 1.98 284

Fig. 4 H− 660 10 1.298 0.24 319

He 5500 10 0.45 0.24 319

Li+ 26741 10 0.204 0.24 319

H− 704 10 3.097 0.43 295

He 5500 10 1.108 0.43 295

Li+ 26218 10 0.507 0.43 295

Fig. 5 H− 937.6 1.706 0.45 0.10 319

He 5500 10 0.45 0.24 319

Li+ 13851.7 25.183 0.45 0.38 319

Be2+ 25992.6 47.256 0.45 0.52 319

B3+ 41922.9 76.219 0.45 0.66 319

C4+ 61642.4 112.07 0.45 0.80 319

N5+ 85151.8 154.81 0.45 0.94 319

O6+ 112450.5 204.44 0.45 1.08 319

F7+ 143538.8 260.96 0.45 1.22 319

FIG. 2. �Color online� Fivefold differential cross section
�FDCS� for �e ,3e� ionization of the H−, He, and Li+ ground states,
calculated with the 3C model and the �C3−14 initial state wave
function, as a function of the angle of one of the ejected electrons

2−
q. The other electron is detected at 
1=
q �see Table III�. The
scattered electron takes 5500 eV and the direction 
0=0.45°; the
two ejected electrons escape with equal energy E1=E2=10 eV. The
FDCS for H− �dotted line� is divided by 200 and that for Li+

�dashed line� is multiplied by 100, while for He �solid line� it is
shown on absolute scale.
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momentum transfer q is kept constant, in both modulus and
direction. Two values of q are considered �see Table III, en-
try Fig. 4�: q=0.24 a.u. �the value of the helium experiments
�2�� and q=0.43 a.u. At the same time the ejected energies
are not varied �10 eV for each electron� so that the large
effect of the Gamow factor linked to �12 is kept unvaried
for all targets. In this way, the cross sections for different
targets will depend only on the target wave functions and on
the Sommerfeld parameters � j connected to the two ejected
electrons. In Fig. 4, our calculated FDCSs are plotted, versus

2, again for H−, He, and Li+, and for 
1=
q=319°, q
=0.24 a.u. �top panel� and 
1=
q=295°, q=0.43 a.u. �bot-
tom panel�. They all present the same symmetry with respect

to the direction of the momentum transfer �no artificial rota-
tion is thus necessary�. With the chosen kinematical and geo-
metrical situation, the cross section’s magnitude will be
mainly governed by the initial wave function �i, i.e., by the
nuclear charge Z. In order to put all cross sections on the
same scale as for helium we had to multiply those of Li+ and
divide those for H− as indicated in each panel.

C. Approximate scaling law

Cross sections for positive ions decrease with increasing
values of the nuclear charge Z and it is interesting to search
for a scaling law. To do this one should take appropriately
scaled kinematical conditions. The presence of several ingre-
dients in formula �1� for the FDCS, however, indicates that

FIG. 3. �Color online� Fivefold differential cross section
�FDCS� for �e ,3e� ionization of the H−, He, and Li+ ground states,
calculated with the 3C model and the �C3−14 initial state wave
function, as a function of the angle of one of the ejected electrons

2−
q. The other electron is detected at 
1=
q. Both ejected elec-
trons escape with equal energy E1=E2=10 eV. The scattered elec-
tron takes energy E0 and goes in the direction 
0 in order to keep
the modulus q constant �see Table III�. FDCSs for H− �dotted lines�
and Li+ �dashed lines� are divided or multiplied as indicated in each
of the three panels, which correspond to q=0.24 a.u., q=0.43 a.u.,
and q=1.98 a.u.; the FDCSs for He �solid lines� are shown on ab-
solute scale.

FIG. 4. �Color online� Fivefold differential cross section
�FDCS� for �e ,3e� ionization of the H−, He, and Li+ ground states,
calculated with the 3C model and the �C3−14 initial state wave
function, as a function of the angle of one of the ejected electrons

2. The other electron is detected at 
1=
q. Both ejected electrons
escape with equal energy E1=E2=10 eV. The scattered electron
takes energy E0 and goes in the direction 
0 in order to keep the
vector q constant �see Table III�. The cross sections for H− and Li+

are divided or multiplied as indicated; the two panels correspond to
q=0.24 a.u. and q=0.43 a.u.
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no exact scaling can be found. First of all, the initial states do
not scale with Z. Secondly, it is impossible to find kinematic
conditions in order to keep the 3C model for the final state
double continuum unchanged for several heliumlike ions; in-
deed, while it is possible to choose E1=E2 to keep the Som-
merfeld parameters � j �j=1,2� constant, one cannot fix—at
the same time—�12, i.e., the parameter related to the
electron-electron interaction. For these two reasons, only an
approximate scaling law can be proposed, and we shall use a
methodology similar to that presented in �47� for �e ,2e� pro-
cesses.

We start with two preliminary considerations concerning
the two-electron initial states. First of all, their double ion-
ization potentials P�DI� can be well represented by a one-
parameter fit

PDI = − Az̃2, �14�

where A=0.996 and z̃=Z−0.2962, the worst fit being for
Z=1 �note that, to be consistent, we have used the PDI cor-
responding to the �C3−14 wave functions and not the exact
values; anyhow, only tiny differences are observed�. The va-
lidity of the fit is better justified as Z increases. Note also that
the value 0.2962 is not far from the well-known Slater
screening value of 0.3. Secondly, to a very rough approxima-
tion, the �C3−14 wave functions for any target �Z� are given
by the product of two hydrogenic exponentials multiplied by
a prefactor N�Z�. The latter can be well fitted by the follow-
ing power law in z̃:

N�Z� = Bz̃�, �15�

with B=0.070 06 and �=3.054 45. Note that the � value is
not far from 3, which would be the power of the independent
particle model.

Consider now two ions, of nuclear charges Z�N� and Z�M�,
belonging to the helium isoelectronic sequence, and define
the ratio

�NM =
z̃�N�

z̃�M� . �16�

Although the two-electron wave functions �i do not scale
exactly, in view of Eq. �15� and of the hydrogenic exponen-
tials presence, we shall make the assumption that the relation

�i
�N����NM�−1r1,��NM�−1r2,��NM�−1r12�

� ��NM���i
�M��r1,r2,r12� �17�

holds true. As Z�N� increases with respect to Z�M�, this scaling
relation holds relatively better. However, this approximation
will be one of the sources of scaling law breaking.

Consider an �e ,3e� process on a heliumlike ion, labeled
M, in which the incident electron energy is X times the PDI
of the target ion, i.e., Ei

�M�=X�PDI
�M��, and the two ejected elec-

trons escape with energies E1
�M� and E2

�M�. The energy conser-
vation is expressed by

Ei
�M� = E0

�M� + E1
�M� + E2

�M� − PDI
�M�, �18�

where, according to the proposed fit, PDI
�M� is given by Eq.

�14�. Consider now an �e ,3e� process on another ion, labeled

by N, with the same incident energy to �PDI� ratio X. We may
write the following energy and momentum scaling relations:

Ei
�N� = X�PDI

�N�� = ��NM�2Ei
�M�, �19�

ki
�N� = �NMki

�M�, �20�

where �NM is given by Eq. �16�. If we take the energy of the
ejected electrons from ion N to be

Ej
�N� = ��NM�2Ej

�M� �j = 1,2� , �21�

which also means kj
�N�=�NMkj

�M�, then we also have k0
�N�

=�NMk0
�M� because of the energy conservation �18�.

Let us now look at the Sommerfeld parameters, which
characterize the 3C model for the final state. For each ion,
the electron-nucleus interaction corresponds to −Z while the
electron-electron repulsion corresponds to 1. With these
charges, the three Sommerfeld parameters �1, �2, and �12
cannot be kept equal for two ions M and N. Of course �12

�N�

��12
�M�; on the other hand, as Z increases, it follows from the

scaling relation �21� that

� j
�N� � � j

�M� �j = 1,2� . �22�

These facts will be another source of breaking the scaling
law.

With these considerations in mind, let us now turn to for-
mula �1� for the differential cross sections. Under the chosen
scaled kinematical conditions, and assuming relation �22�
holds true, the final state does not change except for the
electron-electron interaction distortion factor. The FDCS for
two ions N and M can then be mathematically related
through a change of variables of the radial coordinates, i.e., r
into ��NM�−1r for the three Hylleraas coordinates r1, r2, and
r12. It is then straightforward to establish the following ap-
proximate scaling law:

d5��N�

d�0d�1d�2dE1dE2
���NM�2Ei

�M�,��NM�2E1
�M�,��NM�2E2

�M��

� ��NM�6�−26 d5��M�

d�0d�1d�2dE1dE2
�Ei

�M�,E1
�M�,E2

�M�� ,

�23�

where 6�−26�−7.673. This relation is derived by consid-
ering for the final state �7�, only the dominant second term,
which arises from the orthogonalization procedure. The first
term would give FDCSs scaled as ��NM�2�−14; since 2�−14
�−7.891 the first term scales in approximately the same
fashion. Within the independent particle model, on the other
hand, �=3 and 6�−26=2�−14=8, so that cross sections
would scale as ��NM�−8.

To check the validity of the proposed approximate scaling
law, we have calculated 3C FDCSs for several two-electron
ions keeping the scattered angle fixed at 
s=0.45. The kine-
matical conditions, scaled with respect to the helium �M
=2� experimental conditions, are given in Table III. Notice
that as Z increases the incident energy becomes quite large;
for even larger values of Z relativistic effects should be con-
sidered but this goes far beyond the scope of the present
study. Since ki and k0 are equally scaled, the momentum
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transfer q scales as �N2 but its direction is the same for all
ions; the shapes of the cross sections should therefore all
have the same symmetry. The corresponding FDCSs are
shown in Fig. 5: for helium �Z=2�, the FDCSs is shown on
an absolute scale, while for the positive ions with Z�2 the
magnitudes, which decrease very rapidly with increasing
nuclear charges, are rescaled according to Eq. �23�, i.e., mul-
tiplied by the factor ��N2�−6�+26.

From Fig. 5 we observe that the FDCS shapes are ap-
proximately similar for all two-electron atoms. As Z in-
creases, the momenta k1 and k2 increase so that the distortion
factor of the 3C model related to �12, which is not scaled,
plays a relatively minor role; the related central peak is in-
deed relatively smaller. We also observe that, once rescaled,
all FDCSs can be viewed on the same graph. It should be
underlined that, for example, the C4+ cross sections are about
a factor 104 smaller than for neutral helium. Of course, some
magnitude and shape differences exist between the scaled
FDCSs. One should not forget that the scaling law is based
on several assumptions. As Z increases these assumptions are
better verified, and indeed the curves with higher Z get
closely bunched together.

If instead of the pure 3C model we consider effective
charges −z̃=−�Z−0.2962� for both electron-nucleus interac-
tions �note that they do not correspond to the correct
asymptotic behavior�, relation �22� is exactly verified, and
consequently the FDCS scaling �23� is better verified. We
have carried out the corresponding calculations: only a small
improvement was observed.

One last observation; for very large Z our ratio �N2 tends
to the ratio of nuclear charges Z�N� /2; within the independent
particle model, �=3, the scaling law �23� becomes
�Z�N� /2�−8. This result is similar to those presented for �e ,2e�
�9� and �� ,2e� �10,11� processes on heliumlike ions. In these

publications, the scaling of the triple differential cross sec-
tions goes as �Z�N� /2�−6. On the other hand, for H-like and
alkalilike ions, it was shown �47� that the �e ,2e� triple dif-
ferential cross sections are related by a factor ��NM�2�−9,
where � and the effective charges z̃ take specific values for
each sequence.

IV. SUMMARY

We have calculated �e ,3e� cross sections for several heli-
umlike ions, within the 3C model and with several highly
correlated bound wave functions, which fulfill exactly Kato
cusp conditions. It emerges that the behavior of the ground
state wave function near the two-body coalescence points has
little influence in the experimental high energy conditions,
thus definitively confirming the conclusions of Chuluunbaa-
tar et al. �15�.

Under similar kinematical and geometrical conditions, the
H− cross sections are predicted to be much larger than for
helium, while for heliumlike positive ions they decrease fast
with increasing nuclear charges. We have presented, for the
first time, proper 3C results for heliumlike positive ions.

Using the analyticity of the 3C final state, an approximate
scaling law for �e ,3e� FDCS is mathematically identified
by choosing properly scaled energies. Our calculations
show that the scaling is well verified. It can be used to
easily predict cross sections, which are extremely difficult to
measure.

For the double ionization of negative or positive two-
electron ions the collision model should be improved by con-
sidering Coulomb waves rather than plane waves for the in-
cident and scattered waves; this would be of significance if
lower incident energies should be considered. This extension
is a matter for further investigations.

FIG. 5. �Color online� Fivefold differential
cross section �FDCS� for �e ,3e� ionization of the
helium atom, and the heliumlike positive ions Li+

up to F7+ ground states, as a function of the angle
of one of the ejected electrons 
2. The scattered
electron goes in the direction 
0=0.45, while the
other ejected electron is detected at 
1=
q. Both
ejected electrons escape with equal energy E1

=E2 as indicated in Table III. The FDCSs are
calculated with the 3C model and the �C3−14 ini-
tial state wave function. The cross section for he-
lium is shown on an absolute scale, while for the
heliumlike positive ions the FDCSs are multi-
plied by the factor ��N2�−6�+26 according to the
approximate scaling law �23�.
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