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The influence of exchange, correlation, and relativistic effects in the ionization of heavy-target atoms can be
sensitively probed by kinematically complete studies involving spin-polarized electrons, in particular when the
fine structure of the residual ion is resolved. We present spin asymmetries, triple differential cross sections, and
branching ratios for the ionization, by 127.5-eV and 114.3-eV electrons, of ground-state krypton atoms leading
to the Kr+ 4s 2S1/2, 4p5 2P1/2, and 4p5 2P3/2 states. In order to untangle contributions from different physical
effects, the experimental results are compared to those from distorted-wave Born approximation calculations
�non- and semirelativistic� in which bound-state and continuum effects are treated in different ways. Additional
insight is gained by comparing the present experimental and theoretical results to recent results on the e-Xe
system, performed under similar kinematics, for which target relativistic effects play a more significant role.
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I. INTRODUCTION

A. Motivation

An accurate experimental and theoretical determination of
cross sections for ionization induced by electron impact is
desirable for a variety of reasons.

First, it is important for modeling the behavior of plasmas
and ionized gases where many different collision processes
are in competition. The accuracy to which the properties of
these systems can be described depends on the quality of the
cross-section data they incorporate. Applications include
modeling the upper atmosphere, fusion reactors, lasers, ra-
diation damage to biological material mediated through low-
energy electron impact, and modeling candidates for new
light sources to replace present mercury-based technologies.

Second, comparison of the cross sections derived from
experiment with those derived by theory allows the underly-
ing mechanisms for the interaction of charged particles with
matter to be investigated and the predictive powers of theory
to be refined. While it is known that quantum mechanics and
relativity determine the reaction outcomes, high-accuracy
calculations of atomic ionization cross sections within these
frameworks often prove problematic. This is because, by
their nature, such calculations are computationally intensive
and the approximations they incorporate to render the prob-
lem tractable often lead to inaccuracies which are difficult to
quantify. Therefore, a key issue is to determine the appropri-
ateness and efficacy of the different approximate theoretical
approaches under different kinematical conditions.

In order to provide the most stringent tests of theory,
highly differential experimental cross-section data are the
most desirable. This involves determining as many as pos-
sible of the kinematical and quantum mechanical variables
which characterize the ionization process. By a judicious
choice of reaction kinematics and through quantum-state se-
lectivity of reactants and products, such data enable different
aspects of the collision dynamics to be highlighted, and
sometimes even isolated. To this end, we focus our present
study on the so-called “triple differential cross sections”
�TDCS� for which the momenta of the incoming and two

outgoing electrons comprising each �e ,2e� ionization event
are resolved. We achieve quantum-state selectivity by em-
ploying beams of spin-polarized electrons and energetically
resolving the fine structure of the residual ion. In order to aid
in the discussion of the reaction kinematics and the spin-
related quantities pertinent to the present study, Fig. 1 shows
a schematic representation of the �e ,2e� scattering geometry
and the coordinate system we adopt to describe it.

For the present study, a quantity proportional to the TDCS
is determined experimentally by the electron coincidence
technique with electron momentum analyzers employed to
determine the respective momenta �p1 and p2� and energies
�E1 and E2� of the two continuum electrons comprising indi-
vidual �e ,2e� events. When combined with a knowledge of
the incident electron momentum p0 �energy E0�, the recoil
momentum of the ion q and the binding energy � of the
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FIG. 1. Schematic representation of the scattering geometry and
coordinate system defining the TDCS. An incident electron of en-
ergy E0 �momentum p0� ionizes a target atom, resulting in the ejec-
tion of two electrons of respective energies �momenta� E1 �p1� and
E2 �p2� into the polar and azimuthal angles �1, �2 and �1, �2,
respectively. For the condition �1=0, �2=180° �coplanar geom-
etry� the momentum vectors p0, p1, and p2 share a common plane,
the so-called “scattering plane,” indicated in the figure by the par-
allelogram delineated by a solid line. The present measurements are
performed under such coplanar geometry with TDCSs measured for
the electron beam polarization P orientated out of �solid arrow� or
into �dashed arrow� the scattering plane.
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ejected target electron can be determined through energy and
momentum conservation:

q = p0 − p1 − p2, �1�

� = E0 − E1 − E2. �2�

The spin dependence of the TDCS is additionally investi-
gated by inverting the orientation of the polarization P de-
scribing the incident electron beam with respect to the scat-
tering plane �see Fig. 1 and associated caption�.

The main aim of the present study is to elucidate details
of the process of electron-impact-induced ionization of
heavy atoms using the electron-krypton system as a test case.
To facilitate this, highly state-specific measurements and cal-
culations are performed. Specifically, we study the depen-
dence of the TDCS on the spin projection of the primary
electron beam and on the momenta of the two final-state
continuum electrons liberated by each ionization event. Tran-
sitions from ground-state krypton atoms leading to the Kr+

4s4p6 2S1/2 state ��=27.5 eV� and the spin-orbit-split Kr+

4p5 2P1/2 and 4p5 2P3/2 fine-structure levels ��=14.67 and
14.00 eV, respectively� are considered. We note that while
TDCS measurements have been previously reported in litera-
ture for the electron-krypton system, none exhibit the degree
of state specificity inherent to the present study, which is
achieved through using polarized electrons and by simulta-
neously resolving the fine-structure levels of the residual ion.
Recent and significant improvements to our �e ,2e� binding
energy resolution allow us to clearly resolve the Kr+ 4p5

fine-structure doublet, as is evident from Fig. 2. This figure
shows binding energy spectra obtained by plotting coinci-
dence counts against binding energy � for transitions to the
2P1/2 and 2P3/2 fine-structure levels. The reaction kinematics
is described in the figure caption. Spectra are presented for
positive �panel �a�� and negative �panel �b�� orientations of
the electron-beam polarization, measured with respect to the
scattering plane. A comparison of the two panels shows the
presence of a strong spin asymmetry for the particular kine-
matics adopted in the figure. Mathematical definitions for all
spin-dependent quantities treated in this paper are presented
in Sec. I C.

The present reaction kinematics were chosen to closely
mimic those of recent analogous experiments on xenon at-
oms �1� in which transitions to the Xe+ 5p5 2P1/2 and
5p5 2P3/2 fine-structure levels �binding energies 13.44 and
12.13 eV, respectively� were studied and discrepancies with
theory were observed whose origin was unclear. For the
electron-krypton system, relative to the electron-xenon sys-
tem, the influence of relativity should be reduced due to the
smaller atomic number Z �Z=36 relative to Z=54�.

B. Background

It has been well established, both theoretically and experi-
mentally, that nonzero spin-up-down asymmetries are ob-
served for the elastic scattering and electron-impact excita-
tion of closed-shell rare-gas atoms below the threshold for
ionization �2�. For elastic scattering, finite values of the spin
asymmetry arise exclusively from the spin-orbit interaction

of the continuum electron in the field of the target atom
�Mott scattering�. For atomic excitation �including ioniza-
tion�, further contributions to the spin asymmetry may occur
through an interplay of exchange scattering and the fine-
structure interaction within the target when transitions to in-
dividual fine-structure levels are resolved. This occurs
through a process referred to as the “fine-structure effect”
�3–5�. While contributions to the spin-asymmetry function
from the fine-structure effect remain finite in the nonrelativ-
istic limit, those from Mott scattering do not. Thus for scat-
tering from low-atomic-number �low-Z� atoms, non-
negligible contributions to the spin-asymmetry function are
only expected through the fine-structure effect, while for
heavy targets, significant contributions may occur through
both the fine-structure effect and through Mott scattering.

For atomic excitation below the ionization threshold, the
very good agreement between recent calculations by Bar-
tschat and Zatsarinny �6� and the experimental work of Düm-

FIG. 2. Binding energy spectra showing transitions to the Kr+

4p5 2P1/2 and 4p5 2P3/2 states. The incident beam energy E0 is
114.3 eV, and the average energies E1 and E2, respectively, of the
two outgoing electrons are 50 eV. The measurement is performed
under coplanar scattering geometry, with one electron detected to
the left at an angle �1=44°, the second to the right at the angle
�2=24.5°. The peaks are fitted with the instrument response func-
tion �dotted and dashed lines� to accurately extract count rates.
Good agreement between the solid line �the envelope of the two
fitted functions� and the experimental data illustrates the quality of
the fit. N1/2

↑ , N3/2
↑ and N1/2

↓ , N3/2
↓ correspond, respectively, to the

count rates for ionization by a positive �panel �a�, P parallel to the
y axis� and a negative �panel �b�, P antiparallel to the y axis� pri-
mary electron-beam polarization. The differences in peak heights
between spectra �a� and �b� reflect the presence of a strong spin
asymmetry for these kinematics.
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mler et al. �4� for argon and krypton targets suggests that
electron-exchange scattering is the dominant mechanism un-
derlying the observed asymmetries. However, for xenon the
case is not clear as the results of Dümmler et al. �4� show
strong violations from the predictions of a fine-structure-
effect model which is applicable to atomic systems for which
deviations from LS coupling are small �i.e., for systems in
which bound-state relativistic effects are small�.

For ionization studies of the noble gases �excluding the
present work�, experimental spin-resolved TDCS data, re-
solving fine-structure levels of the ion, have only been re-
ported for xenon. This is because �e ,2e� coincidence experi-
ments generally operate with a relatively poor binding
energy resolution, typically 0.5–1.0 eV, in order to obtain
sufficiently high count rates to render the experiments fea-
sible. While such values of the resolution are sufficient to
resolve �or partially resolve� the fine-structure levels of the
valence p orbital of Xe+ �1.3 eV separation�, they are insuf-
ficient to resolve the corresponding levels for the lighter
noble gases �e.g., 0.18 eV separation for argon, 0.097 eV for
neon�. Spin-asymmetry measurements for the e-Xe system
have been previously reported by our group �1,7� and the
group of Hanne �8,9�. Comparison of those results with the
distorted-wave Born approximation �DWBA� calculations,
calculated within a nonrelativistic framework, showed gen-
erally good agreement. This suggested that a nonrelativistic
scattering theory might be adequate to describe the data.
However, under some kinematics the agreement was less
than satisfactory, leaving the question of whether contribu-
tions from continuum relativistic effects, not accounted for in
the theory, were the cause for the disparities between the
measured and calculated spin asymmetries. Our earlier study
�10� showed that the employment of relativistic bound-state
wave functions to describe the atom and the residual ion
were necessary to accurately predict the branching ratio for
transitions to the J=1 /2 and J=3 /2 ionic fine-structure lev-
els. If continuum relativistic effects are not the cause for the
persistent discrepancies between experiment and theory for
the electron-xenon system, then other aspects of experimen-
tal and/or theoretical approaches must require refinement.

In order to try and resolve this issue, we present here a
complementary study on krypton atoms under conditions
where the energies of the scattered electrons are almost iden-
tical to those of our recent studies of xenon �1�. The motiva-
tion was to see if a reduced degree of disparity between
experiment and scattering theory for the lower-Z krypton tar-
get could be achieved as well as to assess the size of contri-
butions from relativity and to highlight potential areas of
improvement in the theoretical treatment of electron scatter-
ing from heavy targets.

Experimentally, and in contrast to our earlier experimental
work on xenon, we present here fully differential TDCS data
for the electron-krypton system, in addition to spin asymme-
tries and branching ratios. The TDCS data, as we shall see,
provide a much more sensitive test to certain aspects of the
collision process.

On the theoretical side, we have refined our DWBA ap-
proach by performing a calculation employing relativistic
scattering potentials in the determination of the continuum
electron wave functions, thereby providing a partial account

of continuum relativistic effects. In our previous xenon work
�1� only nonrelativistic scattering potentials were used in the
calculation of the continuum electron wave functions.

In detail the reactions considered here are

e−�p0��↑↓� + Kr 4s24p6�1S0�

→ Kr+ 4s24p5�2P1/2, 2P3/2� + e−�p1� + e−�p2� , �3�

e−�p0��↑↓� + Kr 4s24p6�1S0�

→ Kr+ 4s4p6�2S1/2� + e−�p1� + e−�p2� . �4�

Here, ↑ and ↓ represent, respectively, the positive and nega-
tive projections of the electron beam polarization with re-
spect to the scattering plane. Note that while Eq. �3� con-
cerns transitions to the fine-structure levels, Eq. �4� describes
a transition to an S state for which no fine-structure exists.
Thus, if any nonzero value of the spin asymmetry were to be
observed for reaction �4�, for which the fine-structure effect
cannot contribute, it could only arise through Mott scatter-
ing.

Finally, to assist in assessing how the contributions from
exchange scattering and relativity contribute to the present
krypton data, additional fine-structure-resolved branching ra-
tios are also presented for the scattering of unpolarized elec-
trons from xenon atoms through the reaction

e−�p0� + Xe 5s25p6�2S1/2�

→ Xe+ 5s25p5�2P1/2, 2P3/2� + e−�p1� + e−�p2� . �5�

These were not reported in our previous work �1�.
Experimental TDCS studies of the 4p6 �and 4s2� valence

shells of krypton have been performed previously by a num-
ber of groups for a range of reaction kinematics. They are
reviewed briefly here. Of those �e ,2e� studies, none exhib-
ited the degree of state specificity inherent to the present
measurements, achieved by resolving the fine-structure lev-
els of the ion accompanied by employing spin-polarized
electrons.

Early experimental work on the valence structure of kryp-
ton �12,13�, and more recently the work of Nicholson et al.
�14�, was performed under electron momentum spectroscopy
�15� conditions under so-called noncoplanar symmetric reac-
tion kinematics �i.e., high values of impact energy E0, E1
=E2, �1=�2=45°, �2=180°, �1 varied in the neighborhood
of 0°�. Under such conditions where the scattering mecha-
nism is greatly simplified, the momentum density of the tar-
get electrons at specific values of binding energy can be de-
duced from variations of the TDCS with the out-of-plane
angle �1. These studies provided important tests to many-
body descriptions of the krypton atom and residual ion. In
contrast, the present work is performed at a much lower en-
ergy under coplanar energy-symmetric scattering geometry
�E1=E2, �1=0, �2=180°, �1 and �2 varied�. Under such ki-
nematical conditions the scattering mechanism is much more
complicated and the angular behavior of the TDCS is no
longer determined solely by the momentum distribution of
the target electrons.

Coplanar scattering geometry was employed by Selles
et al. �16�, who reported �e ,2e� measurements for energies

SPIN- AND FINE-STRUCTURE-RESOLVED IONIZATION … PHYSICAL REVIEW A 78, 062707 �2008�

062707-3



between 0.5 and 4.0 eV above threshold. The equal-energy-
sharing conditions E1=E2=0.25, 0.5, 1.0, and 2 eV were
adopted in their work. A total �e ,2e� binding energy reso-
lution of �300 meV enabled partial cross sections for tran-
sitions to the 4p5 2P1/2 and 4p5 2P3/2 fine-structure levels to
be extracted. No calculations were presented to interpret this
TDCS data.

In contrast to the symmetric-energy-sharing experiments
described above, Rasch et al. �17� and Cavanagh et al. �18�
performed studies under conditions of highly asymmetric
energy-sharing �E1�E2�. Coplanar scattering geometry was
employed in both cases.

Rasch et al. employed the scattered electron energies E1
and E2 of 1 keV and 20 eV, respectively, and performed
measurements for scattering angles 1° ��1�8°. For Ca-
vanagh et al., E1 and E2 were 880 and 25 eV, respectively,
and measurements were performed at the scattering angles
�1=3°, 5°, 8°, 10°, 15°, and 20°. Their data were placed on
an absolute scale by normalizing to theoretical TDCSs for
ionization of ground-state helium atoms and the results were
compared to a DWBA calculation.

More recently, Williams et al. �19� performed measure-
ments in the so-called “perpendicular-plane scattering geom-
etry,” for which the incident electron beam is directed along
the normal of the scattering plane ��1=�2=90° �. Equal-
energy-sharing values of E1=E2=2, 1, 0.5, and 0.25 eV were
employed in their studies, and partial cross sections were
measured for transitions to the 4p5 2P1/2 and 4p5 2P3/2 fine-
structure levels. The major characteristics of the TDCS were
qualitatively explained by single- and double-scattering
mechanisms. No calculations were presented to compare
with their experimental results.

We also note the previous TDCS study of Haynes et al.
�20� concerning the ionization of the 4s inner valence orbital
of krypton, characterized by a binding energy of 27.5 eV,
which is also a focus of the present work. Measurements
were performed for the conditions of equal energy sharing
E1=E2=4, 10, 20, 50, and 85 eV, and the experimental re-
sults were compared to DWBA calculations.

C. Definition of measured and derived parameters

To determine spin-resolved cross sections, one must per-
form measurements for an ensemble of ionization events,
employing beams of spin-polarized electrons comprising an
imbalance in the relative proportions of spin-up �ms
= +1 /2� and spin-down �ms=−1 /2� electrons. For an en-
semble of n electrons, the magnitude P of the spin polariza-
tion P is defined through the relation

P =
n↑ − n↓

n↑ + n↓ , �6�

where n↑ is the number of electrons with spin projection
ms= +1 /2 and n↓ is the number of electrons with spin pro-
jection ms=−1 /2. The main focus of this paper is the spin-
asymmetry function. For a final angular momentum state J, it
is defined by the expression

AJ��1,�2� =
�J

↑ − �J
↓

�J
↑ + �J

↓ . �7�

Here �J
↑�↓� is the triple differential cross section for ionization

by electrons of positive �negative� spin projection measured
along the normal to the scattering plane. Experimentally, this
quantity was determined by measuring the �e ,2e� count rates
NJ

↑��1 ,�2 , Py� and NJ
↓��1 ,�2 , Py� for transitions leading to the

final ion state J as a function of the scattering angles �1 and
�2. Py is the component of the spin polarization P of the
electron beam measured along the normal to the scattering
plane. For the present measurements, Py was determined to
be 0.42�0.03 from measuring the up-down spin asymmetry
in the elastic scattering of electrons from xenon at 50 eV
�11�. The spin asymmetry AJ��1 ,�2� can then be derived
through the expression �7�

AJ��1,�2� =
1

Py

NJ
↑ − NJ

↓

NJ
↑ + NJ

↓ . �8�

The spin-resolved TDCS �J
↑�↓� is given by

�J
↑�↓���1,�2� =

K

Py
��1 + Py�NJ

↑�↓� − �1 − Py�NJ
↓�↑�� . �9�

Here K is a constant �not determined by the present experi-
ment� which depends on target-gas density, electron beam
current, detector efficiencies, and other instrumental factors.
In this paper we present the spin-averaged TDCS �J, given
by

�J = KNJ. �10�

Here the count rate NJ, J=1 /2, 3 /2, is the average rate for
unpolarized electrons and is calculated through the expres-
sion NJ= �NJ

↑+NJ
↓� /2. K is obtained from a best visual fit of

the experimental cross sections to theory.
Also presented are results, for both krypton and xenon,

for the spin-averaged branching ratio R��1 ,�2�, describing
transitions to the 2P1/2 and 2P3/2 states and defined by the
expression

R��1,�2� = �3/2/�1/2 = N3/2/N1/2. �11�

In the nonrelativistic limit, based solely on the relative num-
ber of projection states mJ for the 2P1/2 and 2P3/2 states, a
value of 2.0 is expected. As will be discussed, the fact that
significant deviations from this value are observed in the
present study, particularly for xenon, is a reflection of a sig-
nificant influence of relativity on the radial behavior of the
bound-state wave functions.

II. EXPERIMENT

A detailed description of the apparatus has been presented
recently �23�, so only a short account will be presented here.
Polarized electrons are liberated by the photoexcitation of
valence electrons from a strained gallium arsenide photo-
cathode under illumination by circularly polarized laser light.
These electrons are extracted, deflected through 90°, and fo-
cused to form a transversely polarized beam. The beam is
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then transported to the collision chamber in which two
toroidal-sector electrostatic electron energy analyzers are
housed. In the collision chamber it is decelerated to the ex-
perimental collision energy E0 via a new cylindrical seven-
element electrostatic lens �24� and focused onto the krypton
target beam, formed by the effusion of krypton gas through a
1.0-mm-internal-diameter tube orientated orthogonally to the
scattering plane. Inversion of the beam polarization from out
of �spin up� to into �spin down� the scattering plane is
achieved by reversing the helicity of the laser light via a
liquid crystal retarder.

Electrons emitted within the scattering plane are momen-
tum analyzed in one of the two electron analyzers located on
opposite sides of the projectile electron beam. Each analyzer
comprises a seven-element annular-sector electrostatic lens
system, four toroidal-sector electrodes, and a crossed-delay-
line position-and-time-sensitive electron detector. The coor-
dinates of energy and scattering angle �Ei ,�i� for the detected
electrons are deduced from their arrival coordinates �xi ,yi� at
the detector. �e ,2e� electron pairs are identified by the rela-
tive arrival times of electrons at the two detectors, with ran-
dom background events subtracted using standard statistical
techniques �25�.

The energy E0 of the projectile electron was stepped be-
tween two levels: 114.3 eV for the measurement of transi-
tions to the Kr+ 4p5 2P1/2 and 4p5 2P3/2 states and 127.5 eV
for transitions to the Kr+ 4s 2S1/2 state. Over the course of the
experiment this procedure was repeated many times to aver-
age over the effects of any instrumental drift, spending 20%
of the total data collection time on the 4s transition and the
remaining 80% on the 4p transitions.

Due to the difference in binding energies of the 2P1/2 and
2P3/2 states �14.67 and 14.00 eV, respectively�, energy con-
servation, and the fixed-energy passbands for the two analyz-
ers, the energy ranges for the measurements were as follows.
For the 2P3/2 state, data are collected for �e ,2e� events where
48.3 eV�Ei�52.0 eV, for the 2P1/2 state, 48.0 eV�Ei
�51.7 eV, and for the Kr+ 4s 2S1/2 state, 48.0 eV�Ei
�52.0 eV, where i=1,2. Both electron detectors collect
electrons over a 40° range simultaneously. One detector is
fixed to collect electrons over the range 20° ��1�60° on
the left of the incident beam. The second detector, located on
the right side of the incident beam, is movable and can col-
lect electrons over a 40° band, adjustable from outside of the
scattering chamber, within the angular limits 20° ��2
�120°. For the present measurements, due to low coinci-
dence rates at larger �2 values, data collection was restricted
to �2�90°.

The two analyzers were each operated with a 20-eV pass
energy, leading to an energy resolution for each of around
200 meV full width at half maximum �FWHM�. In combina-
tion with the intrinsic energy spread of the polarized electron
beam of around 170 meV FWHM, an �e ,2e� binding energy
resolution of 350 meV FWHM was achieved. This was suf-
ficient to resolve the krypton fine-structure levels separated
by 0.67 eV. However, to accurately determine the transition
strength to each of the Kr+ 4p5 2P1/2 and 4p5 2P3/2 fine-
structure levels, they were fitted with the instrument response
function to correct for their small degree ��5% � of intensity
overlap �see Fig. 2�. The instrument response function was

determined by fitting the isolated peak, corresponding to
transitions to the Kr+ 4s state, by a single Gaussian of width
adjusted for the best least-squares fit.

In order to improve the counting statistics, the TDCS and
asymmetries were determined after performing an average of
the �e ,2e� data over all combinations of E1 and E2 within the
4-eV acceptance bands of both analyzers. For an identical
reason, an angular average over 4° intervals was performed
in �1 and �2. The out-of-plane angular resolution of both
toroidal analyzers was 1.4°.

We note that in contrast to our previous work on the
electron-xenon system �1,7�, we present here a much more
extensive set of data for the electron-krypton system, includ-
ing not only spin asymmetries, but also TDCS and branching
ratio data.

III. THEORY

For the ionization of heavy atoms, the simplest viable
theory is the distorted-wave Born approximation. Calcula-
tions performed within this framework generally provide a
favorable degree of agreement with experiment at medium to
high continuum electron energies. This is the approach we
adopt in this paper to investigate the nature and magnitude of
contributions from exchange scattering, correlation, and rela-
tivity, which, in combination with other effects, determine
the behavior of the TDCSs.

As described in our previous publication �1�, the descrip-
tion of electron-impact-induced ionization is complicated by
two issues.

First, for atoms heavier than hydrogen, exchange occurs
not only between the projectile and the ejected electrons, but
also between the continuum electrons �the projectile electron
in the initial state, the ejected and scattered electron in the
final state� and all remaining bound electrons in the electron-
atom system. The process of exchange between the con-
tinuum electrons and the atom and ion has been referred to as
“exchange distortion” and is, in the DWBA formalism,
treated in a distinctly different way than exchange between
the projectile and ejected electron. Indeed, as shown in a
previous study �21�, this process can strongly contribute to
the structure of the TDCS under certain conditions, as re-
flected in its influence on the calculated spin asymmetries. A
proper treatment of many-body exchange processes requires
the nonlocal character of exchange to be taken into account.
Such a treatment was undertaken in our recent publication
for the electron-xenon system �1� in which the Hartree-Fock
method was used to calculate the continuum-electron wave
functions within the DWBA formalism. However, a com-
parative theoretical study in that publication showed that ac-
counting for exchange distortion approximately through the
local exchange potential developed by Furness and McCar-
thy �22� was sufficient to account for many-body exchange
effects under the kinematical conditions of that study. As the
present study on the electron-krypton system is performed
under kinematics that are nearly identical to that previous
study, we adopt here the simpler approach of employing a
local Furness-McCarthy �FM� exchange potential.

Second, the effects of relativity increase rapidly with in-
creasing atomic number. While for low-Z atoms relativistic
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effects in the electron-atom system can be accounted for
through angular momentum coupling alone, for heavy atoms
the influence of relativity on both the bound and continuum
states should be taken into account.

The particular extension of the DWBA employed here,
the so-called three-body distorted wave �3DW� approxima-
tion, has been described in previous publications �26,27�, so
only a brief overview will be presented here. The 3DW
TDCS is obtained from

d5�

d	ad	bdEb
=

1

�2
�5

kakb

ki
��Tdir�2 + �Texch�2 + �Tdir − Texch�2� ,

�12�

where Tdir and Texch are the direct and exchange amplitudes:

Tdir = S��a
−�r1��b

−�r2�Cp-e��r1 − r2���V − Ui��i�r2��i
+�r1�� ,

�13�

Texch = S��a
−�r2��b

−�r1�Cp-e��r1 − r2���V − Ui��i�r2��i
+�r1�� .

�14�

In Eqs. �13� and �14�, r1 and r2 are the coordinates of the
incident and bound electrons, respectively, �i, �a, and �b are
the distorted waves for the incident, scattered, and ejected
electrons, respectively, �i�r2� is the one-electron orbital of
the active electron in the initial bound state, V is the Cou-
lomb interaction between the projectile and the active elec-
tron, Ui is the initial-state spherically symmetric distorting
potential which is used to calculate the initial-state distorted
waves �i, and S is a spectroscopic factor. For the present
study on krypton, S was taken as 0.98 for both the Kr+

4p5 2P1/2 and 4p5 2P3/2 fine-structure levels at 14.67 and
14.00 eV binding energies, respectively, and 0.51 for the
4s 2S1/2 at 27.5 eV binding energy �14�. In addition, ki, ka,
and kb represent the magnitudes of the corresponding wave
vectors k, which are, in turn, related to their linear momenta
via the relationship p=
k. The Cp-e term is the Coulomb
interaction between the projectile and ejected electron, which
allows for post-collision interaction �PCI�. It is important to
note that since this interaction is included in the final-state
wave function, it is contained to all orders of perturbation
theory. The normal first-order DWBA is obtained if Cp-e=1.

The Schrödinger equation for the incoming electron wave
function is given by

	T + Ui −
ki

2

2

�i

+�ki,r� = 0, �15�

where T is the kinetic energy operator and the “�” super-
script on �i

+�ki ,r� indicates outgoing wave boundary condi-
tions. The initial-state distorting potential Ui=Us+Ue, where
Us is the initial-state spherically symmetric static potential,
and Ue is the FM �22� exchange potential which approxi-
mates the effect of the continuum electron exchanging with
the passive bound electrons in the atom. We have previously
shown that the FM potential is reasonably accurate for con-
tinuum electron energies of interest here �1�.

The two final-channel distorted waves are obtained from a
Schrödinger equation similar to Eq. �15�:

	T + Uf −
ka�b�

2

2

�a�b�

− �ka�b�,r� = 0. �16�

Here the final-state distorting potential Uf =Uion+Ue, where
Uion is the spherically symmetric static distorting potential
for the atomic ion which is calculated using the same proce-
dure as Us, except that the active electron is removed from
the charge distribution. The “�” superscript indicates bound-
ary conditions for the incoming wave.

To gain deeper insight into the ionization process, DWBA
calculations were performed at three distinct levels of ap-
proximation. In the first completely nonrelativistic calcula-
tion �labeled nrDWBA�, the distortion potentials were deter-
mined from the Hartree-Fock orbitals of the ground-state
wave function of the atom. Similarly, the one-electron orbital
�i of the active electron is the corresponding Hartree-Fock
orbital. Two additional calculations were performed in order
to partially investigate the effects of relativity and to inves-
tigate the effects of PCI on the ionization process. For these,
the static Hartree-Fock potential Us in the interaction poten-
tial Ui of the initial state was replaced by the corresponding
relativistic Dirac-Fock potential. Similarly, the single
Hartree-Fock static potential Uion in the interaction potential
Uf of the final state was replaced by the relativistic Dirac-
Fock static potential of either the 2P1/2 or 2P3/2 ion. Finally,
the one-electron Hartree-Fock orbital �i of the active elec-
tron was replaced by the large component �renormalized to
unity� of the corresponding one-electron Dirac-Fock orbital.
This semirelativistic approach will be referred to as the
srDWBA �Cp-e=1� or as the sr3DW when the PCI interaction
is included.

IV. COMPARISON OF THEORY WITH EXPERIMENT

Figures 3 and 4 show the experimental TDCS data for
transitions from ground-state krypton atoms to the Kr+

4p5 2P1/2 and 4p5 2P3/2 fine-structure levels, respectively.
Figure 5 shows data for transitions to the Kr+ 4s 2S1/2 state.
Error bars were calculated to take into account counting sta-
tistics and the estimated contribution from systematic errors
which were difficult to correct for. The relative experimental
TDCS data are compared to the three calculations described
in Sec. III: namely, the nrDWBA, srDWBA, and sr3DW. The
cross-normalized relative experimental data of Figs. 3–5
were placed on an absolute scale by normalizing to the
sr3DW calculation at the coordinates �1=40°, �2=52° in Fig.
3. These particular coordinate values were chosen to best
facilitate a shape comparison between the experimental data
and the srDWBA theory across all three figures. We empha-
size here that only a single common normalization factor is
required to place all of the experimental data of the three
figures onto an absolute scale. Thus the present experimental
data set, while not absolute, provides a stringent test of the
presented calculations by assessing their ability to predict the
relative intensities for transitions to three ionic final states �as
well as testing their ability to predict the respective TDCS
shapes� over a broad range of kinematics.

Focusing first on the experimental data and comparing
Figs. 3 and 4, it is evident that the shapes of the angular
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distributions for the two transitions are, to within error bars,
identical, while the relative magnitudes of the two transitions
differ by a factor of roughly 2.1. For both transitions the
angular distributions show a double-peak structure. One peak
is located around �2=52° and diminishes in magnitude as �1
increases. The second emerges as �1 increases at the angles
�2�32°. TDCSs for transitions to the Kr+ 4s 2S1/2 state,
shown in Fig. 5, show a similar angular behavior, although
for this case one peak is located around �2=60°. The other
peak, emerging at small values of �2, is broader in this case
and, with increasing values of �1, eventually becomes the
sole peak in the spectrum as �2 is varied. The transition
strength to this state is roughly 5 times smaller than for the
combined strength for transitions to the individual Kr+

4p5 2P1/2 and 4p5 2P3/2 fine-structure levels.
Turning to the three calculations, the first thing to notice

is the dramatic differences in predicted TDCS magnitude at
small values of �2. As more physics is systematically incor-
porated into the calculations �as occurs through the progres-
sion from nrDWBA, srDWBA, through to the sr3DW calcu-
lation� the calculated cross section decreases in magnitude
and exhibits improved shape agreement with experiment.
Since the experimental data are not absolute, they cannot
distinguish which of the three calculations predicts cross-
section magnitudes closest to the true value. However, com-
paring the predicted shape of the respective angular distribu-
tions clearly shows that the more sophisticated the
calculation, the better the agreement in shape with that of
measurement.

As described earlier, the essential difference between the
nrDWBA and srDWBA calculations is that the former uses
nonrelativistic Hartree-Fock wave functions to describe the
atomic and ionic bound states and to calculate the distorting
potentials for the continuum electrons, whereas the latter
uses Dirac-Fock wave functions to calculate the distorting
potentials as well as renormalized Dirac-Fock wave func-
tions to describe the active electron.

Clearly the predictions of the DWBA approach are ex-
tremely sensitive to the inclusion or exclusion of relativistic
effects. In Figs. 3–5, the srDWBA provides a superior pre-
diction of the position of the TDCS maximum at small val-
ues of �1 to its nonrelativistic counterpart, although neither
predict the extremely rapid falloff in TDCS intensity as the
angle �2 decreases to 20°.

The sr3DW calculation, which differs from the srDWBA
by accounting for the PCI to all orders of perturbation theory,
provides a generally excellent description of the TDCS
shapes and the angular positions of the observed peaks, out-
performing the other two calculations in these regards.
Clearly, for these symmetric low-energy kinematics, the in-
clusion of PCI is essential to accurately describe the physics
of the collisions. Significant discrepancies between the ex-
perimental data and the sr3DW are, however, evident at the
two smallest values of �1 and for small values of �2 at large
�1 values. All three calculations predict the relative strengths
of transitions to the two Kr+ 4p5 states relative to the Kr+ 4s
state rather well, with the sr3DW method giving the best
overall results.

FIG. 3. TDCS for transitions to the Kr+ 4p5 2P1/2 ion state. The incident beam energy E0 is 114.3 eV, and the average energies E1 and
E2, respectively, of the two outgoing electrons are 49.9 eV. Theory: short-dashed line, nrDWBA; long-dashed line, srDWBA; solid line,
sr3DW.
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Figure 6 shows branching ratio data for the krypton, com-
prising the ratio of cross sections for transitions leading to
the 2P3/2 state relative to those leading to the 2P1/2 state.
Purely on the basis of the relative number of projection states
mj in the LS-coupling scheme and neglecting kinematic ef-
fects �see later�, a value of 2 would be expected. However,
deviations from LS coupling, which progressively increase
with increasing atomic number Z of the target, lead to devia-
tions from this value. Such deviations are largely attributable
to bound-state effects, as differences between the radial wave
functions describing the 2P3/2 and 2P1/2 ion states �which are
identical in the nonrelativistic limit� increase as Z �and the
fine-structure splitting� increases.

The experimental branching ratio shows discernible de-
viations from the value of 2 at all values of the scattering
angles �1. By averaging over all values of �1 and �2 a
branching ratio value of 2.14�0.05 is obtained. The nrD-
WBA calculation �short-dashed line� predicts values very
close to the value of 2.0 expected in the nonrelativistic limit.
Small deviations from this value �barely discernible on the
figure� do, however, occur on kinematic grounds. This is
because, for the common value of impact energy E0, the
nrDWBA must account for the 0.67-eV fine-structure split-
ting through a corresponding difference in the average ener-
gies of the two scattered electrons between calculations for
the 2P1/2 and 2P3/2 states. Both srDWBA �long-dashed line�
and sr3DW calculations �solid line� describe the branching
ratio data well, predicting an average value close to the ex-
perimentally determined value. Calculation of this quantity is

apparently relatively insensitive to the inclusion of PCI
through the sr3DW calculation. Moreover, the relatively
small differences between the predictions of all three calcu-
lations for the branching ratio, in comparison to the large
differences observed between the corresponding TDCSs, il-
lustrates the insensitivity of this quantity to the magnitudes
and shapes of the individual TDCSs.

The aim of the present work was to explore whether rela-
tivistic effects, unaccounted for in the theory, may have been
the origin of disparities between theory and experiment in
our earlier study of the electron-xenon system �1�. In order to
do this, we performed the present electron-krypton experi-
ments with identical energies for the scattered electrons. Fig-
ure 7 shows previously unpublished branching ratio results
from our earlier xenon study. As expected, stronger devia-
tions from a value of 2.0 are encountered for the xenon case
due to the larger value of Z, with an average branching ratio
value of 2.22�0.05 obtained by averaging over all values of
�1 and �2. The experimental results are compared to the same
nrDWBA and sr3DW calculations as for the present krypton
experiment. The small deviations from 2.0 for the nrDWBA
�now clearly evident on the figure� are again due to the same
kinematic effects described before, but this time enhanced
due to the larger 1.3-eV �relative to 0.67 eV for krypton�
fine-structure splitting. As anticipated, the sr3DW calculation
provides a good description of the experimental branching
ratio data, although not as good as for the electron-krypton
case shown in Fig. 6. In particular, at �1=32° and �1
=55.5°, notwithstanding the superior statistics for this sys-

FIG. 4. TDCS for transitions to the Kr+ 4p5 2P3/2 ion state. The incident beam energy E0 is 114.3 eV, and the average energies E1 and
E2, respectively, of the two outgoing electrons are 50.2 eV. Theory as in Fig. 3.
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FIG. 5. TDCS for transitions to the Kr+ 4s4p6 2S1/2 ion state. The incident beam energy E0 is 127.5 eV, and the average energies E1 and
E2, respectively, of the two outgoing electrons are 50 eV. Theory as in Fig. 3.

FIG. 6. Branching ratio R��1 ,�2� for krypton, calculated by dividing cross sections for transitions leading to the Kr+ 4p5 2P3/2 ion state
by those for transitions leading to the Kr+ 4p5 2P1/2 ion state. Kinematics as described in Figs. 3 and 4. Theory as in Fig. 3.
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tem, all theoretical predictions lie mostly outside the experi-
mental error bars. This result suggests that in the case of the
higher-Z xenon target a fully relativistic scattering theory
may well be required to describe this quantity and corre-
sponding TDCS data, which, as we previously explained �1�,
we were unable to reliably extract from the measurements at
that time.

Figures 8 and 9 show spin asymmetries derived from ex-
periment for the transitions leading to the Kr+ 4p5 2P1/2 and
4p5 2P3/2 fine-structure levels, respectively. Errors ��6% �
relating to uncertainties in the measured value of the beam
polarization are not included in the experimental error bars,
which are comprised of statistical and systematic compo-
nents. The functions show oscillatory behavior, with the re-
lation A1/2=A3/2=0, within error bars, being satisfied for the
condition �1=�2 as required by parity conservation �for such
symmetric energy and angle scattering and in the absence of
spin selection for the incident and scattered electrons, the
reaction, viewed in a mirror plane orientated perpendicular to

the scattering plane, reverses the spin polarization of the in-
cident beam, but leaves the final state unchanged; i.e., the
spin asymmetry must be identically zero for parity to be
conserved�. Zero crossings are also seen to occur at other
angles where �1��2; however, no such simple physical ex-
planation is apparent to predict the angular coordinates
where this occurs.

The experimental results are again compared to predic-
tions from the three DWBA calculations. The srDWBA and
sr3DW calculations both provide very good agreement with
the experimental data with the exception of the largest scat-
tering angle �1=55.5°. In spite of considerable differences in
their predictions for the individual TDCSs in Figs. 3–5, there
is little difference evident between the predictions of the srD-
WBA and sr3DW calculations for this quantity involving the
division of TDCS data. Slightly poorer predictions overall
are provided by the nrDWBA calculation. Given that the
asymmetry function is independent of the normalization fac-
tor K of Eq. �10� used to place the experimental TDCS data
onto an absolute scale �it cancels out in the asymmetry quo-
tient�, the ability of all calculations to successfully predict
the absolute magnitudes and signs of the asymmetry function
over a broad range of kinematics is impressive.

For the case of a pure fine-structure effect �the nonrela-
tivistic limit�, A1/2=−2A3/2 and the branching ratio
R��1 ,�2�=2.0 �5�. Taken together, this implies that the value
of the asymmetry function for transitions to unresolved fine-
structure levels should be zero. In Fig. 10 we present data for
transitions to the 4p state of the residual ion for which counts
corresponding to the two fine-structure levels were first
summed before the asymmetry was calculated. Within the
error bars, zero values of asymmetry are indeed observed. By
considering the reduced vertical scale of Fig. 10, any residual
nonzero values for this function must be very small. We con-
trast this result with our earlier findings on xenon, for mea-
surements performed under asymmetric scattering kinemat-
ics, where deviations from the above relations were clearly
observed in the experimental results �28�.

In light of the weaker signature of bound-state relativistic
effects for krypton than for xenon, as presented by the
branching ratio data previously discussed, it would seem rea-
sonable to expect continuum relativistic effects, such as Mott
scattering, would also be proportionally weaker for the
electron-krypton than for the electron-xenon system. In order
to test if Mott scattering may be playing a role in the present
valence study, Fig. 11 presents spin asymmetry data for the
Kr+ 4s 2S1/2 state. For this transition, due to the absence of
fine structure, contributions to the spin-asymmetry function
can only occur through continuum relativistic effects. No
evidence of nonzero spin-asymmetry values is observed in
the data, with deviations from zero consistent with expected
statistical fluctuations. This null result suggests that the con-
tinuum spin-orbit effect, described through Mott scattering,
is unlikely to influence the spin-asymmetry functions for the
more weakly bound 2P1/2 and 2P3/2 ionic states under the
present kinematics. This is reassuring as Mott scattering is
not included in the present DWBA calculations, which em-
ploy identical distorted waves for spin-up and spin-down
electrons and thus predict values of identically zero for
Fig. 11.

FIG. 7. Branching ratio R��1 ,�2� for xenon, calculated by divid-
ing cross sections for transitions leading to the Xe+ 5p5 2P3/2 ion
state by those for transitions leading to the Xe+ 5p5 2P1/2 ion state.
The incident beam energy E0 is 112 eV, and the average energies
E1 and E2, respectively, of the two outgoing electrons are 50 eV.
Theory as in Fig. 3.
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FIG. 8. Spin asymmetries for transitions leading to the Kr+ 4p5 2P1/2 ion state. Electron energies and theory as in Fig. 3 caption.

FIG. 9. Spin asymmetries for transitions leading to the Kr+ 4p5 2P3/2 ion state. Electron energies as in Fig. 4 caption and theory as in Fig.
3 caption.
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V. CONCLUSIONS

We have presented experimental and theoretical results
for the electron-impact-induced ionization of krypton atoms
by polarized electrons in which the fine-structure levels of
the residual ion are resolved. The purpose of the study was to
gain insight into the mechanisms underpinning the ionization
of large-Z atoms by performing measurements with a high
level of state specificity. Relative triple differential cross sec-
tions, spin asymmetries, and branching ratios are presented.
The experimental TDCS data set is experimentally cross nor-
malized, meaning that it is related to theory by a single com-
mon normalization constant over its entire kinematic range
and thereby provides a stringent test.

In order to assess the present state of theory, identify areas
of potential improvement, and gain insight into the contribu-
tions from different physical processes, the experimentally
derived data are compared to three different calculations,
each employing a different set of approximations. A compari-
son of the experimental TDCS data �Figs. 3–5� with the nrD-
WBA and srDWBA calculations shows that the distorted-
wave Born approximation approach is extremely sensitive to
the inclusion of relativistic effects in the description of the
bound-state orbital of the active electron and to the use of
relativistic distorting potentials in the calculation of the con-
tinuum electron wave functions. An equally dramatic sensi-
tivity of the TDCSs to the inclusion of PCI is observed when
comparing the srDWBA with the sr3DW calculation, with

the former calculation not including this physical effect. The
sr3DW calculation, which includes both relativistic and PCI
effects, clearly provides the best description of the experi-
mental data and is very successful in describing the shape
and relative intensities of the TDCS across the broad range
of kinematics covered by the present measurement.

The branching ratio is a quantity which can be directly
compared to theory without normalization. For the krypton
results of Fig. 6, excellent agreement is observed between
the srDWBA and sr3DW calculations and experiment. For
the xenon data presented in Fig. 7, notwithstanding the im-
proved statistics in that case, the degree of agreement be-
tween the sr3DW and experiment is inferior to that achieved
for krypton. This is perhaps indicative of the need for a more
rigorous treatment of relativistic effects for higher-Z atoms.
In both figures, as expected, the completely nonrelativistic
nrDWBA calculation poorly describes the data.

The spin asymmetries �Figs. 8–11� are also quantities
which can be directly compared to theory without normaliza-
tion. All calculations provide a good description of the ex-
perimental data, with the srDWBA and sr3DW slightly out-
performing the nrDWBA calculation. Indeed, both the
srDWBA and sr3DW are spectacularly successful is describ-
ing the experimental data in both magnitude and sign. In
stark contrast to the TDCS, the calculations show this quan-
tity to be relatively insensitive to the description of relativ-
istic and PCI effects. However, as nrDWBA, srDWBA, and
sr3DW calculations all give zero spin-asymmetry values if

FIG. 10. Asymmetry for transitions to the Kr+ 4p5 ion state for the case where the fine structure is unresolved. Kinematics as described
in Figs. 3 and 4. Extremely small values for the asymmetry suggest the fine-structure-effect model, formulated in the nonrelativistic limit,
provides an accurate physical picture of the mechanism underlying the measured spin asymmetries. Theory as in Fig. 3.
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exchange is neglected, the large nonzero values observed
experimentally provide a sensitive test to the ability of the
three theories to describe many-electron exchange processes.
The close agreement observed between theory and experi-
ment suggests that the present approach of adopting a local
exchange approximation to account for exchange distortion
in the calculations provides an excellent description of ex-
change processes under the present kinematics. Figure 11
shows spin asymmetries for the Kr+ 4s 2S1/2 state. Given the
absence of fine structure, nonzero values of spin asymmetry
can only occur through Mott scattering. The fact that a null
result is observed, to within statistical accuracy, suggests that
continuum spin-orbit effects do not significantly contribute
to the spin asymmetries for the 4p5 2P1/2 and 4p5 2P3/2 ion
states of Figs. 8 and 9.

The present sensitivity of the TDCS calculations to the
partial inclusion of relativistic effects suggests that a fully
relativistic DWBA, including an accurate treatment of PCI
and exchange, might lead to substantially improved predic-
tions. Such developments are planned by the authors. Fur-
thermore, it is noted that the present DWBA calculations
involve the evaluation of the first-order Born term only; the
extent to which second-order Born effects might contribute
has not been investigated in this study.

The main conclusion from the present study is the urgent
need for experimental TDCS data on an absolute scale to
more accurately assess the accuracy of different theoretical
approaches. We have demonstrated that, through the DWBA
approach, the inclusion of PCI, as well as a partial account of
relativistic effects, leads to a substantially improved predic-
tion for the shape of TDCS data under the present kinemat-
ics. However, without absolute experimental cross sections,
how close the predicted TDCS magnitudes are to the true
values cannot be assessed. To this end, we are planning to
improve our experimental technique by employing the rela-
tive flow technique �29� to relate measured count rates for
the ionization of heavy noble gases to those for ionization of
helium under identical experimental conditions. With this ap-
proach, we can employ the convergent close coupling
method �30�, which can predict the TDCS for helium to very
high accuracy, to place our TDCS data for heavy atoms onto
an absolute scale.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of the Austra-
lian Research Council under Grant No. DP0452553 �S.B.
and J.L.� and the National Science Foundation under Grant
No. PHY-0757749 �D.H.M.�.

FIG. 11. Asymmetry data for ionizing transitions leading to the Kr+ 4s 2S1/2 ion state. Kinematics as in Fig. 5 caption. For this L=0 state,
due to a lack of associated fine structure, spin asymmetries can only arise through continuum relativistic effects. The overall small magnitude
of the measured asymmetry values suggests such effects are small for the present choice of target and kinematics.
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