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The hyperfine splitting of the ground state of H-, Li-, and B-like ions is investigated in details within the
range of nuclear numbers Z=7–28. The rigorous QED approach together with the large-scale configuration-
interaction Dirac-Fock-Sturm method are employed for the evaluation of the interelectronic-interaction contri-
butions of first and higher orders in 1 /Z. The screened QED corrections are evaluated to all orders in �Z
utilizing an effective potential approach. The influence of nuclear magnetization distribution is taken into
account within the single-particle nuclear model. The specific differences between the hyperfine-structure level
shifts of H- and Li-like ions, where the uncertainties associated with the nuclear structure corrections are
significantly reduced, are also calculated.
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I. INTRODUCTION

Accurate knowledge of the hyperfine structure lines of
intermediate-Z multicharged ions is of great interest due to
suggested observations of these lines from hot rarefied astro-
physical plasmas �1,2�. Such observations may allow one to
study the chemical and isotopic compositions of the super-
nova remnants, and the hot interstellar medium, including
the galactic halos, which are the main types of objects from
which intense emission lines are expected. The experiments
on the determination of hyperfine splittings will also enable
us to refine the deduction of nuclear magnetic moments of
different isotopes and to inspect the various computational
models employed for the theoretical description of nuclear
effects. High-precision measurements of the ground-state hy-
perfine structure of heavy highly charged ions have been
performed in Refs. �3–7�. Extension of these experiments to
Li-like ions presently being prepared �8� will provide tests of
quantum electrodynamics �QED� in strong electric and mag-
netic fields on the level of a few percent in a specific differ-
ence of the hyperfine splitting values of H- and Li-like ions
�9�. In this difference the main theoretical uncertainty which
originates from the nuclear magnetization distribution cor-
rection �Bohr-Weisskopf effect� is essentially reduced. In
specific differences of heavy H- and B-like ions or Li- and
B-like ions the same reduction of the theoretical uncertainty
can be also achieved. This becomes clear from the approxi-
mate analytical expressions for the Bohr-Weisskopf correc-
tion given in Ref. �10�.

The theoretical investigations of the hyperfine splitting of
H- and Li-like multicharged ions in the intermediate-Z re-
gion have some history. The first accurate calculation
��0.1% �, based on a combination of 1 /Z perturbation
theory and the nonrelativistic configuration-interaction
Hartree-Fock method, was performed in Refs. �11,12�. Later,
Boucard and Indelicato �13�, employing the multiconfigura-
tion Dirac-Fock method, presented the evaluation of the hy-
perfine splitting values over the entire range of the nuclear
charge numbers Z=3–92. Expansion in �Z of the QED cor-
rection has been worked out in Refs. �14–16� �for earlier
studies see references therein and recent reviews �17,18��.

However, the application of the �Z expansion is restricted to
s states in one-electron ions and limited by its convergence
property. Therefore, we evaluate the radiative corrections nu-
merically to all orders in �Z accounting for the
interelectronic-interaction effects by means of local screen-
ing potentials. All-order calculations of one-loop QED con-
tributions to the hyperfine structure for middle-Z ions have
been previously performed for the 1s state �19–22�, for the
2s state �21,22�, and for the 2p1/2 state �23�. However, almost
all these calculations of the QED corrections were dealing
with one-electron ions only, where the screening effects are
absent.

In the present paper, we calculate the ground-state hyper-
fine structure of H-, Li-, and B-like sequences in the
intermediate-Z region. The one-loop radiative corrections are
evaluated to all orders in �Z employing an effective local
screening potential. Many-body effects are taken into ac-
count to the first order in 1 /Z within the QED perturbation
theory and to higher orders within the large-scale
configuration-interaction Dirac-Fock-Sturm method �CI-
DFS�. The single-particle nuclear model is employed for the
evaluation of the Bohr-Weisskopf correction. The main goal
of this work is to improve the accuracy of previous results
for the hyperfine structure of H- and Li-like ions and to
present novel calculations for the B-like sequence in the
intermediate-Z region.

The paper is organized as follows: In the next section the
basic formulas for the hyperfine splitting are given and the
derivation of the various contributions is described. In Sec.
III we present the numerical results for all contributions and
compare the total values with previously reported calcula-
tions and with existing experimental data. Sec. IV provides a
complete compilation of the total values for the hyperfine
splitting of H-, Li-, and B-like ions as well as the results for
the specific differences between the hyperfine structure of H-
and Li-like ions. We close with a short summary and point
out the main achievements of the present work.

Relativistic units ��=1, c=1, m=1� and the Heaviside
charge unit ��=e2 / �4��, e�0� are used throughout the pa-
per.
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II. BASIC EXPRESSIONS

The interaction of atomic electrons with the nuclear
magnetic-dipole moment is described by the Fermi-Breit op-
erator, which is conveniently written as a scalar product of
two tensor operators

H� =
�e�
4�

� · T , �1�

where � is the nuclear magnetic moment operator acting in
the space of nuclear states. The electron part T is defined by
the following expression

T = �
i

�ni � �i�
ri

2 , �2�

where index i refers to the ith electron of the atom, � is the
Dirac-matrix vector, and ni=ri /ri. This interaction leads to
the hyperfine splitting of the atomic levels. For an ion with
one electron �e.g., ns or np1/2 state� over the closed shells
this splitting can be written in the form

�E�a� =
���Z�3

n3

gI

mp

2I + 1

�j + 1��2l + 1�
1

�1 +
m

M
	3

�
A��Z��1 − 	��1 − 
� +
1

Z
B��Z�

+
1

Z2C�Z,�Z� + xrad� . �3�

Here Z is the nuclear charge number, mp and M are the
proton and nuclear masses, respectively. Within the approxi-
mation of noninteracting electrons, where the contribution of
the closed shells is neglected, the hyperfine splitting is ex-
plicitely determined by the quantum numbers of valence
electron state a, which is characterized by the principal quan-
tum number n, the angular momentum j, its projection mj,
and the parity l. A nucleus with spin I possesses a nuclear g
factor gI=� /�NI, where � is the nuclear magnetic moment
and �N is the nuclear magneton. A��Z� is the one-electron
relativistic factor, 	 and 
 are, respectively, the corrections
for distributions of the charge and magnetic moment over the
nucleus; the functions B��Z� and C�Z ,�Z� determine the
corrections for the electron-electron interaction of first and
higher orders in 1 /Z, respectively; xrad is the QED correc-
tion. These terms are subsequently described in the following
sections.

A. One-electron contributions

The relativistic factor A��Z� corresponding to the point-
like nucleus is known analytically �24�,

A��Z� =
n3�2l + 1���2��� + nr� − N�

N4��4�2 − 1�
, �4�

where nr=n− ��� is the radial quantum number,
�= �−1� j+l+1/2�j+1 /2�, �=��2− ��Z�2, N=�nr

2+2nr�+�2.
The nuclear charge distribution correction 	 can be found

either analytically �10,25� or numerically by solving the
Dirac equation with the Coulomb potential of the extended
nucleus. In this work it is evaluated numerically employing
the homogeneously-charged-sphere model for the nuclear
charge distribution. In order to estimate the uncertainty due
to the model dependence the Fermi model is used as well.
The Bohr-Weisskopf correction 
 originates from the spatial
distribution of the magnetic moment inside the nucleus. For
a rigorous treatment of this effect for low-Z systems we refer
to Ref. �26�. In the present work we restrict our consideration
to models in which it can be accounted for by replacing the
factor 1 /r2 in Eq. �2� by F�r� /r2, where F�r� is the volume
distribution function. For example, in the case of the sphere
model it reads

F�r� = � r

R0
	3

, r  R0,

1, r � R0,
� �5�

where R0=�5 /3�r2�1/2 is the radius of the sphere, and �r2�1/2

is the charge root-mean-square radius of the nucleus. How-
ever, with the sphere model one cannot always describe ad-
equately the nuclear magnetization distribution. The approxi-
mation of the nuclear single-particle model is widely used
for the evaluation of the Bohr-Weisskopf correction
�10–12,27–30�. Within this model the nuclear magnetization
is determined by the total angular momentum of the unpaired
nucleon �proton or neutron�. Accordingly, the nuclear g fac-
tor gI is just the Landé factor of an extra nucleon, which is
defined by the well-known formula

gI = �/�NI =
1

2

�gL + gS� + �gL − gS�

L�L + 1� − 3/4
I�I + 1� � ,

�6�

where L is the nuclear orbital momentum, and gL and gS are
the orbital and spin g factors of the valence nucleon, respec-
tively. In the case of a valence proton gL=1, while for an
extra neutron gL=0; gS is chosen such as to reproduce the
experimental value of the nuclear magnetic moment � ac-
cording to Eq. �6�. For nuclei with odd or even nuclear
charge numbers the role of the unpaired nucleon is either
played by a proton or a neutron, respectively. In the frame-
work of the nuclear single-particle model the radially sym-
metric distribution function F�r� has been derived in Refs.
�27,29,30�. Here we neglect the contribution of the spin-orbit
interaction and employ the homogeneous distribution for the
radial part of the odd nucleon wave function inside the
nucleus �10,30�. In this approximation F�r� reads

F�r� = � r

R0
	3�1 − 3 ln� r

R0
	�N

�

−

2I − 1

8�I + 1�
gS

+ �I −
1

2
	gL��, r  R0, �7�

for I=L+ 1
2 and
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F�r� = � r

R0
	3�1 − 3 ln� r

R0
	�N

�

 2I + 3

8�I + 1�
gS

+
I�2I + 3�
2�I + 1�

gL��, r  R0, �8�

for I=L− 1
2 . For r�R0 the distribution function F�r�=1. In

the case of 14N with I=1 we follow the work �11� and as-
sume that the nuclear magnetization is determined by the odd
proton and neutron. The corresponding formulas for 
 were
derived in Refs. �11,31�. The uncertainty of the Bohr-
Weisskopf correction is estimated as the maximum of two
values: 50% of 
 itself and the difference between 
 obtained
in single-particle and sphere nuclear models. As in our pre-
vious studies �see, e.g., the related discussion in Ref. �27��,
the uncertainty obtained by this procedure must generally be
considered only as the order of magnitude of the expected
error bar. More accurate calculations of the Bohr-Weisskopf
effect must be based on many-particle nuclear models and
should include a more rigorous procedure for determination
of the uncertainty. The nuclear vector polarizability correc-
tion derived in Ref. �26� is assumed to contribute less than
the uncertainty of 
 indicated above.

Separating out the nuclear parameters and the nonrelativ-
istic value of the hyperfine splitting one finds that the one-
electron contributions considered above can be numerically
evaluated in terms of a matrix element

A��Z��1 − 	��1 − 
� = Ga�a�T0�a� �9�

of the zero component T0 of the operator T given by Eq. �2�,
multiplied by the magnetization distribution function F�r�.
The wave function �a� of the valence state, characterized by
quantum numbers a=n, j, mj, and l, is obtained as a solution
of the Dirac equation with the potential of the extended
nucleus. The multiplicative factor Ga reads

Ga =
n3�2l + 1�j�j + 1�

2��Z�3mj
. �10�

B. Many-electron contributions

Now we pass to the many-electron corrections. The term
B��Z� /Z in Eq. �3� determines the interelectronic-interaction
correction of the first order in 1 /Z. A rigorous QED treat-
ment of this contribution can be carried out utilizing the
two-time Green’s function method �32�. To simplify the deri-
vation of formal expressions, it is convenient to incorporate
the core electrons as belonging to a redefined vacuum. This
leads to merging the interelectronic-interaction correction of
order 1 /Z with the one-loop radiative corrections. Such a
treatment was applied previously in Refs. �33,34�. The cor-
responding expression for the interelectronic-interaction cor-
rection reads

B��Z�/Z = 2Ga�
c
� �

n


n�
a �ac�I�0��nc��n�T0�a�

a − 
n

+ �
n


n�
c �ac�I�0��an��n�T0�c�

c − 
n

− �
n


n�
a �ac�I�
a − 
c��cn��n�T0�a�

a − 
n

− �
n


n�
c �ac�I�
a − 
c��na��n�T0�c�

c − 
n

−
1

2
��a�T0�a�

− �c�T0�c���ac�I��
a − 
c��ca�� , �11�

where 
m are the one-electron energies,
I���=e2����D�����, I����=dI��� /d�, ��= �1,��, and
D����� is the photon propagator. It should be noted that the
total 1 /Z interelectronic-interaction correction given by Eq.
�11� is gauge independent. We perform the calculation em-
ploying Coulomb and Feynman gauges for the photon propa-
gator, thus receiving an accurate check of the gauge invari-
ance of the results.

The interelectronic-interaction correction of higher orders
C�Z ,�Z� /Z2 is calculated within the framework of the large-
scale configuration-interaction method in the basis of Dirac-
Fock-Sturm orbitals �35�. This method was successfully em-
ployed in our previous atomic calculations �36–40�. The
interelectronic-interaction operator employed in the Dirac-
Coulomb-Breit equation reads

Vint = ���
i�j
� 1

rij
−

�i · � j

2rij
−

��i · ri��� j · r j�
2rij

3 � , �12�

where the sum runs over all electrons. A scaling parameter �
is introduced to separate terms of different order in 1 /Z from
the numerical results with different �. This representation
allows us to perform the expansion in powers of �. In this
way, the higher-order term is written as

C�Z,�Z�/Z2 = Ga�������JMJ��T0�����JMJ����=1

− ������JMJ��T0�����JMJ����=0

−
d

d�
������JMJ��T0�����JMJ����=0� .

�13�

The many-electron wavefunction ����JMJ� is characterized
by the total angular momentum J, its projection MJ, and the
rest quantum numbers �. The configuration-interaction ma-
trix contains all single, double, and triple positive-energy ex-
citations. Single-electron excitations to the negative-energy
spectrum were accounted for in the many-electron wave
function ����JMJ� employing perturbation theory.

GROUND-STATE HYPERFINE STRUCTURE OF H-, LI-,… PHYSICAL REVIEW A 78, 062507 �2008�

062507-3



The calculation of the interelectronic-interaction correc-
tions B��Z� /Z and C�Z ,�Z� /Z2 is performed employing the
homogeneously charged-sphere model for the nuclear charge
distribution and single-particle model for the nuclear mag-
netic moment distribution.

C. One-loop radiative contribution

The one-loop radiative contribution xrad appears as the
sum of vacuum-polarization �VP� and self-energy �SE� cor-
rections, xrad=xVP+xSE, as depicted diagrammatically in
Figs. 1 and 2, respectively. However, for the Li- and B-like
ions along with the one-electron part the correction xrad con-
tains also the many-electron part. In order to account for
many-electron effects we consider an effective spherically
symmetric potential Veff that partly takes into account the
interelectronic interaction between the valence electron a and
the core electrons c. This can be achieved by means of the
Kohn-Sham screening potential derived within the density-
functional theory �41�

Veff�r� = Vnuc�r� + ��
0

�

dr�
1

r�

�t�r�� −
2

3

�

r
� 81

32�2r�t�r�	1/3
,

�14�

which we employed successfully in previous calculations
�42–45�. Here Vnuc is the potential of the extended nucleus
and �t denotes the total one-electron density. In order to es-
timate the sensitivity of the result on the specific choice of
the screening potential we consider also the core-Hartree po-
tential.

The VP correction xVP is divided into the electric-loop
part, Figs. 1�a� and 1�b�, which accounts for the VP correc-
tion to the scalar binding potential Veff, and the magnetic-
loop part, Fig. 1�c�, corresponding to the VP-corrected hy-
perfine interaction potential. The expression for the electric-
loop term, Figs. 1�a� and 1�b�, reads

xVP
el = 2Ga �

n


n�
a �a�T0�n��n�UVP
el �a�


a − 
n
, �15�

where UVP
el represents the renormalized one-loop VP poten-

tial. It is divided into the Uehling and Wichmann-Kroll parts,
UVP

el =UVP
Ue−el+UVP

WK−el. The Uehling part can be evaluated ac-
cording to the well-known equation

UVP
Ue-el�r� = −

2�2Z

3�
�

1

�

dt
�t2 − 1

t2

��1 +
1

2t2	 � d3r�
�eff�r��
�r − r��

e−2�r−r��t, �16�

where the density �eff is related to the effective binding po-
tential Veff �via the Poisson equation �Veff�r�=4��Z�eff�r��.
The Wichmann-Kroll part can be generated by summing up
the partial-wave differences between the unrenormalized to-
tal VP potential and the unrenormalized Uehling term
�46,47�. In this work we employ the approximate formula for
the Wichmann-Kroll electric-loop potential derived in Ref.
�48�. The correction to the hyperfine splitting due to the mag-
netic loop xVP

ml can be written in the form

xVP
ml = Ga�a�UVP

ml �a� , �17�

where UVP
ml is the VP-corrected hyperfine potential T0. It can

be renormalized utilizing the same scheme as for the electric
loop. For the distribution function F�r� corresponding to the
sphere model �see Eq. �5�� we obtain the following analytical
expression for the magnetic-loop Uehling term

UVP
Ue-ml�r� =

�

�

�n � ��0

r2

3

16R0
3�4rR0��1�R0 + r� + �1��R0 − r���

+ 2�R0 + r��2�R0 + r� − 2�R0 − r��2��R0 − r��

+ �3�R0 + r� − �3��R0 − r��� , �18�

where the function �n is defined as

�n�r� =
2

3
�

1

�

dt
�t2 − 1

tn+2 �1 +
1

2t2	e−2tr. �19�

The contribution of the remaining Wichmann-Kroll
magnetic-loop term is relatively small. For the case of the 1s
and 2s states the values for the Wichmann-Kroll magnetic-
loop term are taken from Ref. �22�. For 2s we have also
incorporated the screening effect, assuming that the screen-
ing coefficient is the same as for the Uehling magnetic-loop
term. For the 2p1/2 state xVP

WK−ml turns out to be smaller than
the uncertainties assigned to the calculation.

Now let us turn to the evaluation of the SE correction.
The formal expression can be derived by means of the two-
time Green’s function method �32�. The SE correction ap-
pears as the sum, xSE=xSE

irr +xSE
red+xSE

ver, of the irreducible xSE
irr ,

a b c

FIG. 1. Feynman diagrams representing the vacuum-
polarization correction to the hyperfine splitting. The wavy line in-
dicates the photon propagator and the double line indicates the
bound-electron wave functions and propagators. The dashed line
terminated with the triangle denotes the hyperfine interaction.

a b c

FIG. 2. Feynman diagrams representing the self-energy correc-
tion to the hyperfine splitting. Notations are the same as in Fig. 1.
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reducible xSE
red, and vertex xSE

ver terms, respectively. The irre-
ducible part, depicted in Figs. 2�a� and 2�b� with the inter-
mediate state energy 
n�
a, is represented by the expression

xSE
irr = 2Ga �

n


n�
a �a�T0�n��n����
a� − �0	m��a�

a − 
n

, �20�

where 	m is the mass counterterm and ��
� denotes the un-
renormalized self-energy operator with matrix elements de-
fined by

�a���
��b� =
i

2�
�

−�

�

d��
n

�an�I����nb�

 − � − 
n�1 − i0�

. �21�

Accordingly, the irreducible contribution can be written as
the nondiagonal matrix element of the self-energy operator.
Thus, the renormalization scheme developed for the first-
order self-energy correction can also be applied in this case
�see, e.g., Refs. �49–51��. Only a slight extension of the cor-
responding formulas for the case of a nondiagonal matrix
element is needed.

The expression for the reducible term is given by

xSE
red = Ga�a��d��
�

d

�


=
a

�a��a�T0�a� , �22�

while the vertex part, Fig. 2�c�, reads

xSE
ver = Ga

i

2�
�

−�

�

d�

� �
n1n2

�an2�I����n1a��n1�T0�n2�
�
a − � − 
n1

�1 − i0���
a − � − 
n2
�1 − i0��

.

�23�

Both reducible and vertex terms are ultraviolet divergent. In
order to isolate the divergencies in a covariant way, we sepa-
rate out the zero-potential terms in which bound electron
propagators are replaced by free propagators. The sum of the
latter terms for the reducible and the vertex part is denoted
by xSE

vr�0�=xSE
red�0�+xSE

ver�0�. Their evaluation is performed in mo-
mentum space, where the ultraviolet divergencies can be
canceled in a standard way. The remaining part of the reduc-
ible and the vertex contribution xSE

vr�1+� is ultraviolet finite.
However, we note that the term with 
n1

=
n2
=
a in Eq. �23�

involves an infrared divergency, which is canceled by the
corresponding term of the reducible contribution. Performing

TABLE I. Individual contributions to the ground-state hyperfine splitting of the hydrogenlike ions.

Ion I� � /�N �r2�1/2 A��Z� 	 
 xSE xVP

14N6+ 1+ 0.40376 2.5579 1.00393 0.00067�3� −0.00004�28� 0.00009 0.00028
15N6+ 1

2− −0.28319 2.6061 1.00393 0.00068�3� 0.00114�88� 0.00009 0.00028
17O7+ 5

2+ −1.8938�1� 2.6953 1.00514 0.00081�3� 0.00033�17� −0.00006 0.00032
19F8+ 1

2+ 2.6289 2.8976 1.00651 0.00099�3� 0.00036�18� −0.00022 0.00036
21Ne9+ 3

2+ −0.66180�1� 2.9672 1.00805 0.00113�4� 0.00058�29� −0.00037 0.00040
23Na10+ 3

2+ 2.2175 2.9936 1.00975 0.00127�4� 0.00035�18� −0.00053 0.00044
25Mg11+ 5

2+ −0.85545�8� 3.0280 1.01163 0.00141�4� 0.00057�29� −0.00068 0.00049
27Al12+ 5

2+ 3.6415 3.0605 1.01367 0.00156�5� 0.00048�24� −0.00084 0.00053
29Si13+ 1

2+ −0.55529�3� 3.1168 1.01589 0.00173�5� 0.00063�31� −0.00099 0.00058
31P14+ 1

2+ 1.1316 3.1888 1.01828 0.00191�5� 0.00069�35� −0.00115 0.00062
33S15+ 3

2+ 0.64382 3.2727 1.02085 0.00212�6� 0.00106�53� −0.00130 0.00067
35Cl16+ 3

2+ 0.82187 3.3652 1.02360 0.00234�6� −0.00026�110� −0.00146 0.00071
37Cl16+ 3

2+ 0.68412 3.3840 1.02360 0.00235�6� −0.00055�140� −0.00146 0.00071
39K18+ 3

2+ 0.39147 3.4346 1.02964 0.00274�6� −0.0021�31� −0.00177 0.00081
41K18+ 3

2+ 0.21487 3.4514 1.02964 0.00275�6� −0.0050�60� −0.00177 0.00081
43Ca19+ 7

2− −1.3176 3.4928 1.03294 0.00297�7� 0.00119�60� −0.00193 0.00086
45Sc20+ 7

2− 4.7565 3.5443 1.03644 0.00320�7� 0.00092�46� −0.00208 0.00091
47Ti21+ 5

2− −0.78848�1� 3.5944 1.04012 0.00345�7� 0.00160�80� −0.00224 0.00096
49Ti21+ 7

2− −1.1042 3.5735 1.04012 0.00343�7� 0.00137�69� −0.00224 0.00096
51V22+ 7

2− 5.1487 3.5994 1.04401 0.00367�8� 0.00107�54� −0.00240 0.00101
53Cr23+ 3

2− −0.47454�3� 3.6588 1.04810 0.00395�8� 0.00149�75� −0.00256 0.00106
55Mn24+ 5

2− 3.4687 3.7057 1.05239 0.00423�8� 0.00109�54� −0.00272 0.00111
57Fe25+ 1

2− 0.090623 3.7534 1.05689 0.00453�9� 0.00279�140� −0.00289 0.00117
59Co26+ 7

2− 4.627�9� 3.7875 1.06161 0.00483�9� 0.00133�66� −0.00305 0.00123
61Ni27+ 3

2− −0.75002�4� 3.8221 1.06655 0.00514�9� 0.00191�95� −0.00322 0.00128
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the integration over the energy of the virtual photon in these
terms analytically we explicitly achieve the finite result in
the sum of the reducible and vertex contributions. The re-
maining part of the many-potential term xSE

vr�1+� is infrared
finite, and can be calculated in coordinate space by means of
a point-by-point subtraction of the corresponding contribu-
tions with free propagators inside of the self-energy loop.
Angular integration and summation over intermediate angu-
lar momentum projections is carried out in a standard way
�51�. The evaluation of the many-potential terms performed
in the coordinate space involves an infinite summation over
the angular-momentum quantum number � of intermediate
states. This sum was extended up to ��max�=10 and the re-
maining part of the sum is estimated by a least-square
inverse-polynomial fitting. One also observes that the results
of the radial integration converge better, when an extended
model for the magnetization distribution is employed. In our
calculations of the radiative corrections we have utilized the
sphere model for the magnetic moment distribution function
F�r�.

III. NUMERICAL RESULTS

Now let us pass to the presentation of the numerical pro-
cedure and the results for H-, Li-, and B-like sequences. The
infinite summations over the complete spectrum of the Dirac
equation involved in the numerical evaluations are per-
formed employing the finite-basis set approach. The
B-splines basis set was constructed utilizing the dual kinetic
balance approach �52�. The latter treats large and small com-
ponents on equal footing and respects the charge conjugation
symmetry. As a consequence no unphysical spurious states
appear and moreover, it improves the convergence properties
and the accuracy considerably. The values of the nuclear
root-mean-square radii are taken from the tabulation �53�.
The root-mean-square radius, in particular, for the 33S iso-

tope, is assumed to be the average of the values given for
even isotopes 32S and 34S, respectively. Empirical data for
the nuclear properties spin I, parity �, and magnetic moment
� /�N are taken from Ref. �54�. All these values are also
compiled in Table I. We indicate the uncertainties assigned to
the nuclear magnetic moments only if they exceed the level
of 10−5 in the relative units. One has to note here that the
magnetic moment values obtained via the nuclear magnetic
resonance technique do not usually account for the chemical
shift �55�, which is of the order 10−3−10−4 or sometimes
even larger.

A. H-like ions

The individual contributions to the hyperfine splitting for
the light H-like ions are presented in Table I. The values
obtained for the radiative corrections xSE and xVP are in good
agreement with the most accurate nonperturbative results
�22� based on the Coulomb-Dirac Green’s function. The
slight difference is explained by the finite-nuclear-size ef-
fects accounted for in the present work. The latter is espe-
cially important for the evaluation of the specific difference
between H- and Li-like hyperfine splitting values, where the
QED corrections have to be calculated within the same
nuclear model. As one can see from Table I the main uncer-
tainty originates from the Bohr-Weisskopf correction 
. In
Table II the predictions for the total transition energies �E�1s�

are compared with the results of previous calculations
�11,13�. Deviations between our results and those reported in
Ref. �13� arise from the different treatment of the Bohr-
Weisskopf effect. In work �13� the simple spherical model
for the magnetization distribution was employed. Theoretical
values for the total transition energies �E�1s� and wave-
lengths ��1s� are presented in Table X below.

B. Li-like ions

For the consideration of Li-like ions we start with the
results for the screened radiative corrections xSE and xVP. The

TABLE II. Comparison of the ground-state hyperfine splitting
�E�1s� of H-like ions between different theoretical calculations. The
values of the energies are given in meV.

Ion � /�N This work Ref. �11� Ref. �13�

14N6+ 0.40376 0.21936�6� 0.21937�4� 0.21931
27Al12+ 3.6415 10.215�2� 10.215
45Sc20+ 4.7565 54.613�25� 54.601
57Fe25+ 0.090623 3.5109�49� 3.5152

TABLE III. Individual contributions to the screened self-energy
correction for the ground-state hyperfine structure of the lithiumlike
ions, in units of the function DSE.

Z DSE
irr DSE

vr�0� DSE
vr�1+� DSE

10 −0.161 2.723 −2.661 −0.100

15 −0.296 2.685 −2.760 −0.372

20 −0.443 2.543 −2.772 −0.672

25 −0.602 2.380 −2.775 −0.999

TABLE IV. Individual contributions to the screened vacuum-polarization correction for the ground-state
hyperfine structure of the lithiumlike ions, in units of the function DVP.

Z DVP
Ue-el DVP

Ue-ml DVP
WK-el DVP

WK-ml DVP

10 0.067 0.058 −0.000037 −0.00020 0.125

15 0.119 0.098 −0.00015 −0.00076 0.216

20 0.178 0.140 −0.00039 −0.0020 0.316

25 0.247 0.186 −0.00083 −0.0041 0.428

VOLOTKA et al. PHYSICAL REVIEW A 78, 062507 �2008�

062507-6



one-loop QED correction is conveniently represented in
terms of the function Drad defined as

xrad =
�

�
Drad. �24�

In Tables III and IV the numerical results for individual con-
tributions to the self-energy �DSE� and vacuum-polarization
�DVP� corrections are presented, respectively, for
Z=10,15,20,25.

Table V displays the individual contributions to the hyper-
fine splitting of the light Li-like ions. As in the case of H-like
ions the main uncertainty originates from the Bohr-
Weisskopf correction 
. Earlier calculations on the hyperfine

structure of light Li-like ions �11–13� account for the radia-
tive correction on the basis of an analytical expansion with
respect to �Z. Here we have performed exact �to all orders in
�Z� evaluations of one-loop QED corrections with an effec-
tive screening potential and with a nuclear vector potential
involving an extended magnetization distribution. As com-
pared to the results of works �11,12�, several additional im-
provements have been achieved: the interelectronic-
interaction corrections B��Z� /Z and C�Z ,�Z� /Z2 have been
calculated taking into account explicitly the extended nuclear
charge and magnetic moment distribution effects, moreover,
the term C�Z ,�Z� /Z2 has now been evaluated within the
framework of the relativistic CI-DFS method. The latter is
especially important for ions of the higher Z region. The

TABLE V. Individual contributions to the ground-state hyperfine splitting of the lithiumlike ions. The
values of the nuclear parameters are the same as in Table I.

Ion A��Z� 	 
 xSE xVP B��Z� /Z C�Z ,�Z� /Z2

14N4+ 1.00557 0.00067�3� −0.00004�28� 0.00008 0.00017 −0.38146 0.01800
15N4+ 1.00557 0.00068�3� 0.00114�88� 0.00008 0.00017 −0.38101 0.01798
17O5+ 1.00728 0.00081�3� 0.00033�17� −0.00001 0.00021 −0.33424 0.01387
19F6+ 1.00923 0.00099�3� 0.00036�18� −0.00012 0.00025 −0.29767 0.01104
21Ne7+ 1.01142 0.00113�4� 0.00058�29� −0.00023 0.00029 −0.26845 0.00900
23Na8+ 1.01384 0.00127�4� 0.00035�18� −0.00035 0.00033 −0.24471 0.00749
25Mg9+ 1.01650 0.00141�4� 0.00057�29� −0.00047 0.00037 −0.22488 0.00634
27Al10+ 1.01941 0.00156�5� 0.00048�24� −0.00060 0.00042 −0.20823 0.00544
29Si11+ 1.02257 0.00173�5� 0.00063�32� −0.00073 0.00046 −0.19395 0.00473
31P12+ 1.02597 0.00192�5� 0.00070�35� −0.00086 0.00050 −0.18164 0.00415
33S13+ 1.02963 0.00212�6� 0.00107�53� −0.00100 0.00055 −0.17086 0.00368
35Cl14+ 1.03355 0.00235�6� −0.00026�111� −0.00113 0.00059 −0.16166 0.00329
37Cl14+ 1.03355 0.00236�6� −0.00055�140� −0.00113 0.00059 −0.16171 0.00329
39K16+ 1.04219 0.00275�6� −0.0021�31� −0.00142 0.00069 −0.14619 0.00268
41K16+ 1.04219 0.00276�6� −0.0050�60� −0.00142 0.00069 −0.14661 0.00269
43Ca17+ 1.04691 0.00298�7� 0.00120�60� −0.00156 0.00073 −0.13908 0.00244
45Sc18+ 1.05191 0.00322�7� 0.00092�46� −0.00171 0.00078 −0.13316 0.00223
47Ti19+ 1.05719 0.00347�7� 0.00161�81� −0.00186 0.00083 −0.12769 0.00205
49Ti19+ 1.05719 0.00345�7� 0.00138�69� −0.00186 0.00083 −0.12772 0.00205
51V20+ 1.06277 0.00369�8� 0.00108�54� −0.00201 0.00089 −0.12288 0.00190
53Cr21+ 1.06864 0.00398�8� 0.00151�75� −0.00216 0.00094 −0.11840 0.00176
55Mn22+ 1.07481 0.00427�8� 0.00110�55� −0.00232 0.00099 −0.11440 0.00164
57Fe23+ 1.08130 0.00457�9� 0.00282�141� −0.00248 0.00105 −0.11050 0.00154
59Co24+ 1.08811 0.00487�9� 0.00134�67� −0.00264 0.00111 −0.10728 0.00144
61Ni25+ 1.09524 0.00519�9� 0.00193�96� −0.00281 0.00117 −0.10410 0.00136

TABLE VI. Comparison of the ground-state hyperfine splitting �E�2s� of Li-like ions between different
theoretical calculations and experimental data. The values of the energies are given in meV.

Ion � /�N This work Ref. �12� Ref. �13� Expt. �57�

14N4+ 0.40376 0.017532�8� 0.017532�10� 0.017667
27Al10+ 3.6415 1.0283�3� 1.0281�6� 1.0326
45Sc18+ 4.7565 6.0631�32� 6.063�6� 6.0767 6.20�8�
57Fe23+ 0.090623 0.40345�64� 0.4036�7� 0.40470
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remaining one-electron corrections A��Z�, 	, and 
 coincide
with the results of works �11,12�. The recoil effect for Li-like
ions is partly accounted for by a factor �1+m /M�−3 in Eq.
�3�. However, additional contributions arising from the spe-
cific mass shift and spin-orbit recoil corrections �56� are sig-
nificantly smaller than the uncertainty assigned for the Bohr-
Weisskopf correction.

In Table VI results for the total ground-state hyperfine
splitting values of lithiumlike ions �E�2s� of different theo-
retical calculations are compared. In addition the experimen-
tal value of a recent measurement of the hyperfine splitting
of the lithiumlike 45Sc18+ ion, performed by resolving the 2s
hyperfine structure in the dielectronic recombination spec-

trum �57�, is given as well. The deviations between our re-
sults and values reported in Ref. �13� are mainly determined
by interelectronic-interaction effects. The total theoretical
values of the energies �E�2s� and wavelengths ��2s� are re-
ported in Table X.

C. B-like ions

Let us now turn to boronlike ions. The corresponding
screened radiative corrections xSE and xVP expressed in terms
of the functions DSE and DVP defined by Eq. �24� are pre-
sented in Tables VII and VIII, respectively. The uncalculated
Wichmann-Kroll contribution of the magnetic-loop DVP

WK−ml

TABLE VII. Individual contributions to the screened self-energy
correction for the ground-state hyperfine splitting of the boronlike
ions, in units of the function DSE.

Z DSE
irr DSE

vr�0� DSE
vr�1+� DSE

10 0.000 0.630 −0.521 0.109

15 −0.001 0.742 −0.608 0.132

20 −0.002 0.781 −0.648 0.131

25 −0.005 0.788 −0.666 0.117

TABLE VIII. Individual contributions to the screened vacuum-
polarization correction for the ground-state hyperfine splitting of the
boronlike ions, in units of the function DVP.

Z DVP
Ue-el DVP

Ue-ml DVP
WK-el DVP

10 0.00011 0.00066 −0.000000084 0.00078

15 0.00059 0.0023 −0.00000097 0.0029

20 0.0018 0.0052 −0.0000051 0.0069

25 0.0041 0.0096 −0.000018 0.0137

TABLE IX. Individual contributions to the ground-state hyperfine splitting of the boronlike ions. The
values of the nuclear parameters are the same as in Table I.

Ion A��Z� 	 
 xrad B��Z� /Z C�Z ,�Z� /Z2

14N2+ 1.00513 0.000001 0.000000�1� 0.00017�37� −0.82166 0.15006�2�
15N2+ 1.00513 0.000001 0.000002�2� 0.00017�37� −0.82166 0.15006�2�
17O3+ 1.00671 0.000002 0.000001 0.00020�33� −0.72061 0.11479�2�
19F4+ 1.00850 0.000002 0.000001�1� 0.00023�29� −0.64222 0.09083�3�
21Ne5+ 1.01052 0.000003 0.000002�1� 0.00025�26� −0.57969 0.07381�3�
23Na6+ 1.01275 0.000005 0.000002�1� 0.00027�24� −0.52869 0.06128�3�
25Mg7+ 1.01520 0.000006 0.000003�1� 0.00029�21� −0.48635 0.05179�3�
27Al8+ 1.01788 0.000008 0.000003�1� 0.00030�19� −0.45068 0.04443�4�
29Si9+ 1.02078 0.000010 0.000004�2� 0.00031�17� −0.42023 0.03860�4�
31P10+ 1.02392 0.000013 0.000005�3� 0.00031�16� −0.39398 0.03391�4�
33S11+ 1.02728 0.000016 0.000009�5� 0.00032�14� −0.37113 0.03008�5�
35Cl12+ 1.03089 0.000021�1� −0.000003�11� 0.00032�13� −0.35110 0.02691�5�
37Cl12+ 1.03089 0.000021�1� −0.000006�14� 0.00032�13� −0.35110 0.02691�5�
39K14+ 1.03882 0.000030�1� −0.000026�38� 0.00032�10� −0.31768 0.02203�6�
41K14+ 1.03882 0.000030�1� −0.000062�74� 0.00032�10� −0.31770 0.02203�6�
43Ca15+ 1.04316 0.000036�1� 0.000016�8� 0.00032�9� −0.30363 0.02012�6�
45Sc16+ 1.04775 0.000043�1� 0.000014�7� 0.00032�8� −0.29103 0.01849�7�
47Ti17+ 1.05260 0.000051�1� 0.000026�13� 0.00032�7� −0.27967 0.01708�7�
49Ti17+ 1.05260 0.000051�1� 0.000023�11� 0.00032�7� −0.27967 0.01708�7�
51V18+ 1.05772 0.000060�1� 0.000019�10� 0.00031�6� −0.26941 0.01585�7�
53Cr19+ 1.06311 0.000070�1� 0.000029�15� 0.00031�5� −0.26010 0.01477�8�
55Mn20+ 1.06877 0.000082�2� 0.000023�12� 0.00030�5� −0.25163 0.01383�8�
57Fe21+ 1.07472 0.000095�2� 0.000064�32� 0.00030�4� −0.24390�1� 0.01300�9�
59Co22+ 1.08096 0.000109�2� 0.000033�16� 0.00029�3� −0.23685�1� 0.01226�9�
61Ni23+ 1.08749 0.000125�2� 0.000051�25� 0.00029�2� −0.23039�1� 0.01160�10�
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is of the same order as the corresponding electric-loop term
DVP

WK−el. As can be seen from Table VIII, the values of the
correction DVP

WK−el are smaller than the uncertainty of the self-
energy contribution DSE. Therefore, in the case of light
B-like ions one can neglect the contributions of the
Wichmann-Kroll terms.

In Table IX numerical results for the individual contribu-
tions to the hyperfine splitting in light B-like ions are dis-
played. In contrast to the hydrogenlike and lithiumlike se-
quences, where the valence electrons are in the s states,
boronlike ions have the valence electron in the p1/2 state; its
electron density vanishes at the origin. Since the nuclear
structure corrections 	 and 
 arise from the nuclear region,
these contributions are much smaller in the B-like ions than
in the corresponding H- and Li-like ions. For the uncertainty
of the radiative correction we prefer a conservative estima-
tion as the difference of QED corrections calculated with and
without screening potential. This uncertainty dominates for

ions in the low-Z region. Evaluation of the screened radiative
correction within the rigorous QED approach is presently
underway. For high-Z ions the total theoretical uncertainty is
mainly determined by the frequency-dependent �QED� con-
tribution in the higher-order interelectronic-interaction term
C�Z ,�Z� /Z2, which is estimated to be of the order
��Z�3C�Z ,�Z� /Z2. In Table X the total theoretical values of
the energies �E�2p1/2� and wavelengths ��2p1/2� are reported.
The recoil correction is accounted for by a factor
�1+m /M�−3 in Eq. �3� with 100% uncertainty, caused by
uncalculated specific mass shift and spin-orbit recoil correc-
tions �56�.

IV. DISCUSSION

Predictions for the total energies �E�a� and wavelengths
��a� of the transitions between the ground-state hyperfine
splitting components of the light H-, Li-, and B-like ions are

TABLE X. The energies �E�a� �meV� and wavelengths ��a� �cm� of the transitions between the ground-state hyperfine splitting of the H-,
Li-, and B-like ions.

Nucleus � /�N �E�1s� ��1s� �E�2s� ��2s� �E�2p1/2� ��2p1/2�

14N 0.40376 0.21936�6� 0.56521�16� 0.017532�8� 7.0720�31� 0.0030389�34� 40.799�46�
15N −0.28319 0.20490�18� 0.60510�53� 0.016376�23� 7.5711�105� 0.0028419�32� 43.627�49�
17O −1.8938�1� 1.2294�2��1� 0.10085�2��1� 0.10497�3��1� 1.1811�3��1� 0.020459�17��1� 6.0602�50��3�
19F 2.6289 4.0541�7� 0.030582�6� 0.36364�9� 0.34095�9� 0.076848�49� 1.6134�10�
21Ne −0.66180�1� 0.93432�27��1� 0.13270�4� 0.087074�34��1� 1.4239�6� 0.019531�10� 6.3481�33��1�
23Na 2.2175 4.1738�8� 0.029705�5� 0.40110�9� 0.30911�7� 0.094130�42� 1.3172�6�

2.2177 4.1742�8� 0.029703�5� 0.40113�9� 0.30909�7� 0.094138�42� 1.3170�6�
25Mg −0.85545�8� 1.8840�5��2� 0.065809�19��6� 0.18567�7��2� 0.66777�25��6� 0.045176�17��4� 2.7445�10��3�
27Al 3.6415 10.215�2� 0.012137�3� 1.0283�3� 0.12058�4� 0.25755�8� 0.48140�16�
29Si −0.55529�3� 3.2484�10��2� 0.038168�12��2� 0.33293�13��2� 0.37240�15��2� 0.085431�24��5� 1.4513�4��1�
31P 1.1316 8.1582�29� 0.015198�5� 0.84933�36� 0.14598�6� 0.22240�6� 0.55748�14�
33S 0.64382 3.7624�20� 0.032954�18� 0.39711�25� 0.31221�20� 0.10583�2� 1.1716�3�
35Cl 0.82187 5.7821�64� 0.021443�24� 0.61780�81� 0.20069�26� 0.16687�3� 0.74298�15�
37Cl 0.68412 4.8143�67� 0.025753�36� 0.51439�85� 0.24103�40� 0.13891�3� 0.89258�18�
39K 0.39147 3.873�12� 0.03202�10� 0.4225�15� 0.2934�11� 0.11670�2� 1.0625�2�

0.39151 3.873�12� 0.03201�10� 0.4226�15� 0.2934�11� 0.11671�2� 1.0624�2�
41K 0.21487 2.132�13� 0.05816�35� 0.2326�16� 0.5331�37� 0.064053�12� 1.9356�4�

0.21489 2.132�13� 0.05816�35� 0.2326�16� 0.5330�37� 0.064059�12� 1.9355�4�
43Ca −1.3176 13.025�8� 0.0095191�57� 1.4340�10� 0.086460�60� 0.40134�6� 0.30892�5�
45Sc 4.7565 54.613�25� 0.0022702�11� 6.0631�32� 0.020449�11� 1.7115�2� 0.072440�10�
47Ti −0.78848�1� 10.957�9� 0.011316�9� 1.2259�11� 0.10114�9� 0.34905�5� 0.35520�5�
49Ti −1.1042 14.617�10� 0.0084821�59� 1.6355�13� 0.075810�60� 0.46554�6� 0.26632�3�
51V 5.1487 78.168�42� 0.0015861�9� 8.8099�54� 0.014073�9� 2.5248�3� 0.049107�6�
53Cr −0.47454�3� 9.5797�72��6� 0.012942�10��1� 1.0871�9��1� 0.11406�10��1� 0.31367�4��2� 0.39527�5��2�
55Mn 3.4687 71.525�39� 0.0017334�9� 8.1688�50� 0.015178�9� 2.3699�3� 0.052315�6�

3.4532�13� 71.206�39��27� 0.0017412�9��7� 8.1323�50��31� 0.015246�9��6� 2.3594�3��9� 0.052550�6��20�
57Fe 0.090623 3.5109�49� 0.035314�50� 0.40345�64� 0.30731�49� 0.11787�1� 1.0519�1�

0.090764 3.5164�49� 0.035259�50� 0.40408�64� 0.30683�48� 0.11805�1� 1.0503�1�
0.09044�7� 3.5038�49��27� 0.035386�50��27� 0.40264�64��31� 0.30793�49��24� 0.11763�1��9� 1.0540�1��8�

59Co 4.627�9� 115.35�8��22� 0.0010749�7��21� 13.334�10��26� 0.0092987�69��181� 3.9084�5��76� 0.031722�4��62�
61Ni −0.75002�4� 24.418�23��1� 0.0050777�49��3� 2.8385�30��2� 0.043680�47��2� 0.83617�10��4� 0.14828�2��1�
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given in Table X. Due to the discrepancies in the experimen-
tal data for nuclear magnetic moments � for some ions we
have evaluated transition energies and wavelengths for all
values of � reported in Ref. �54�. The values of the nuclear
spin and parity, and the root-mean-square radii are the same
as in Table I. In the parentheses the uncertainty of the pre-
sented results is indicated. For 1s and 2s states it is mainly
due to the Bohr-Weisskopf effect and must generally be con-
sidered as the order of magnitude of the expected error bar.
For some ions we give also a second value for the uncer-
tainty, which corresponds to the uncertainty of the nuclear
magnetic moment. The values for lithiumlike 45Sc18+ and
boronlike 45Sc16+, 57Fe21+ ions coincide with our previous
results �43–45�. Due to the lack of experimental data one
cannot make a detailed comparison for the ions under con-
sideration.

Table X shows excellent accuracy for the values of the
hyperfine splitting of H-, Li- and B-like ions. For the H- and
Li-like ions the limitation of the total accuracy is set by the
Bohr-Weisskopf correction. However, this uncertainty can be
considerably reduced in the specific difference of the ground-
state hyperfine structure values of H- and Li-like ions with
the same nucleus �9�

��E = �E�2s� − ��E�1s�. �25�

The parameter � has to be chosen to cancel the Bohr-
Weisskopf correction

� =
1

8

A�2s���Z��1 − 	�2s��
A�1s���Z��1 − 	�1s��

f��Z� . �26�

The function f��Z� is defined by the ratio of the Bohr-
Weisskopf corrections

f��Z� =

�2s�


�1s� . �27�

This function can be calculated to a rather high accuracy
because it is determined mainly by the behavior of the wave
functions at the atomic scale and thus almost independent of
the nuclear structure �9�. In Table XI we present the numeri-
cal results for the parameter � and for the specific difference
��E between the hyperfine splitting values of H- and Li-like
ions. The theoretical accuracy of the presented values ��E is
better than 0.01% and the given uncertainty is determined by
the limited knowledge of the nuclear magnetic moments.

Let us summarize: Ab initio QED calculations of the
ground-state hyperfine splitting of H-, Li-, and B-like ions in
the intermediate-Z region have been performed. The evalua-
tion incorporates results based on a rigorous treatment of
first-order many-electron QED effects and on the large-scale
CI-DFS calculations of the second- and higher-order
electron-correlation effects. The one-loop radiative correc-
tions have been evaluated to all orders in �Z. The screening
QED effect in Li- and B-like sequences have been taken into
account utilizing a local Kohn-Sham potential. The Bohr-
Weisskopf correction has been calculated employing the
single-particle nuclear model. As the result, the most accu-
rate values for the hyperfine splitting of H-, Li-, and B-like
ions under consideration have been obtained. The specific

difference of the hyperfine splitting values of H- and Li-like
ions, where the uncertainties associated with the nuclear-
structure corrections are significantly canceled, has been
evaluated with an accuracy better than 0.01%.
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TABLE XI. The parameter � and specific difference ��E �meV�
between the hyperfine structure values of H- and Li-like ions, de-
fined by Eqs. �26� and �25�, respectively.

Nucleus � /�N � ��E

14N 0.40376 0.12531 −0.009955
15N −0.28319 0.12530 −0.009298
17O −1.8938�1� 0.12539 −0.04919
19F 2.6289 0.12550 −0.1451
21Ne −0.66180�1� 0.12561 −0.03029
23Na 2.2175 0.12574 −0.1237

2.2177 0.12574 −0.1237
25Mg −0.85545�8� 0.12588 −0.05148
27Al 3.6415 0.12603 −0.2592
29Si −0.55529�3� 0.12619 −0.07699
31P 1.1316 0.12637 −0.1816
33S 0.64382 0.12656 −0.07904
35Cl 0.82187 0.12676 −0.1151
37Cl 0.68412 0.12676 −0.09587
39K 0.39147 0.12720 −0.07006

0.39151 0.12720 −0.07007
41K 0.21487 0.12720 −0.03856

0.21489 0.12720 −0.03857
43Ca −1.3176 0.12743 −0.2258
45Sc 4.7565 0.12768 −0.9098
47Ti −0.78848�1� 0.12794 −0.1759
49Ti −1.1042 0.12794 −0.2347
51V 5.1487 0.12822 −1.213
53Cr −0.47454�3� 0.12851 −0.1440
55Mn 3.4687 0.12881 −1.044

3.4532�13� 0.12881 −1.039
57Fe 0.090623 0.12912 −0.04989

0.090764 0.12912 −0.04996

0.09044�7� 0.12912 −0.04979�4�
59Co 4.627�9� 0.12945 −1.599�3�
61Ni −0.75002�4� 0.12979 −0.3307
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