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The calculation of the radial matrix elements of alkali metal Rydberg states is of interest with principal
quantum number n up to 70. Until now calculations of the radial matrix elements have mainly concerned the
states with n�30. We use B-spline expansion technique and model potentials to calculate the radial matrix
elements by numerical integration with 16 decimal digits precision. We are able to obtain the radial matrix
elements of alkali metal Rydberg states with n up to 145, with five significant digits. As a test example, we also
compute the positions and widths of the anticrossings for highly excited Stark states of Na with principal
quantum number n up to 70.
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I. INTRODUCTION

The calculation of the radial matrix elements of alkali
metal Rydberg states is of interest with principal quantum
number n up to 70. In the astrophysical environment, high
Rydberg atoms are formed with a wide range of values of the
principal quantum number n by radiative recombination pro-
cess. As a result, theoretical calculations involving transition
matrix elements, radiative lifetimes, and oscillator strengths
have become important to support experimental results con-
cerning high n states of Rydberg atoms �1�. The multiphoton
ionization of alkali metal atoms in strong microwave fields is
taken as multistep or rate-limiting step processes; and the
ionization threshold is determined by the first transition step
�2�. Each step is taken as a multiphoton transition process
�3�. To calculate the multiphoton transition, the radial matrix
elements of an alkali metal Rydberg state are needed with
principal quantum number n up to 70 �4�. Therefore, it is
desirable to have a theoretical method to calculate the radial
matrix elements of alkali metal Rydberg states with principal
quantum number n up to 70 or more.

Until now calculations about the radial matrix elements of
alkali metal Rydberg states have mainly concerned the states
with principal quantum number n�30 �5–7�. The reason
may be due to the fact that one of the commonly used meth-
ods to calculate the radial matrix elements is the Coulomb
approximation. The Coulomb approximation �CA� wave
functions or analytical CA method cannot be directly applied
to cases with high principal quantum numbers �n�30� �8�.
To our knowledge, only Li et al. �9� have reported a theoret-
ical calculation of the radial matrix elements of Rydberg
states of Rb with principal quantum number n�52, where
the wave functions from a kind of atomic potential model are
used and the radial matrix elements are computed by direct
numerical integration with 32 decimal digits precision.

Recently, B-spline has been widely applied to the calcu-
lation of atomic and molecular physics �10�. As the first ap-
plication of B-spline basis to atoms in external field, Xi et al.

�11� calculated the accurate energies of ground and low ex-
cited states of a hydrogenic atom in a magnetic field of arbi-
trary strength. Liu et al. �12� computed the spectrum and
lifetime of the hydrogen circular states. Rao et al. �13� cal-
culated accurate complex energies of low-lying resonances
for a wide range of electric-field strength with a B-spline
basis. Jin et al. �14,15� used B-spline to study microwave
multiphoton transition and anticrossings of potassium Ryd-
berg states. Numerous applications of the B-spline basis al-
gorithm show the power of B-spline functions in theoretical
calculations.

The purpose of the present paper is to explore the ap-
proach to calculate the radial matrix elements of alkali metal
Rydberg states with higher principal quantum number n. We
use B-spline expansion technique and a parametric model
potential to calculate the radial matrix elements by numerical
integration with 16 decimal digits precision. We are able to
obtain the radial matrix elements of alkali metal Rydberg
states with n up to 145, with five significant digits which is
accurate enough for all applications. As a test example, we
also compute the positions and widths of the anticrossings
for highly excited Stark states of Na with principal quantum
number n up to 70 and compare the results with other ones
whenever available.

II. METHOD

The Hamiltonian for an alkali metal atom is as follows �in
atomic units�:

H0 = − 1
2�2 + V�r� , �1�

where V�r� is the one-electron parametric model potential
which includes the short-range correlation effect given by
Marinescu et al. �16� and takes the form

Vl�r� = −
Zl�r�

r
−

�c

2r4 �1 − e−�r/rc�6
� , �2�

where �c is the static dipole polarizability of the positive-ion
core, and the radial charge Zl�r� is given by*Corresponding author; yongli@phy.ccnu.edu.cn
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Zl�r� = 1 + �z − 1�e−a1r − r�a3 + a4r�e−a2r, �3�

where z is the nuclear charge of the neutral atom and rc is the
cutoff radius introduced to truncate the unphysical short-
range contribution of the polarization potential near the ori-
gin. The optimized parameters in �2� and �3� are listed in
Table I �reproduced from Table 1 of Ref. �16��. This model
potential can well describe the motion of the valence electron
for the alkali metal atoms.

To obtain the radial matrix elements, we need the eigen-
functions of the Hamiltonian �1�. We tackle this eigenvalue
problem with the conventional diagonalization method, in
which the bases are chosen from B-splines.

Given a knot sequence on the r axis �r1�r2�r3� ¯

�rN� ¯ �rN+k�, B-spline function of order k is defined as
�17�

Bi,1�r� = �1, ri � r � ri+1,

0, otherwise,
�

Bi,k�r� =
r − ri

ri+k−1 − ri
Bi,k−1�r� +

ri+k − r

ri+k − ri+1
Bi+1,k−1�r� �k � 1� .

�4�

It is immediately seen that Bi,k is piecewise polynomial of
order k−1 localized within �r1 ,rN+k�, while Bi,k is nonvanish-
ing only within �ri ,ri+k�. The behavior of the B-spline func-
tions can be readily adjusted with the knot sequence, viz., the
choice of knot point ri, order k, and number of B-splines N,
which offers a means to optimize the B-splines as a basis set
to expand the wave functions.

The radial wave function Rnl�r� of Hamiltonian �1� can be
constructed with the B-splines as a basis set,

Rnl�r� = 	
i=1

N

CiBi,k�r� . �5�

Substituting Rnl�r� and Vl�r� into the radial Schrödinger
equation of Hamiltonian �1�, we obtain

H̄C̄ = ES̄C̄ , �6�

where H̄ is the Hamiltonian matrix and S̄ is the overlap ma-

trix of B-splines. E and C̄ are eigenvalues and eigenvectors,
respectively. Solving this generalized eigenvalue equation,
we obtain the radial wave functions that have correct number
of nodes.

The Hamiltonian for an alkali metal atom subject to a
static field F along the z axis is as follows �in atomic units�:

H = − 1
2�2 + V�r� + Fz . �7�

Using the above zero-field wave functions as a basis, the
matrix elements of the Hamiltonian �7� have the following
form:

Hnlm,n�l�m = �nlm,n�l�mEnlm + Fs
nl�r�n�l��
lm�cos ��l�m� ,

�8�

where �nlm,n�l�m is a product of Kronecker � function. Be-
cause the off-diagonal matrix element of r decreases rapidly
as the energy difference between two corresponding states
increases, the bases are chosen only in the vicinity of the
studied states. By diagonalizing the matrix of H, the posi-
tions and widths of the anticrossings can be obtained.

III. RESULTS AND DISCUSSIONS

Once the eigenfunctions of the Hamiltonian �1� are ob-
tained, we can calculate the radial matrix elements,

nl�r�n�l��, by the direct numerical integration with 16 deci-
mal digits precision. To test the precision of the method, we
calculate some radial matrix elements for hydrogen. The re-
sults are listed in Table II. For comparison with previous
calculation, the numerical results from Li et al. �9� are also
presented in Table II. As n− l increases, due to the fact that
the number of nodes and grid points becomes large, numeri-
cal integration errors also increase. From Table II we can see
that even if n− l is as high as 145, the precision of our nu-
merical integration is at least up to five significant figures. In
contrast, the precision of Li et al. is only up to five signifi-
cant figures when n− l reaches to 64, moreover, their results
were calculated with 32 decimal digits precision. This means
if we calculate the radial matrix elements with 32 decimal
digits precision, ones with n more than 145 can be obtained
with five significant digits. But the present calculated results
are enough for all applications.

As a test example, we compute the positions and widths
of the initial anticrossings for highly excited Stark states of
Na with principal quantum number n up to 70. The potential
used here is the one given by Marinescu et al. �16�. Accord-
ing to the analysis of the effects of errors in the matrix ele-
ments �19�, using our radial matrix elements, the errors due
to the precision of numerical integration can be neglected
when we calculate the positions and widths of the initial
anticrossings of Na Stark states with n up to 145.

TABLE I. Optimized parameters for the l-dependent model potential of Na �reproduced from Table 1 of
Ref. �16��.

a1 a2 a3 a4 rc �c

l=0 4.82223117 2.45449865 −1.12255048 −1.42631393 0.45489422

l=1 5.08382502 2.18226881 −1.19534623 −1.03142861 0.45798739
0.9448

l=2 3.53324124 2.48697936 −0.75688448 −1.27852357 0.71875312

l�3 1.11056646 1.05458759 1.73203428 −0.09265696 28.6735059
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The sodium Stark maps in the neighborhood of n=20
��m�=0,1� are shown in Figs. 1 and 2, respectively. For sim-
plicity, the notation �n , l� represents the states that connect
adiabatically to the field-free state of principal quantum
number n and angular momentum quantum number l, and
�n , l1− l2� denotes a Stark manifold which contains
�n , l1� , �n , l1+1� , . . . , �n , l2�.

In investigating the anticrossing, the energy difference of
two relevant levels is a function of the electric field. The
minimal value of this function is at the point where the po-
sition of anticrossing is defined, and the width of anticross-
ing is defined as this minimal value.

TABLE II. Radial matrix elements 
n , l�r�n , l� for hydrogen, thl
denotes the calculated numerical results of Li et al. �9�, ths denotes
our calculated numerical results.

n l
Exact results

�a.u.�
thl

�a.u.�
ths

�a.u.�

6 5 39.0 38.999999999981 39.000000000001

10 5 135.0 134.99999999997 135.00000000004

20 5 585.0 584.99999999994 585.00000000006

30 5 1335.0 1334.9999999998 1334.9999999998

40 5 2385.0 2384.9999999998 2385.0000000003

50 5 3735.0 3734.9999999998 3735.0000000001

60 5 5385.0 5385.000016 5385.0000000002

70 5 7335.0 7335.54 7335.000000002

80 5 9585.0 9585.000000001

90 5 12135.0 12134.999999992

100 5 14985.0 14985.00000003

105 5 16522.5 16522.49999997

110 5 18135.0 18134.99999997

115 5 19822.5 19822.50000009

120 5 21585.0 21584.9999997

125 5 23422.5 23422.5000004

130 5 25335.0 25334.9999994

135 5 27322.5 27322.500001

140 5 29385.0 29384.999992

145 5 31522.5 31522.500002

150 5 33735.0 33734.997

TABLE III. Calculated positions of the first anticrossing be-
tween Stark manifold n and n+1 in Na for the case of �m�=0−2, n
ranging from 15 to 35. thl denotes the calculated positions of Li �7�.
ths denotes our calculated positions. All values are given in V/cm.

n

�m�=0 �m�=1 �m�=2

thl ths thl ths thl ths

15 2163 2163 2194 2195 2365 2366

16 1569 1569 1592 1592 1707 1707

17 1160 1160 1177 1177 1257 1257

18 873.0 873.1 885.6 885.8 941.4 941.6

19 667.0 667.2 676.6 676.7 716.7 716.8

20 516.8 516.9 524.1 524.2 553.4 553.5

21 405.4 405.4 411.0 411.1 432.7 432.8

22 321.6 321.6 326.0 326.1 342.4 342.4

23 257.8 257.8 261.2 261.3 273.7 273.8

24 208.5 208.6 211.3 211.4 220.9 221.0

25 170.2 170.2 172.4 172.4 179.9 180.0

26 140.0 140.0 141.8 141.8 147.7 147.7

27 116.0 116.0 117.5 117.5 122.2 122.2

28 96.81 96.83 98.00 98.02 101.80 101.80

29 81.29 81.30 82.27 82.28 85.32 85.34

30 68.65 68.67 69.47 69.49 71.96 71.97

31 58.32 58.33 58.99 59.01 61.03 61.04

32 49.79 49.80 50.35 50.37 52.03 52.05

33 42.71 42.72 43.19 43.20 44.59 44.59

34 36.81 36.82 37.22 37.22 38.38 38.39

35 31.86 31.87 32.21 32.21 33.18 33.19

FIG. 1. Stark energy levels of sodium in the vicinity of n=20
��m�=0�. A is the initial anticrossing between Stark manifold 20 and
21.

FIG. 2. Stark energy levels of sodium in the vicinity of n=20
��m�=1�. A is the initial anticrossing between Stark manifold 20 and
21.
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We calculate the positions and widths of the initial anti-
crossings between Stark manifold n and n+1 in sodium for
the case of �m�=0–2 and n=15–70. In our calculation, we
use the B-spline basis with order k=9 and number N=1000.
The knot sequence is determined by exponential sequence. In
this way, the B-spline basis can best represent the zero-field
behavior. The basis is chosen from the zero-field wave func-
tions from n−4 to n+7 manifolds. This choice has warranted
the convergence of the related positions and widths.

The results of the positions and widths with n from 15 to
35 are presented in Tables III and IV, respectively. For com-
parison with the corresponding data of Li �7�, his results are
also listed in Tables III and IV. We can see from Tables III
and IV that our theoretical values are in good agreement with
Li. However, our calculated widths are narrower than those
of Li in the case of �m�=2. The reason may be that different
model potentials are chosen for two calculations. We need
experiments to confirm which model potential is better.

The calculated positions and widths of the first anticross-
ings for highly excited Stark states of Na with principal
quantum number n ranging from 35 to 70 are listed in Tables
V and VI, respectively. In order to compare the calculated
locations of anticrossings with the 1 /3n5 scaling law �7�, the
field positions of 1 /3n5 are also listed in Table V. From
Table V, we can see that all fields of the initial anticrossings
follow the 1 /3n5 scaling law. From Table VI, we can see that

the widths for �m�=2 are much narrower than the ones for
�m�=0,1. This is because the �m�=2 states are composed of
zero-field l�2 states, all of which have small quantum de-
fects, and as a result, the avoided crossings between different
n are very small.

Another important potential for Na+-e system is given by
Peach �18� and has the following form:

Ve�x� = −
z

x
−

Z

x
�1 + �x + ��x2�exp�− �x� −

�d

2x4	2�
x�

−
�q�

2x6	3�
�x� , �9�

in which the function 	n�y� is defined by

	n�y� = ��n�y��2 �10�

and

�n�y� = 1 − exp�− y�	
m=0

n
ym

m!
. �11�

The optimized parameters in �9�–�11� are listed in Table VII
�reproduced from Table 1 of Ref. �18��.

Both the potential of Peach and the potential of Marinescu
et al. with angular momentum l=0 and 5 are presented in
Figs. 3�a� and 3�b�, respectively. We can see that there is
almost no difference between two potentials at large values
of R, especially for higher angular momentum. But at small

TABLE IV. Calculated widths of the first anticrossing between
Stark manifold n and n+1 in Na for the case of �m�=0–2, n ranging
from 15 to 35. thl denotes the calculated widths of Li �7�. ths de-
notes our calculated widths. All values are given in 1 /cm.

n

�m�=0 �m�=1 �m�=2

thl ths thl ths thl ths

15 1.211 1.203 5.621−1 5.532−1 1.075−2 6.747−3

16 9.016−1 8.956−1 4.120−1 4.051−1 7.235−3 4.362−3

17 6.836−1 6.789−1 3.072−1 3.020−1 4.981−3 2.886−3

18 5.268−1 5.231−1 2.329−1 2.288−1 3.503−3 1.950−3

19 4.120−1 4.090−1 1.791−1 1.758−1 2.514−3 1.342−3

20 3.263−1 3.239−1 1.395−1 1.369−1 1.826−3 9.390−4

21 2.615−1 2.596−1 1.100−1 1.079−1 1.351−3 6.671−4

22 2.118−1 2.102−1 8.764−2 8.592−2 1.013−3 4.806−4

23 1.732−1 1.719−1 7.053−2 6.911−2 7.692−4 3.505−4

24 1.429−1 1.418−1 5.726−2 5.609−2 5.911−4 2.587−4

25 1.188−1 1.179−1 4.688−2 4.591−2 4.597−4 1.929−4

26 9.956−2 9.877−2 3.868−2 3.786−2 3.617−4 1.453−4

27 8.401−2 8.331−2 3.221−2 3.145−2 2.851−4 1.104−4

28 7.130−2 7.072−2 2.689−2 2.630−2 2.323−4 8.458−5

29 6.088−2 6.038−2 2.623−2 2.213−2 1.833−4 6.529−5

30 5.227−2 5.184−2 1.915−2 1.873−2 1.486−4 5.076−5

31 4.511−2 4.474−2 1.630−2 1.593−2 1.213−4 3.974−5

32 3.912−2 3.879−2 1.395−2 1.362−2 9.968−5 3.129−5

33 3.407−2 3.379−2 1.198−2 1.171−2 8.243−5 2.479−5

34 2.980−2 2.955−2 1.036−2 1.010−2 6.864−5 1.974−5

35 2.617−2 2.595−2 8.897−3 8.755−3 5.741−5 1.580−5

TABLE V. Calculated positions of the first anticrossing between
Stark manifold n and n+1 in Na for the case of �m�=0–2, n ranging
from 36 to 70. The positions from the scaling law 1 /3n5 in atomic
units or 1.71�109n−5 in units of V/cm are also listed. All values are
given in V/cm.

n �m�=0 �m�=1 �m�=2 1 /3n5

36 27.694 27.990 28.813 28.280

37 24.161 24.414 25.112 24.660

38 21.155 21.373 21.967 21.581

39 18.587 18.775 19.283 18.953

40 16.384 16.547 16.983 16.700

41 14.487 14.629 15.004 14.760

42 12.848 12.972 13.296 13.084

43 11.426 11.535 11.816 11.632

44 10.189 10.285 10.529 10.369

45 9.109 9.193 9.407 9.267

46 8.164 8.238 8.426 8.302

47 7.334 7.400 7.564 7.456

48 6.604 6.662 6.807 6.711

49 5.959 6.010 6.138 6.054

50 5.388 5.434 5.547 5.472

55 3.350 3.377 3.440 3.397

60 2.171 2.187 2.225 2.199

65 1.456 1.467 1.490 1.474

70 1.006 1.013 1.028 1.017
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values of R, the two potentials differ very much, as indicated
in Fig. 3�a�. In order to see the effect of the different poten-
tial on the radial matrix elements, we calculate the radial
matrix elements of sodium using the two potentials. The re-
sults are listed in Tables VIII and IX for angular momentum
l=0 and 5, respectively. Table VIII shows that the difference
of the radial matrix elements from different potentials is ob-
vious for the case of l=0. However, Table IX shows the
radial matrix elements with potential of Marinescu et al. are
almost the same as ones with the potential of Peach for the
case of l=5. This is easy to understand if we notice that there
is a relative large difference between two potential curves for
the case of l=0 in Fig. 3�a� but the potential curve of Mari-
nescu et al. is almost the same as the one of Peach for the
case of l=5 in Fig. 3�b�.

For very large quantum numbers, the outer electron is far
from the core and Zl�r�=1 in Eq. �3� should be a good ap-

proximation, i.e., Coulomb potential plus long-range poten-
tial only in Eq. �2�. To check this fact, we calculate the radial
matrix elements of sodium using the potential of Marinescu
et al. with Zl�r�=1. The results for this case are also listed in
Tables VIII and IX. We can see from Table VIII that there is
a relative large difference between the radial matrix elements

TABLE VI. Calculated widths of the first anticrossing between
Stark manifold n and n+1 in Na for the case of �m�=0–2, n ranging
from 36 to 70. All values are given in 1 /cm.

n �m�=0 �m�=1 �m�=2

36 2.287−2 7.618−3 1.270−5

37 2.023−2 6.654−3 1.025−5

38 1.795−2 5.832−3 8.312−6

39 1.598−2 5.129−3 6.763−6

40 1.427−2 4.526−3 5.521−6

41 1.278−2 4.006−3 4.521−6

42 1.148−2 3.555−3 3.713−6

43 1.033−2 3.165−3 3.058−6

44 9.325−3 2.824−3 2.524−6

45 8.435−3 2.527−3 2.088−6

46 7.648−3 2.266−3 1.731−6

47 6.949−3 2.037−3 1.437−6

48 6.327−3 1.836−3 1.194−6

49 5.771−3 1.657−3 9.938−7

50 5.275−3 1.500−3 8.277−7

51 4.830−3 1.359−3 6.900−7

52 4.430−3 1.235−3 5.755−7

53 4.070−3 1.123−3 4.798−7

54 3.746−3 1.024−3 3.992−7

55 3.452−3 9.349−4 3.322−7

60 2.346−3 6.072−4 1.290−7

65 1.645−3 4.081−4 4.469−8

70 1.184−3 2.825−4 8.267−9

TABLE VII. Parameters for the l-dependent pseudopotential of Na �reproduced from Table 1 of Ref.
�18��.

� �� � Z z �d �q� 
 
�

l=0 −22.196651 −1.816006 4.228122

l=1 −5.110092 −0.076640 2.945816 10 1 0.92389 0.857369 4.668978 3.157998

l�2 −0.378834 0.341705 2.708505

(a)

(b)

FIG. 3. �a� The parametric model potential �16� and the pseudo-
potential �18� for Na+-e system with l=0. The solid line denotes the
parametric model potential curve; the dotted line denotes the para-
metric model potential curve with the radial charge Zl�r�=1; the
dashed line denotes the pseudopotential curve. �b� The parametric
model potential �16� and the pseudopotential �18� for Na+-e system
with l=5. The solid line denotes the parametric model potential
curve; the dotted line denotes the parametric model potential curve
with the radial charge Zl�r�=1; the dashed line denotes the pseudo-
potential curve.
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with the full potential and ones with Zl�r�=1 for the case of
l=0, even if the principal quantum number is as large as n
=150. We can understand this result if we note that there are
the penetration and polarization for the case of l=0, even if
the principal quantum numbers are large. We can also see
from Table IX that the radial matrix elements with the full
potential are almost the same as ones with Zl�r�=1 for the
case of l=5 since there is almost no penetration and polar-
ization for this case. We conclude that Zl�r�=1 in Eq. �3�
could be used when both the angular momentum quantum
number and the principal quantum number are large.

Summarizing, in this paper, we report the approach that
can be used to calculate the radial matrix elements of alkali
metal Rydberg states with principal quantum number n up to
145. They are needed to calculate the transition matrix ele-
ments, radiative lifetimes, oscillator strengths and polariz-
abilities for alkali metal Rydberg states. The multiphoton
ionization of alkali metal atoms in strong microwave fields is
taken as multistep or rate-limiting step processes; and the
ionization threshold is determined by the first transition step
�2�. Each step is taken as a multiphoton transition process
�3�. To calculate the multiphoton transition, the radial matrix

TABLE VIII. Diagonal radial matrix elements 
n , l �r �n , l� for sodium, th1 denotes the calculated numeri-
cal results using the potential of Marinescu et al. �16�, th2 denotes the numerical results using the potential
of Marinescu et al. with the radial charge Zl�r�=1, th3 denotes the numerical results using the potential of
Peach �18�.

n l th1 th2 th3

1 0 0.1621558908200 0.5899312538364 4.0919183456970

2 0 0.7791227731086 3.5949970382992 10.549081323874

3 0 4.0785280106979 9.7499294638674 20.005972022747

4 0 10.545661887702 18.900853810035 32.462476143000

5 0 20.003780864688 31.050824148270 47.918837132488

10 0 112.28457174267 136.79858998351 170.20017529766

15 0 279.56409857211 317.54595834311 367.48138934389

20 0 521.84355726495 573.29329582058 639.76258973392

30 0 1231.4024469083 1309.7879565742 1409.3249832890

50 0 3550.5202117411 3682.7772701072 3848.4497659530

70 0 7069.6379745311 7255.7665827504 7487.5745479457

100 0 14598.314614374 14865.250564669 15196.261735616

130 0 24826.991334075 25174.734619056 25604.948977079

150 0 33146.108349286 33547.724476749 34044.058904625

TABLE IX. Diagonal radial matrix elements 
n , l �r �n , l� for sodium, th1 denotes the calculated numerical
results using the potential of Marinescu et al. �16�, th2 denotes the numerical results using the potential of
Marinescu et al. with the radial charge Zl�r�=1, th3 denotes the numerical results using the potential of Peach
�18�.

n l th1 th2 th3

6 5 38.999347056669 38.999335314732 38.997608594992

7 5 58.499500604121 58.499477081881 58.497100982619

8 5 80.999490599985 80.999456877204 80.996626311552

9 5 106.49944770492 106.49940512279 106.49616834578

10 5 134.99939590475 134.99934540297 134.99571957878

15 5 322.49911160361 322.49902783661 322.49352645786

20 5 584.99881930748 584.99870565217 584.99135672756

30 5 1334.9982311779 1334.9980595613 1334.9870284596

40 5 2384.9976420847 2384.9974130030 2384.9827031175

50 5 3734.9970527706 3734.9967663297 3734.9783783790

70 5 7334.9958737247 7334.9954730971 7334.9697290657

100 5 14984.994099092 14984.993519846 14984.956761287

130 5 25334.992416926 25334.991732099 25334.943807141

150 5 33734.988079040 33734.969279223 33734.930611908
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elements of an alkali metal Rydberg state with principal
quantum number n up to 70 are also needed. We also calcu-
late the theoretical positions and widths of the initial anti-
crossings between Stark manifold n and n+1 in sodium with
principal quantum number n up to 70 using our approach that
use B-spline basis set and a parametric model potential.
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