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We propose a scheme to realize the Heisenberg model of any spin in an arbitrary array of coupled cavities.
Our scheme is based on a fixed number of atoms confined in each cavity and collectively applied constant laser
fields, and is in a regime where both atomic and cavity excitations are suppressed. It is shown that as well as
optically controlling the effective spin Hamiltonian, it is also possible to engineer the magnitude of the spin.
Our scheme would open up a way to simulate otherwise intractable high-spin problems in many-body physics.
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The Heisenberg spin model has played a crucial role as a
basic model accounting for the magnetic and thermodynamic
natures of many-body systems. Despite extensive investiga-
tions, however, many aspects of the model are still largely
unexplored both analytically and numerically, especially for
the cases of higher spins. The main difficulty in the numeri-
cal treatment originates from the fact that the Hilbert-space
dimension blows up exponentially as the number of spins
increases. As Feynman first noted �1�, this difficulty would
be overcome in terms of quantum simulation based on pre-
cisely controlled quantum systems. Realization of quantum
simulation, expected in the near future, will mark a milestone
toward the realization of sophisticated quantum computation.

In the context of quantum information processing, a qubit
is identical to an s= 1

2 spin, and in a few implementations,
such as the arrays of Josephson junctions �2� or quantum
dots �3�, the spin-chain Hamiltonian naturally emerges from
the spin-like coupling between qubits, albeit with limited
control of the coupling constants. On the other hand, in op-
tical lattices, perturbative evolution with respect to the Mott-
insulator state can be described by an effective spin-chain
Hamiltonian �4,5�. This approach has its own merit in that
the spin-coupling constants can be optically controlled to a
great extent. An alternative approach, recently under active
investigation, is to use the array of coupled cavities, which
are ideally suited to addressing individual spins �6–14�. In
this approach, a spin is represented by either polaritons or
hyperfine ground levels. The former, proposed in Refs.
�8,14�, allows a stronger spin-spin coupling than the latter,
but lacks the optical control of the coupling. On the other
hand, the latter, proposed in Ref. �9�, retains the optical con-
trollability, but relies on rapid switching of optical pulses and
the consequent Trotter expansion, which unavoidably in-
volves additional errors and makes error-free implementation
more difficult. More importantly, the question of simulating
chains of higher spins, which may have a completely differ-
ent phase diagram, remains open. In some sense, these are
more important to simulate because, unlike spin-1

2 chains,
they do not have exact analytical solutions for a wide range
of parameters including the XXX case, except for special
kinds of models �15�. Additionally, going to higher spins
should make perturbative spin-wave theory more accurate,
whose predictions can be tested.

In this paper, we propose a scheme to realize the aniso-
tropic �XXZ� or isotropic �XXX� Heisenberg spin model of
any spin in an arbitrary array of coupled cavities. Our
scheme is experimentally feasible in that simply applying a
small number of constant laser fields suffices for our pur-
pose. If the number of lasers is increased, the individual con-
stants of the spin Hamiltonian are controlled more flexibly.
Most of all, a strong advantage of our scheme is that the
magnitude of the spin itself can be engineered arbitrarily.
This advantage contrasts with all the earlier schemes men-
tioned above including those for optical lattices, in which the
spin is fixed in nature mostly as s= 1

2 �s=1 in Ref. �5��. s
�

1
2 spin chains exhibit fascinating physics that s= 1

2 spin
chains cannot have. A well-known example is Haldane’s con-
jecture that antiferromagnetic Heisenberg integral-spin
chains have a unique disordered ground state with a finite
excitation gap, whereas half-integral-spin chains are gapless
�16,17�. Our scheme could be used to prepare a ground state,
for example, through an adiabatic evolution, and measure its
excitation gap and spin correlation functions �5�. The advan-
tage of our scheme is, however, more apparent when we
consider higher-spin problems intractable with any previous
method. One of the intriguing examples is the quantum spin
dynamics of the ferric wheels such as Fe6 and Fe10 composed
of s= 5

2 spins �18�. These systems would be simulatable with
a relatively small number �6 or 10� of cavities. Spin chains
also play an important role as a quantum channel for short-
distance quantum communication �19�. The property of an
s=1 antiferromagnetic spin chain as a quantum channel
strongly depends on its phase �20�. In some phases, it pro-
vides an efficient channel, outperforming that of a ferromag-
netic chain. It has been also shown that a ground state with
an excitation gap, as is the case for the spin-1 chain, can
serve as a more efficient quantum channel �21�. The ground
state of the antiferromagnetic spin-1 chain also establishes
the so-called localizable entanglement between two ends,
which can be extracted by measuring every intermediate spin
�22� and then used for quantum communication. It is hard to
demonstrate these schemes in optical lattices owing to the
difficulty of addressing individual sites �23�. Although the
idea of communicating using spin chains is ultimately meant
for solid-state applications, our system can serve as a pre-
liminary test for comparing and contrasting the performance
of various spin-s chains.
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We use two ground levels of a three-level atom to repre-
sent an s= 1

2 spin �in a rotated basis, as will be seen later�. We
start by recalling that in terms of two states �↓� and �↑� of one
atom, the s= 1

2 spin is described in terms of operators sZ

= 1
2 ��↑ ��↑�− �↓ ��↓��, s+= �↑ ��↓�, and s−= �↓ ��↑�. Our starting

point is an observation that if there are M identical atoms,
one can straightforwardly define total spin operator SZ

=� j=1
M sj

Z with S�=� j=1
M sj

� �j is the index for the atoms�, by
which the atoms represent S= M

2 , M
2 −1, and so on. Keeping

this in mind, let us consider a coupled array of identical
cavities in an arbitrary geometry, each of which contains M
identical single atoms. We employ the Dicke-type model, in
which every atom in a cavity interacts with the cavity mode
with the same coupling strength �24�. Let us first consider a
simple case, as depicted in Fig. 1. Let us denote by ��� jk the
state ��� of the kth atom in the jth cavity. In the rotating
frame, the Hamiltonian reads

H = �
j

�ei�1t�1� j
eb + ei�2t�2� j

ea + H.c.�

+ �
j

��ei�1tg1� j
ea + ei�2tg2� j

eb�aj + H.c.�

+ �
j

�

2
�� j

ab + � j
ba� − �

�j,k�
J�aj

†ak + ajak
†� , �1�

where � j
xy =�k=1

M ��x��y�� jk �x ,y=a ,b ,e�, aj is the annihilation
operator for the jth cavity mode, � j is the corresponding
detuning, � j and �

2 are the corresponding Rabi frequencies
of the classical fields, gj is the corresponding atom-cavity
coupling rate, and J is the intercavity hopping rate of pho-
tons. Both the transitions are coupled to the same cavity
mode. The transition between �a� and �b� is induced by two-
photon Raman transition using far-detuned lasers. Here, �j ,k�
represent nearest-neighbor pairs. For now, we ignore the
spontaneous decay rate � of the atom.

Before we proceed, it is instructive to write down our
parameter regime

g1
2

�1
=

g2
2

�2
, �2�

� j,�1 − �2 		M

2
gj 	 J 
 �� j� , �3�

M
g1

2

�1

 �M

g1
2

�1
� �� 
 ��� 	 2J . �4�

The condition �2� can be fulfilled with conventionally used
alkali-metal atoms, such as rubidium and caesium. For ex-
ample, one may choose ground hyperfine levels �F=1,mF
=−1� and �F=2,mF=−1� of a 87Rb atom to represent �a� and
�b�, respectively, and use �+-polarized light, for which g1
�g2. The detuning � j is then comparable to the hyperfine
splitting between the two levels. Although there are multiple
excited levels, their contributions can be summed up and
denoted by single parameters in what follows. The other con-
ditions �3� and �4� can be satisfied simultaneously when
	M

2 gj /� j 	J /	M
2 gj. For example, our scheme works well in

the case � j /1000
	M
2 gj /100
J, which is allowed by

strong atom-cavity coupling.
Our regime is chosen so that the excitation of the atom or

the cavity photon is suppressed �condition �3��, while the
communication between atoms is mediated by virtual cavity
photons. The first step is to adiabatically eliminate the ex-
cited state using the conventional method, by which the ef-
fective Hamiltonian is given by

H = − �
j

g1
2

�1
�� j

aa + � j
bb�aj

†aj

− �
j

���1� j
ba + �2� j

ab�aj + H.c.�

+ �
j

�

2
�� j

ab + � j
ba� − �

�j,k�
J�aj

†ak + ajak
†� , �5�

where � j =
gj� j*

� j

. Now let us introduce spin operators in a

rotated basis

��↑� =
1
	2

��a� + �b��, �↓�
1
	2

��a� − �b�� �6�

to represent an s= 1
2 spin. Note that these are the eigenstates

of �
2 ��a��b�+ �b��a��. The underlying idea is to apply the Ra-

man lasers with Rabi frequency �
2 constantly, introducing a

fixed amount of energy splitting ��� between the two spin
states. The total spin is then defined in terms of the operators

Sj
Z = �

k=1

M

sjk
Z and Sj

� = �
k=1

M

sjk
�, �7�

where sjk
Z = 1

2 ��↑ ��↑�− �↓ ��↓�� jk, Sjk
+ = ��↑ ��↓�� jk, and sjk

−

= ��↓ ��↑�� jk. The total spin is given by Sj
2= �Sj

Z�2+ 1
2 �Sj

+Sj
−

+Sj
−SJ

+�. If M is even �odd�, the atoms represent integral

FIG. 1. Involved atomic levels and transitions. Both transitions
�a�↔ �e� and �b�↔ �e� are coupled to the same cavity mode with
coupling rates g1 and g2 and with detunings �1 and �2, respectively.
Two laser fields with Rabi frequency �1 and �2 are also applied
with detunings �1 and �2, respectively, and the transition between
ground levels �a� and �b� is driven with Rabi frequency � /2 by
Raman lasers. � denotes the atomic spontaneous decay rate.
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�half-integral� spins up to M
2 . The atomic operators are now

written as � j
↓↓=�ksjk

− sjk
+ = M

2 −Sj
Z, � j

↑↑=�ksjk
+ sjk

− = M
2 +Sj

Z, � j
↑↓

=Sj
+, and � j

↓↑=Sj
−. Substituting these operators, the Hamil-

tonian in the rotating frame reads

H = − �
j
��eit�12

+ Sj
Z + ei�+��t�12

−

2
Sj

+ − ei�−��t�12
−

2
Sj

−aj

+ H.c.� − �
�j,k�

J�aj
†ak + ajak

†� , �8�

where =M
g1

2

�1
and �12

� =�1��2. Note that in view of con-

ditions �3� and �4�, the effective Rabi frequency �	M
2 �12

� � is
much smaller than , ����, and ���. This allows us to make
use of the adiabatic elimination once more. We extend the
method in Ref. �25� to keep up to the third order terms and
take only the subspace with no cavity photon. Simple algebra
as in Ref. �25� yields the final Heisenberg spin Hamiltonian

H = �
j

�A�Sj�2 + B�Sj
Z�2 + CSj

Z�

− �
�j,k�

�D�Sj
XSk

X + Sj
YSk

Y� + ESj
ZSk

Z� , �9�

where A= 

2−�2

��12
− �2

2 , B=
��12

+ �2

 − 

2−�2

��12
− �2

2 , C=− �

2−�2

��12
− �2

2 , D

= J
2 ��

�12
−

+� �2+ �
�12

−

−� �2�, E=2J�
�12

+

 �2. This Hamiltonian already
covers a wide range of parametric regimes for the Heisen-
berg spin model, although individual control of the param-
eters is limited owing to their mutual dependency. Interest-
ingly, the Hamiltonian also contains the single-ion anisotropy
�Sj

Z�2, which is of essential importance in high-spin cases
�26�, whereas it is merely a meaningless constant in the
spin-1

2 case.
Full control of the individual parameters is allowed by

bringing in more lasers, shown in Fig. 2, in addition to the
setup of Fig. 1. The classical fields with Rabi frequency �3
and �4, which are applied with an additional detuning �

, make a similar contribution to the effective Hamiltonian
as those with �1 and �2. This can be reflected in Hamil-
tonian �8� by adding the same terms with  and �12

� replaced
by −� and �34

� , respectively, where �34
� =�3��4, �3

=
g1�3*

2
� 1

�1
+ 1

�1+� �, and �4=
g2�4*

2
� 1

�2
+ 1

�2+� �. The Stark shift

−�z�b��b� induced by another far-detuned laser field �using
a different level and polarization� results in adding
� j

�z

2 �ei�tSj
++e−i�tSj

−� in Hamiltonian �8�. Recall that in our
previous derivation, we have adjusted �0, ,��� so that
they are distinct in frequency with the similar frequency
spacing �condition �4��, thereby causing each summation in
the Hamiltonian �8� to contribute independently to the con-
stants in the final Hamiltonian �9�. We adjust �, , ��,
−�, and −��� in the same spirit. For the ease of pre-
sentation, let us take a particular situation where ��0, 
=3�, and −�=−6�, although this is not a necessary con-
dition. We then obtain the same Hamiltonian �9� with param-
eters given by A= 1

 � 9
16 ��12

− �2− 9
35 ��34

− �2�, B= 1
 ���12

+ �2

− 9
16 ��12

− �2− 1
2 ��34

+ �2+ 9
35 ��34

− �2�, C= 1
 � 3

2 ��z�2− 3
16 ��12

− �2

− 3
70 ��34

− �2�, D= J
2 � 45

32 ��12
− �2+ 333

1225 ��34
− �2�, and E= J

2 �2��12
+ �2

+ 1
2 ��34

+ �2�. Note that C is determined independently thanks to
the term ��z�2 /, while other terms are also determined
freely. Hence, this parameter set covers any anisotropic or
isotropic Heisenberg spin models, with the single-ion aniso-
tropy turned on or off.

The ground state of the spin Hamiltonian could be pre-
pared by the adiabatic method, as described in Ref. �5�. Al-
though the Hamiltonian �9� looks similar to a ferromagnetic
one �D ,E�0�, one can also simulate the antiferromagnetic
spin Hamiltonian, since other parameters A, B, and C can be
adjusted to have any sign. This can be easily seen by noting
that if the parameters A, B, and C are adjusted to be −1 times
those of a desired antiferromagnetic Hamiltonian, the Hamil-
tonian is equivalent to the antiferromagnetic one up to global
factor −1, hence with an inverted energy spectrum. Conse-
quently, the adiabatic preparation, starting from an antiparal-
lel spin configuration �5�, ends up with the highest energy
state, which in fact is the ground state of the corresponding
antiferromagnetic Hamiltonian.

Although atomic excitation is heavily suppressed, the
main source of decoherence in our system is the spontaneous
decay of atoms. In relation to the effective spin model, the
atomic spontaneous decay results in depolarization of the
spins. This effect can be accounted for by considering a con-
ditional Hamiltonian HC=H− i

2� j��A�� j
aa+�B�� j

bb�, where the
effective decay rates are approximately given by �A�

=��
��1�2

�1
2 +

��3�2

��1+��2 � and �B� =��
��2�2

�2
2 +

��4�2

��2+��2 �, assuming other la-
sers are sufficiently detuned and thus make a negligible con-
tribution to the decay. In particular, if � j’s are chosen in such
a way that the two contributions are balanced, i.e., �A� =�B�
=��, the depolarization is nearly independent of the spin
state. In this case, the conditional Hamiltonian is approxi-
mately given by HC=H− iNM ��

2 , where N is the number of
cavities. Consequently, the state of the system at time t may
be written as ��t�=e−NM��t�Q�t�+ �1−e−NM��t��M, where
�Q�t� is the desired quantum state evolved by the spin Hamil-
tonian and �M is the fully mixed state. This property is useful
for testing condensed-matter theories, since even under de-
polarization, the quantum nature retained in the coherent por-
tion �Q�t� could be observed over a time scale 
1 /NM��.
One requirement is that the spin-spin coupling rate multi-
plied by �M /2�2 should be much larger than the global de-
coherence rate. Reminding that the coupling rate is given

FIG. 2. Additional lasers to get full control of the spin Hamil-
tonian. These lasers are applied in addition to the setup of Fig. 1.
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by 
2J�� j�2 /2
�J /M��� j /	M /2gj�2, we require �

�
J

2N �
� j

	M/2gj
�2. Since � j 		M /2gj from condition �3�, this re-

quirement can be met for a moderate N if J
� is satisfied
along with our previous assumption of strong atom-cavity
coupling. Note, however, that testing Haldane’s conjecture
for higher-spin chains is more demanding, since the lowest
excitation gap is expected, from its asymptotic behavior, to
decrease rapidly with increasing M, while the spin correla-
tion length increases rapidly �16�. There are various micro-
cavity technologies under active development which are ex-
pected to fall into our regime of strong atom-cavity coupling
�27�, such as superconducting microwave cavities �28�, pho-
tonic band-gap microcavities �29�, and microtoroidal cavities
�30�. These models would be also suited to having a fixed
number of atoms in a cavity, by virtue of the progress in the
microfabrication techniques. For example, coupling two su-

perconducting qubits with a single cavity mode in a well-
controlled way has been demonstrated recently �28�, which
suggests the viability of the proposed way of engineering
spins �31�. An important point is that contrary to the system-
specific ideas, our scheme relies on a general model, which
would be available in a wide range of current or future sys-
tems.
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