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A simple relation is introduced for concurrence to describe how much the entanglement of a bipartite system
is at least left if either �or both� subsystem undergoes an arbitrary physical process. This provides a lower
bound for concurrence of mixed states �pure states are included� in contrast to the upper bound given by
Konrad et al. �Nat. Phys. 4, 99 �2008��. Our results are also suitable for general high-dimensional bipartite
quantum systems.
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I. INTRODUCTION

Quantum entanglement is an important physical resource
in quantum information and computation tasks such as quan-
tum teleportation �1�, quantum key distribution �2�, quantum
computation �3�, and so on. In realistic quantum-information
processing, entanglement must be prepared or distributed be-
forehand by two distant parties in which one or more physi-
cal systems must be transmitted by a quantum channel. How-
ever, unlike classical systems, quantum systems are usually
fragile. It is inevitable that environment �channel� will influ-
ence the systems of interest more or less and induce deco-
herence because of the interaction with the systems, so that
entanglement is destroyed to some extent before use �4–6�. It
is a key task to evaluate the shared entanglement after the
influence of environment.

In usual, one must deduce the time evolution of entangle-
ment of the composite system from the time evolution of the
quantum state under consideration �7�, when the subsystems
of the composite quantum system undergo a physical pro-
cess. That is to say, for the different potential initial states
one must repeat the same procedure every time. Quite re-
cently, an important step has been taken by Konrad et al. �8�
who provided an explicit evolution equation of quantum en-
tanglement quantified by the remarkable concurrence �9� for
a bipartite quantum state of qubits. It has been shown that
given any one-sided quantum channel, the concurrence of
output state corresponding to any initial pure input state of
interest can always be equivalently obtained by the product
of the concurrence of input state and that of the output state
with the maximally entangled state as an input state. How-
ever, for a two-sided quantum channel or the initial mixed
states, the product of the two concurrences only provides an
upper bound for the concurrence of interest. It is obviously
important to find a lower bound of the concurrence in order
to well grasp the entanglement of output states.

In fact, quantum-mechanics and quantum-information
processing �QIP� are not constrained to pure states as well as
�2 � 2�-dimensional quantum systems. Because of imperfect
experiments and inevitable disturbance of environments,
mixed �entangled� states are ubiquitous, which is inevitable
for QIP to cope with. Furthermore, on the one hand, when

we face the quantum features, especially entanglement, of
mesoscopic even macroscopic quantum systems, such as
Bose-Einstein condensates �10�, we must deal with high-
dimensional density matrices. On the other hand, it has been
shown that some QIP tasks based on high-dimensional en-
tangled states are more efficient than those of qubits. For
example, cryptographic protocols are more secure based on a
quantum channel of qutrits �11–13�. Teleportation can be
implemented in faith even though a nonmaximally entangled
quantum channel is shared �14�. Therefore, for these large
systems, it is necessary to investigate the entanglement of
high-dimensional quantum systems �multiparties included�.

However, quantification of entanglement, as a precondi-
tion of studying entanglement, is generally a hard problem
which does not only lie in the poor practicability for high-
dimensional quantum systems �15,16� but also the nonlinear-
ity on density matrices for usual entanglement measures
�17,18�. Therefore, it is often suggested to derive a lower
bound to evaluate the entanglement �entanglement can be
better evaluated, if both upper and lower bounds are given�.
In this paper, we consider the evolution of entanglement with
either �or both� subsystem undergoing an arbitrary quantum
channel. With concurrence as entanglement measure, we find
a lower bound of the concurrence of any output states for a
given quantum channel based on the evolution of a probe
state as input states. It is shown that our lower bound is not
restricted to the bipartite systems of qubits. In particular, for
the one-sided quantum channel, our lower bound has a con-
cise form. Furthermore, we also show that it is not necessary
to choose the maximally entangled state as the probe states.
The paper is organized as follows. In Sec. II, we give a lower
bound for the concurrence of bipartite quantum systems; in
Sec. III, we show that the lower bound can be obtained in
terms of the initial input state and the output state with the
probe state as initial states. Finally the conclusion is drawn.

II. LOWER BOUND FOR CONCURRENCE

An �N1 � N2�-dimensional bipartite quantum pure state
can be written as

���AB = �
i=0

N1−1

�
j=0

N2−1

�ij�ij� , �1�

where �ij� denotes the computational basis and N1�N2 ma-
trix � �i.e., ���AB without �¯ �AB� represents the matrix nota-*quaninformation@sina.com; ycs@dlut.edu.cn
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tion �19,20� of ���AB with matrix element �ij = �ij ���AB and
�i=0

N1−1� j=0
N2−1��ij�2=1. Consider the Schmidt decomposition,

���AB can also be given by

���AB = �
i=0

R−1

�i�ii�, �
i

�i
2 = 1, �2�

with �i being real in decreasing order and R=min	N1 ,N2
.
The concurrence of ���AB can be defined �21,22� as

C����AB� =� �
i,j=0�3�

i�j

N1−1

�
p,q=0

p�q

N2−1

��ip� jq − �iq� jp�2 �3�

=�4 �
i,j=0

i�j

R−1

�i
2� j

2. �4�

The equivalence of Eqs. �3� and �4� lies in that quantum pure
states are related to its Schmidt decomposition by local uni-
tary transformations which do not contribute to concurrence.
In particular, if N1=N2=2, Eq. �4� can be reduced to
C����AB�=2�1�2=2�det����, which will be used later. With
the definitions given by Eqs. �3� and �4�, we obtain the fol-
lowing theorem.

Theorem 1. For any �N1 � N2�-dimensional bipartite quan-
tum pure state ���,

C����� �� 2R

R − 1
�max

����E
�������2 −

1

R

 �5�

with E denoting the set of �N1 � N2�-dimensional maximally
entangled states.

Proof. Since max����E��� ����2 is not changed by any local
unitary transformation on ���, ��� can always be understood
in the form of Schmidt decomposition, i.e., ���AB

=�i=0
R−1�i�ii�. The maximally entangled state can be written as

���= 1
�R

�i=0
R−1�U1 � U2��ii�, with U1 and U2 denoting local uni-

tary transformations. Suppose ai= �ii ���, ai� �0, 1
�R

�, then
max����E��� ����2 can be rewritten as

max
����E

�������2 = max
����E

��
i=0

R−1

ai�i�2

� max
����E

��
i=0

R−1

�ai�i�
2

�
1

R
��

i=0

R−1

�i
2

=
1

R
�1 + 2 �

i,j=0;i�j

R−1

�i� j
 �6�

�
1

R
�1 + 2�R�R − 1�

2 �
i,j=0;i�j

R−1

�i
2� j

2
 �7�

=
1

R
�1 +�R�R − 1�

2
C�����
 . �8�

We arrive at the inequality �7� based on the inequality
��i=1

n xi�2 /n��i=1
n xi

2. Thus from inequality �8�, we can obtain

C����� �� 2R

R − 1
�max

����E
�������2 −

1

R

 . �9�

We would like to emphasize that the equal sign in Eq. �9� is
always achieved for the pure states of two qubits. That is to
say, the right-hand side of Eq. �9� is just the concurrence of
two-qubit pure states. However, for a general high-
dimensional quantum systems, the equal sign holds only for
maximally entangled states �in this case the equal sign in Eq.
�7� holds�, which shows that the inequality �9� provides a
lower bound for concurrence in high dimension. �

Since the maximum of Eq. �6� is obtained with �ai�=
1

�R
,

��� can be conveniently chosen as ��̃�= 1
�R

�i=0
R−1�ii�. Therefore,

a lower bound of concurrence can be given by

C����� �� 2R

R − 1
�Tr�	��̃���̃�� −

1

R

 �10�

with 	= ������. It is obvious that the lower bound in Eq. �10�
is less than that in Eq. �9�. But it can be used conveniently
because there does not exist maximization problem.

The inequality �10� can be immediately generalized to
mixed states. Concurrence for any �N1 � N2�-dimensional
mixed state 	 is defined as C�	�=min �piC��
i��, where the
minimum is taken over all possible decompositions such that
	=�pi�
i��
i�, �pi=1. Based on the optimal decomposition
	=�qi��i���i� such that C�	�=�qiC���i��, one can get

C�	� = � qiC���i��

�� 2R

R − 1 � qi�Tr���i���i���̃���̃�� −
1

R



=� 2R

R − 1
�Tr�	��̃���̃�� −

1

R

 . �11�

Inequality �11� holds for any bipartite quantum states which
provides the key result that will be used later.

III. EVOLUTION OF CONCURRENCE

A. One-sided quantum channel

Next, we will show that Eq. �11� can be captured by the
evolution of some probe states. Let us first consider an �N
� N�-dimensional bipartite quantum state 	 with only one
subsystem undergoing a quantum channel represented by the
superoperator S”1, then the final state can be given by 	 f

=
�S”1�1�	

p , where p=Tr��S”1 � 1�	� is the probability for chan-
nel S”1 which corresponds to non-trace-preserving channel
�12�. Any quantum state can be expanded in a representation
spanned by maximally entangled states given by

�� j� =
1

�N
�
k=0

N−1

ei�2j0k
/n��k��k � j1�, j = Nj0 + j1, �12�

where j0 , j1=0 ,1 , . . . ,N−1, �k� is the computational basis
and � denotes the addition modulo N. A maximally en-
tangled state ��m� can also be written as
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��m� = ��mP−1
� 1��P� , �13�

where �P�=�i,j=0
N−1 aij�ij�, called probe quantum state in this

paper, is a generic entangled pure state with full-rank P
�which can be explicitly written as

P = �
a00 a01 ¯ a0�N−1�

a10 a11 ¯ a1�N−1�

] ] � ]

a�N−1�0 a�N−1�1 ¯ a�N−1��N−1�

� ,

or can be directly obtained by the method provided below
Eq. �1�� and P−1 denotes the inverse matrix of P. �m are
simple unitary transformations determined by Eq. �12�. For
example, for the state of a pair of qubits, �m correspond to
the three Pauli matrices and the identity, respectively. Since
any quantum state ��� can be given �19�, based on maximally
entangled state ��̃�, by

��� = �R�� � 1���̃� = �R�1 � �T���̃� , �14�

��� can also be written as

��� = ��P−1
� 1��P� = �1 � �T�P−1�T��P� , �15�

where the superscript T denotes transpose. Hence, we have

Tr�	 f��̃���̃�� =
1

p
Tr��S”1 � 1�	��̃���̃��

=
1

p
Tr�	�S”1

†
� 1����̃���̃���

=
1

p
Tr�S	*S�S”1 � 1����̃���̃��� , �16�

where S is the swapping operator defined as S�j��k�= �k��j�
and we apply Eq. �14� and S��̃�= ��̃� to the third equal sign.
Equation �16� can be understood by the Kraus representation
of superoperator S”1 �23�. Based on Eq. �13� and Eq. �15�, Eq.
�16� can arrive at

Tr�	 f��̃���̃�� =
1

p
Tr S	*S�S”1 � 1�	�1 � �̃T�P−1�T�

��P��P�1 � �P−1�*�̃*


=
1

ptR
Tr S	*S�1 � �P−1�T�

�� �S”1 � 1��P��P�
p�


�1 � �P−1�*� , �17�

where p�=Tr�S”1 � 1��P��P�, pt= p / p� and the asterisk de-
notes conjugate operation. An alternative derivation can be
done by substituting 	=�pi�
i��
i� into the first line of Eq.
�16�. In a representation of maximally entangled states, we
can have

pt = Tr��S”1 � 1�	�/p�

= Tr�
m

��S”1 � 1�	���m���m�/p�

= Tr�
m
� �S”1 � 1��P��P�

p�



���m � �P−1�*�S	*S��m
†

� �P−1�T� . �18�

In fact, if the reduced density of the initial state 	 is consid-
ered, pt has an alternative and concise form. Let 	A
=TrB	AB=TrB	 with TrB denoting trace over subsystem B.
Consider a decomposition of 	=�pi�
i��
i�, 	A can be re-
written as 	A=�pi
i
i

†. Thus pt can also be given by

pt = Tr� �S”1 � 1��P��P�
p�


	1 � �P−1	A�P−1�†�*
 . �19�

Equation �19� has a concise form without summation. Sub-
stituting Eq. �18� or Eq. �19� into Eq. �17�, one can find that
Tr�	 f��̃���̃�� has been given by a simple algebra on the evo-
lution of the probe state �P� and the original density matrix.
That is to say, the lower bound of concurrence in Eq. �11�
can be captured by the evolution of the given probe state
which can be formally written as

C��S”1 � 1�	� �� 2R

R − 1
�Tr� f� �S”1 � 1��P��P�

p�

	*� −

1

R
� ,

�20�

where f�x�= 1
ptR

S�1 � �P−1�T��x��1 � �P−1�*�S. It is obvious
that the lower bound of concurrence is determined by the
evoluted probe state.

B. Two-sided quantum channel

Equation �20� can immediately be generalized to the case
of a two-sided quantum channel, however the form might not
be as simple as Eq. �17�. Since the lower bound given in Eq.
�17� is valid for mixed initial states, the lower bound for
two-sided quantum channel can be easily obtained by replac-
ing 	 in Eq. �17� by �1 � S”2�	. Thus Tr���̃���̃��S”1 � S”2�	� can
be written as

Tr���̃���̃��S”1 � S”2�	� = Tr���̃���̃��S”1 � 1��1 � S”2�	�

=
1

R
Tr�

k

	�1 � �P−1�T���S”1 � 1��P��P���1 � �P−1�*�S��1 � S”2���	k���	k��*S
 , �21�

where we have replaced 	 by a potential decomposition of 	=�k��	k���	k� which is especially referred to as the eigenvalue
decomposition for simplicity. Applying Eq. �15� to ��	k�, Eq. �21� leads to
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Tr���̃���̃��S”1 � S”2�	� =
1

R
Tr�

k

	�1 � �P−1�T���S”1 � 1��P��P���1 � �P−1�*�S��	kP
−1

� 1�*��1 � S”2��P��P��*��P−1�†�	k
†

� 1�*S


=
1

R
Tr�

k

	��S”1 � 1��P��P��*�1 � P−1�	kP
−1�S��1 � S”2��P��P��S�1 � �P−1�	kP

−1�†�
 . �22�

Substituting Eq. �21� into Eq. �17�, one can find that the lower bound of concurrence C��S”1 � S”2�	� can be captured by the
evolutions of the probe state under the two quantum channels. In order to avoid the decomposition of the initial state 	, one
can expand ��1 � S”2��P��P�� in the representation of maximally entangled states. Thus, Eq. �22� can be rewritten as

Tr���̃���̃��S”1 � S”2�	� =
1

R
Tr�

mnk

��m���1 � S”2��P��P����n���S”1 � 1��P��P��*��1 � P−1�	kP
−1��S��m���n�S�1 � �P−1�	kP

−1�†�

=
1

R
Tr�

mn

��m���1 � S”2��P��P����n���S”1 � 1��P��P��*	��m
T �P−1�T

� P−1�
S	S��P−1�*�
n
* � �P−1�†� . �23�

Finally, it is worth noting that the maximally entangled state
is a special choice of our probe states. Furthermore, the value
of the lower bound of concurrence does not depend on the
choice of probe state. It is obvious that Eq. �17� and Eq. �18�
correspond to the trace-preserving quantum channels. The
general results for non-trace-preserving channels are omitted
here, which can be directly given by adding some normal-
ization constants like the case of one-sided quantum channel.

For integrity, we show that the upper bound given in Ref.
�8� can be captured by the given probe state �P�, but the
value of the bound is not changed. Suppose that ��� is a
bipartite quantum state of qubits, then the concurrence can
be given by

C����� = 2�det���� . �24�

If one of the subsystems undergoes a quantum channel S”1,
the final state can be given by 	 f = �S”1 � 1������� / p1, with
p1=Tr�S”1 � 1�������. Thus we have

	 f��y � �y�	 f
*��y � �y� = � det���

p1p2 det�P�

2

�	P��y � �y�	P
*��y � �y� ,

�25�

with 	P= �S”1 � 1��P��P� / p2 and p2=Tr�S”1 � 1��P��P�. Based
on Eq. �25�, we can obtain

C�	 f� = � det���
det�P�

�C�	P� =
C�����C�	P�

2�det�P��
. �26�

It is obvious for a mixed initial state � that Eq. �25� is ex-
tended to

C�� f� �
C���C�	P�
2�det�P��

. �27�

For two-sided quantum channel, one can easily obtain

C�� f� �
C���C�	P1�

2�det�P��
C�	P2�

2�det�P��
, �28�

with 	P1= �S”1 � 1��P��P� / p2, 	P2= �1 � S”2��P��P� / p2� and p2�
=Tr�1 � S”2��P��P�.

Thus concurrence �especially bipartite concurrence of qu-
bits� can be better evaluated by the lower bound and the
upper bound given in Eq. �28� than by only one bound. From
Eq. �20� as well as Eq. �22�, one might think that it is not so
convenient compared with the upper bound in Ref. �8�, be-
cause the upper bound is a simple linear relationship between
the concurrence of evolved probe state and that of the initial
states. However, generally speaking, concurrence is not a
direct observable �24–26�, therefore, to evaluate concurrence
of a state in practice, one must evaluate the quantum state by
quantum state tomography �27� and then turn to a math-
ematical procedure. In other words, it is inevitable for Ref.
�8� to evaluate quantum states in a practical scenario. In this
sense, we think that their practicability is almost the same.
What is more, our lower bound has obvious advantages: �1�
The lower bound has the consistent spirit with entanglement
measures of mixed states for which the lower bounds �infi-
mum� are usually needed; �2� bounds, especially lower
bounds, with elegant forms like Ref. �8� might be difficult to
provided. In particular, so far there have not been analytic
results of entanglement measure �in particular, concurrence
included� for general high-dimensional quantum systems,
therefore, if the bounds of entanglement for high-
dimensional mixed states still include the calculation of
high-dimensional entanglement measures, it only formally
provides an elegant relationship, but it has usually poor prac-
ticability. �3� The derivation based on our extended lower
bound provides a universal method for all analytic bounds of
entanglement measure, with which one can only focus all the
attention on the tightness of the bounds, but there might be a
great deal of difference on the complexity of the final results
between different lower bounds.

IV. SIMPLE APPLICATION

As an application, we only consider a bipartite system of
qubits, because there exist analytic concurrence and accept-
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able upper bounds for bipartite mixed state of qubits. Thus
one can directly find the tightness of our lower bound by
comparing it with the concurrence and the upper bound. The
bipartite quantum state we considered is given by

	 = x	r +
�1 − x�

4
1, x � �0,1� �29�

with

	r =�
0.4322 0.2113 0.1073 0.3369

0.2113 0.1845 0.0406 0.1798

0.1073 0.0406 0.0504 0.1144

0.3369 0.1798 0.1144 0.3330
� �30�

randomly generated by MATLAB 6.5. We suppose that each
subsystem of 	 undergoes an amplitude-damping quantum
channel given in Kraus representation �28� as

S”1:M1 = �1 0

0 �0.8

, M2 = �0 �0.2

0 0

; �31�

S”2:M̃1 = �1 0

0 �0.7

, M̃2 = �0 �0.3

0 0

 . �32�

The final state can be written as

	 f = �S”1 � S”2�	 . �33�

The upper bound, the concurrence itself and the lower bound
are given in Fig. 1, respectively, from which we can find that
our lower bound is a good evaluation of concurrence. The
probe state can be chosen freely.

V. CONCLUSION AND DISCUSSION

We have presented a lower bound of concurrence. In par-
ticular, when the quantum state under consideration evolves
under a quantum channel, the lower bound of concurrence

can be completely captured by the evolution of probe states.
Thus, the evolution of concurrence for any initial state can be
well evaluated by the lower bound and the upper bound.
Furthermore, the lower bound is also suitable for high-
dimensional quantum state. We would like to emphasize that,
even though the form of the lower bound seems not to be as
elegant as that of the upper bound, but their practicality is
almost the same.
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