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We investigate spectral and temporal features and entanglement of biphoton wave packets formed in spon-
taneous parametric down-conversion with a pulsed laser pump. The degree of entanglement is characterized by
the experimentally measurable parameter R defined as the ratio of the coincidence and single-particle spectral
widths. In the frequency representation, this parameter is found as a function of the pump-pulse duration �. The
function R��� is shown to have a minimum and even in the minimum, at rather natural conditions, the degree
of entanglement is found to be very high �Rmin=73�. The Schmidt number K is found analytically for both
short and long pump pulses and interpolated for arbitrary pulse durations. All functional dependences of R and
K are found to be identical and numerical coefficients are found to be rather close. Two-time temporal wave
function of a biphoton state is investigated in detail, and a rather significant difference between the cases of
short and long pump pulses is found to occur. In the case of long pulses, the temporal parameter Rt �defined as
the ratio of durations of the single-particle and coincidence signals� is shown to be very close to the Schmidt
number K.
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I. INTRODUCTION

Entanglement is a fundamental feature of multipartite sys-
tems characterizing the degree of correlations between par-
ticles. Entangled states find their wide application in quan-
tum information, quantum cryptography, and related topics.
Spontaneous parametric down-conversion �SPDC� is one of
the most often used processes for production of entangled
biphoton states. The most popular and widely discussed type
of entanglement of SPDC states is the entanglement with
respect to polarization variables. On the other hand, in addi-
tion to polarization, SPDC photons are characterized also by
other degrees of freedom, such as angles determining direc-
tions of propagation and lengths of wave vectors �or frequen-
cies� of photons. In contrast to polarization, these degrees of
freedom belong to the class of continuous variables. Multi-
and bipartite states with continuous variables are quite attrac-
tive because they correspond to an infinitely high dimension-
ality of the Hilbert space and, potentially, their degree of
entanglement can be very high; but in practice, of course,
there are limitations. Nevertheless, there are conditions when
the degree of entanglement with respect to continuous vari-
ables can be really high, much higher than the maximal
achievable degree of entanglement with respect to discrete
variables. For example, in Ref. �1� SPDC biphoton states
were shown to be highly entangled with respect to angular
variables. Spectral features of highly entangled SPDC bipho-
ton states were also investigated in some works in the cases
of short pulses �2� and a cw laser pump �3�. However, the
degree of entanglement was neither defined nor discussed.
Definition of the most appropriate entanglement quantifiers
and evaluation of the degree of entanglement in a wide range
of pump-pulse durations is one of the key goals of this work.

We characterize the degree of entanglement by the re-
cently introduced �4� parameter R defined as the ratio of
widths of single-particle and coincidence wave packets. We
find R analytically in two asymptotic cases of short and long
pump pulses �with the parameter separating these two re-
gions explicitly defined� and we show that in these two cases
R is extremely high ��300 or more�. By using both interpo-
lation formulas and exact numerical calculations we show
that in the case of the type-I phase matching we consider, R
is very high ��70� even in the most unfavorable case of
intermediately long pump pulses ��1 ps�.

In contrast to all other entanglement quantifiers, the pa-
rameter R is rather easy experimentally measurable. For
double-Gaussian bipartite states the parameter R is known
�5� to coincide with such a well-known entanglement quan-
tifier as the Schmidt number K. However, the wave functions
characterizing the biphoton frequency distributions are rather
far from the double-Gaussian ones. Nevertheless, as we show
in this paper, even for such functions the parameters R and K
are very close to each other. By using specific features of the
biphoton wave functions we calculate in Sec. V the Schmidt
number explicitly in both cases of short and long pump
pulses and we find that in both cases all functional depen-
dences of R and K are identical, and there is only a small
difference between them in numerical coefficients. This
means that the parameter R is, indeed, an appropriate quan-
tifier of entanglement which can be both found theoretically
and measured experimentally.

In addition to spectral analysis we describe also a tempo-
ral structure of the SPDC biphoton wave packet determined
by its two-time wave function. This structure has many very
interesting features. We derive a series of very simple formu-
las, which are used to explain and characterize analytically
parameters of the calculated temporal envelopes of single-
particle and coincidence signals. We find that features of
these curves are qualitatively different in the cases of short*fedorov@ran.gpi.ru
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and long pump pulses. In the case of short pump pulses
duration of coincidence temporal signals is shown to be
varying in very large limits with varying time of observation,
and this makes the temporal picture with short pump pulses
inappropriate for defining the temporal parameter R, Rt. In
contrast, in the case of long pump pulses, duration of coin-
cidence temporal signals is shown to be independent of the
observation time, the parameter Rt is well-defined and is
shown to be very close to the Schmidt number K.

II. GENERAL FORMULAS

SPDC is the process in which a classical pump wave
propagates through a birefringent crystal, where some pho-
tons of the pump are absorbed and give rise to the birth of

two photons of smaller frequencies, signal and idler. If k1
and k2 are wave vectors of emitted photons, the QED state
arising in the SPDC process is given by the sum of the
vacuum state and superposition of two-photon states,

�SPDC� = �vac� + �
k1,k2

��k1,k2��k1,k2� , �1�

where �k1 ,k2�=ak1

† ak2

† �vacuum�, ak
† is the operator of creation

of a photon in a state with the momentum �wave vector� k,
and ��k1 ,k2� is the biphoton wave function in the momen-
tum representation. General expressions for this wave func-
tion are well-known �6,7�, and for pump pulses of a finite
duration the biphoton wave function can be written in the
form

��k1�,k2�;�1,�2� = �	 dr	 dt	 dkp�	 d�pEp�kp�,�p�exp�i�kp� − k1� − k2�� · r� + i� · z�exp�i��1 + �2 − �p�t� ,

�2�

where � is the crystal susceptibility, indices p and � indi-
cate, correspondingly, the pump and the plane perpendicular
to the laser axis �z axis�, Ep is the Fourier transform of the
electric field amplitude of the pump, and � is the longitudi-
nal mismatch,

� =
np
2�p

2

c2 − kp�
2 −
n1

2�1
2

c2 − k1�
2 −
n2

2�2
2

c2 − k2�
2 ,

�3�

np, n1, and n2 are the refractive indices of the pump and
emitted photons.

Let us make now a series of simplifying assumptions and
approximations. Let us consider the type-I SPDC decay pro-
cess e→o+o, in which both emitted photons belong to the
ordinary wave and, hence, n1=n2=no. Integration over time t
in Eq. �2� from −� to � gives 2����p−�1−�2�, with which
the integral over �p can be easily taken. Similarly, in the
wide-crystal approximation the limits of integration over r�

can be extended to −� and � in both transverse directions
which gives �2��2��kp�−k1�−k2��, and this can be used to
take the integral over kp�. Let us restrict our consideration in
this work only by the case of a purely collinear propagation
of emitted photons, in which k1�=k2�=0 and, hence, kp�

=0. Besides, let us consider here only the case of degenerate
central frequencies �1

�0� and �2
�0�, �1

�0�=�2
�0�=�0 /2, where �0

is the central frequency of the pump. We will assume also
that deviations from these central frequencies, 	1,2��1,2
−�1,2

�0�, are small: �	1,2�
�0. Finally, we will take the spectral
amplitude of the pump in a Gaussian form

Ep�kp� = 0,�p� � Ep��p�

= E0 exp�−
��p − �0�2�2

8 ln 2



= E0 exp�−
��1 + �2 − �0�2�2

8 ln 2

 , �4�

where � is the duration of pump pulses and �p=�1+�2
=�0+	1+	2.

Under the formulated assumptions and approximations
Eq. �2� for the biphoton wave function is reduced to a much
simpler form,

���1,�2� � Ep��1 + �2�	
0

L

dzei���1,�2�z �5�

or, after integration over z,

���1,�2� � Ep��1 + �2�sinc�L

2
���1,�2�
 , �6�

where sinc�u�=sin u /u, L is the length of the crystal �along
the laser axis�, and the phase mismatch ���1 ,�2� is deter-
mined by the equation following from Eq. �3�,

� = kp − k1 − k2

=
��1 + �2�np��1 + �2� − �1n0��1� − �2n0��2�

c
. �7�

Note that as we will be interested mainly in shapes and
widths of photon spectral distributions, in Eqs. �5� and �6�
and henceforth we drop all the constant coefficients on the
right-hand sides of such equations by using the proportion-
ality symbol. If not specified differently, all curves describ-
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ing spectral or temporal distributions will be normalized by
the condition of being equal to unity at maxima.

Owing to the assumption about small deviations of fre-
quencies �1,2 from �1,2

�0�, the expression on the right-hand
side of Eq. �7� can be expanded in powers of 	1 and 	2 with
only two lowest orders to be taken into account,

� �
1

c
�A�	1 + 	2� − 2B

	1
2 + 	2

2

�0

 , �8�

where A is the dimensionless constant characterizing the
temporal walk-off

A = c��kp������=�0
− �k1������=�0/2� = c� 1

vg
�p� −

1

vg
�o��; �9�

vg
�p� and vg

�o� are the group velocities of the pump and ordi-
nary waves, calculated at wavelengths �0 and 2�0, corre-
spondingly; vg

�o�
vg
�p�. B in Eq. �8� is the dispersion constant,

also dimensionless,

B =
c

4
�0�k1������=�0/2. �10�

For a LiIO3 crystal and �0=400 nm numerical values of the
constants A and B are A=0.17 and B=0.069. Though small,
nevertheless, the quadratic term in Eq. �8� is crucially impor-
tant for determining finite width of the photon single-particle
distribution �see Sec. III B�. Note also that in Eq. �8� we have
dropped the dispersion arising from the wave vector of the
pump which is proportional to kp��	1+	2�2. This term is
dropped because it depends on the same combination of fre-
quencies as the linear term 	1+	2 and determines only a
small correction to the linear term not changing qualitatively
its functional dependence on 	1 and 	2. In the same approxi-
mation we can further simplify the dispersion term taken into
account in Eq. �8�: 	1

2+	2
2� 1

2 ��	1+	2�2+ �	1−	2�2�→ 1
2 �	1

−	2�2. With this substitution the final expression for the bi-
photon wave function takes the form

��	1,	2� � exp�−
�	1 + 	2�2�2

8 ln 2
�

�sinc� L

2c
�A�	1 + 	2� − B

�	1 − 	2�2

�0

� .

�11�

III. COINCIDENCE AND SINGLE-PARTICLE
DISTRIBUTIONS (SHORT PULSES)

A. Coincidence spectrum

The coincidence spectrum is determined by the squared
wave function ���	1 ,	2��2 of Eq. �11� at a given value of 	2.
For practical purposes, it is more convenient to consider the
coincidence and single-particle probability densities as func-
tions of wavelengths �1,2 rather than frequencies 	1,2
=2�c /�1,2−�c /�0. For the crystal length and pump-pulse
duration equal to L=0.5 cm and �=50 fs, the coincidence
spectral distribution dw�c� /d�1 is characterized by the narrow

curves of Fig. 1. The wide curves in the pictures of Fig. 1
describe the pump spectrum. The curves of the pictures �a�
and �b� are calculated at the second-photon wavelength �2
taken equal to 800 and 870 nm.

Figure 1 clearly shows that �i� the coincidence spectrum is
much narrower than that of the pump and �ii� the coincidence
spectral width ��1

�c� does not depend on �2. If we take the
wavelength of the second photon exactly equal to the double
pump wavelength, �2=2�0=800 nm, the peaks of the pump
and coincidence spectra coincide and are located at �1
=800 nm �Fig. 1�a��. If we shift �2 to the right, both pump
and coincidence spectra move to the left from the point �2
=800 nm. However, for the coincidence spectral distribution
this shift is slightly larger than for the pump. For this reason
the amplitude of the coincidence signal appears to be some-
what smaller than in the case of location at 800 nm. How-
ever, the width of the coincidence spectral distribution re-
mains practically the same as in the case �2=800 nm. Hence
the coincidence spectral width ��1

�c� is a constant parameter,
independent of tuning of the second-photon detector.

Analytically the coincidence spectral width can be easily
found directly from Eq. �11�. In the case of short pulses the
Gaussian function in this equation is much narrower than the
sinc function. For bipartite wave functions having the form
of a product of two functions, one of which is much nar-
rower than another, the coincidence distribution is deter-
mined by the narrower factor, i.e., in our case by the sinc
function. Evidently, its width with respect to varying 	1 at a
given value of 	2 is given by

�	1
�c� = �	1sinc =

2.78 � 2c

AL
, �12�

where the factor 2.78 is the full width at half-maximum
�FWHM� of the function sinc2�u�. Numerically, at L
=0.5 cm, in terms of wavelengths, both analytical expression
and results of calculations shown in Fig. 1 correspond to
��1

�c�=0.658 nm. For comparison, FWHM of the pump spec-
tral function exp�−�	1+	2�2�2 /4 ln 2� at a given 	2 equals

�	1pump =
4 ln 2

�
, �13�

which gives �in terms of wavelengths, at �=50 fs and �0
=400 nm� ��1

�p�=2�0
2�	1 pump /�c=18.8 nm. In other words,

the pump spectrum considered as a function of �1,

FIG. 1. Normalized coincidence and pump spectra �narrow and
wide curves� as functions of �1 at �2= �a� 800 nm and �b� 870 nm.
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Ep
2 � exp�−

�2c2�2

ln 2
� 1

�1
+

1

�2
−

1

�0
�2� ,

is 28.57 times wider than the coincidence spectrum.
As shown below, the ratio of the “sinc” and “pump”

widths �Eqs. �12� and �13�� determines the parameter sepa-
rating the regions of short and long pulses,

� =
�	1sinc

�	1pump
� 2

c�

AL
=

2�

L/vg�p� − L/vg
�o� . �14�

The last expression on the right-hand side of this equation
shows that � equals the ratio of the double pump-pulse du-
ration to the difference of times during which a crystal is
crossed by the pump and idler-signal photons. Also � can be
considered as the dimensionless pump-pulse duration. In
SPDC the pump pulses are short if �
1 and long if ��1.
The boundary pulse duration occurs at ��1. At L=0.5 cm
the equality �=1 yields �=1.43 ps. As shown below, � is
also the key control parameter, determining a value of the
entanglement parameter R.

Noncoincidence of the peaks of the pump and coincidence
spectra seen in Fig. 1�b� deserves a special comment. For
clarification of its origin, it is worth returning to the fre-
quency pictures. In Fig. 2 the coincidence and pump spectra
are shown as functions of 	1 under the conditions when the
detector registering the second photon of the pair �“2”� is
tuned to frequencies shifted as compared to �0 �or 	2 shifted
from zero� �a� to the blue and �b� to the red sides. Both the
pump and coincidence spectra also appear to be shifted from
�0 �	1=0�, but in the directions opposite to the shift of �2.
As is seen, the peaks of the pump and coincidence spectra do
not coincide at sufficiently large values of these shifts. Inter-
esting enough, in both cases the coincidence peak appears to
be located at the right wing of the pump, which corresponds
to the left wing in the wavelength picture of Fig. 1. This lack
of symmetry between �a� and �b� of Fig. 2 is related to the
dispersion and, as we will see in the following section, it is
related to asymmetry of the single-particle spectrum. Math-
ematically the results discussed here follow directly from the

definition of the phase-mismatch �, e.g., taken in the form
�8�. Location of the coincidence spectral peaks is determined
by the condition �=0. This gives a quadratic equation of 	1,
the solution of which is given by

	1�	2� =
A�0

4B
−
�A�0

4B
�2

+
A�0

2B
	2 − 	2

2 � − 	2 +
4B	2

2

A�0
.

�15�

The first and second terms on the right-hand side of this
equation have different parity. They are, correspondingly,
odd and even functions of 	2, and this explains the lack of
symmetry between �a� and �b� of Fig. 2.

The approximation used in the expansion of the square
root in Eq. �15� consists in the assumption �	2�
A�0 /8B,
which is satisfied for parameters we use in this paper. Actu-
ally, if here the approximate expression for 	1�	2� was
needed only for getting a simple analytical formula explain-
ing the exact calculations of the spectra in Figs. 1 and 2, later
this will be shown to be crucially important, in particular, for
calculations of the Schmidt number �Sec. V�.

B. Single-particle spectrum and the entanglement parameter
for short pump pulses

The single-particle photon spectrum is determined by the
squared wave function of Eq. �11� integrated over 	2,

dw�s�

d	1
=	 d	2���	1,	2��2. �16�

As the exact analytical calculation of the integral over 	2 is
hardly possible, let us perform this integration approximately
with the narrow sinc2 function substituted by the � function
��	−	�	1��, where 	=	1+	2 and 	�	1� is given by an equa-
tion similar to Eq. �15�,

	�	1� =
A�0 + 4B	1 − 
A2�0

2 + 8AB�0	1

2B
�

4B	1
2

A�0
.

�17�

By using now 	 as the integration variable in Eq. �16� �in-
stead of 	2�, we find immediately the following expression
for the single-particle spectrum of emitted photons:

dw�s��	1�
d	1

�

exp�−
�	�	1��2�2

4 ln 2
�


A2�0
2 + 8AB�0	1

. �18�

In Fig. 3 the spectral distribution determined by Eq. �18� is
shown together with the pump spectrum �correspondingly,
the wide and narrow curves�.

The FWHM of the wide curve in Fig. 3 equals

�	1
�s� = ��1

�s� =
2A ln�2��0

B�
. �19�

Numerically, at �=50 fs, Eq. �19� yields ��1
�s�=195 nm,

which is ten times larger than the pump spectral width.
The parameter R defined as the ratio of the single-particle

to coincidence spectral widths is easily found from Eqs. �12�
and �19� to be given by

FIG. 2. Normalized coincidence and pump spectra
dw�c��	1� /d	1 at �a� 	2=2 and �b� 	2=−2, 	1 and 	2 are in units of
10 fs.
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Rshort =
��1

�s�

��1
�c� =

A3/2

2.78

� ln 2

B

L

�0c�

=

2� ln 2

2.78

A

B�


 L

�0

= 0.7507
A


B�

 L

�0
=

55.06

�

, �20�

where the subscript “short” emphasizes that this result is
valid only for short pump pulses, �
1, and the control pa-
rameter � is defined in Eq. �14�. The numerical coefficient
55.06 in the last expression of Eq. �20� was found at the
same values of all parameters which were used earlier, ex-
cept the pump-pulse duration � which was not fixed yet. At
�=50 fs ��=0.0348� Eq. �20� yields

Rshort � 295. �21�

This degree of entanglement is really high. As it is seen from
the given derivation, such an extremely high degree of en-
tanglement is related to two accompanying effects: narrow-
ing of the coincidence and broadening of the single-particle
spectra of SPDC photons �compared to the pump spectrum�.
The second of these two effects is a specific feature of the
type-I SPDC process. Indeed, in the case of the type-II pase
matching �o→e+o�, in the linear approximation, the expan-
sion of the phase mismatch in powers of 	1, 	2 takes the
form

� = �kp� −
k1� + k2�

2
��	1 + 	2� −

k1� − k2�

2
�	1 − 	2� . �22�

As in the case of the type-II phase matching the emitted
photons “1” and “2” are different �o and e waves�, deriva-
tives of their wave vectors over frequencies are different too,
k1��k2�. For this reason, the phase mismatch of Eq. �22� al-
ready in the linear approximation appears to be depending on
both the sum and difference of frequencies, 	1+	2 and 	1
−	2. In this case the linear approximation in 	1, 	2 is suffi-
cient for determining finite widths of both coincidence and
single-particle distributions. If k1�−k2� is of the same order as
k1�+k2�, the difference between the single-particle widths and
that of the pump spectrum is not too large. that is, the effect
of broadening of the single-particle distribution is missing or

is only weakly pronounced. In contrast to this, in the case of
the type-I phase matching both emitted photons belong to the
same ordinary type of wave and, hence, k1�=k2�. In the linear
approximation the dependence of the phase mismatch � �Eq.
�22�� on the difference of frequencies 	1−	2 disappears, and
the linear approximation appears to be insufficient for deter-
mining the finite width of the single-particle distribution. To
define this width one has to take into account the second
order �dispersion� term in the expansion of � in powers of
	1, 	2. As this term is rather small, the width of the single-
particle distribution appears to be rather large. That is, equal-
ity of k1� and k2� gives rise to the above-described broadening
of the single-particle spectrum compared to that of the pump.
This effect provides at least the ten-fold increase of the pa-
rameter R compared to what can be achieved in the type-II
SPDC process.

Note that the above-described difference between the
type-I and type-II SPDC processes was understood rather
long ago �8,9�. Elements of our consideration consist in dem-
onstration of the importance of this effect for producing bi-
photon states with extremely high degree of entanglement
and in explicit evaluation of the achievable degree of en-
tanglement. Concerning other earlier works, in the SPDC
process with the type-I phase matching and short pump
pulses ��60 fs� highly entangled biphoton states were ob-
served in Ref. �2� but, however, the degree of entanglement
was not evaluated. In the work �10� both coincidence and
single-particle SPDC spectra were measured simultaneously
in the case of SPDC with the type-II phase matching; but
analysis of these data indicates that the single-particle spec-
trum was only twice wider than the coincidence one �which
corresponds to R�2�. In Ref. �11� the degree of spectral
entanglement for the type-II SPDC process was evaluated
theoretically with the help of decomposition of the wave
function in a series of products of Schmidt modes, which is
different from our approach. In this work we discuss only
possibilities of direct measurements of the coincidence and
single-particle spectral and temporal distributions of photons.
We do not discuss here connections between results obtained
in such a way with interference measurements, e.g., in Refs.
�12–17�. We hope to return to this problem elsewhere.

To conclude this section, it is worth mentioning once
again that in this work we restrict our consideration by the
collinear degenerate SPDC process. We will consider nonde-
generate and noncollinear cases elsewhere. Here we would
like to mention only that the case considered in this paper is
optimal. Any deviations from the collinearity and degeneracy
lessen the achievable degree of entanglement. For practical
purposes it is important to know how quick is this lessening
or, in other words, how robust are the results we derive here
with respect to, e.g., increasing angular aperture of detectors.
By increasing aperture one increases efficiency of measure-
ments but, maybe, lessens the degree of entanglement. Evi-
dently, requirements of a good collinearity and sufficiently
large amount of photons to be registered are opposite. We
hope to return to analysis of this dilemma later. Though ex-
perimental observability of our results does not cause any
doubts.

FIG. 3. Single-particle �wide� and pump �narrow� spectra �den-
sities of probability of the corresponding photon distributions�.
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IV. LONG PUMP PULSES AND INTERPOLATION FOR
ARBITRARY PULSE DURATIONS

Until now we have assumed that the sinc function in Eq.
�11� is much narrower than the Gaussian function. This is
absolutely true, e.g., for the pulse duration �=50 fs, which
was chosen for estimates and illustrations. However, if the
pulse duration is significantly longer, the relation between
the two functions on the right-hand side of Eq. �11� may be
reversed: the Gaussian function can become much narrower
than the sinc function. In this case the coincidence distribu-
tion is determined by the pump spectrum. For example, for
	2=0 it has the form

dw�c�

d	1
� exp�−

	1
2�2

4 ln 2

 . �23�

In the integral �16� determining the single-particle probabil-
ity density, the narrow pump spectrum can be approximated
by ��	2+	2� to give

dw�s�

d	1
� �sinc�2LB	1

2

c�0

�2

. �24�

The coincidence and single-particle width found from Eqs.
�23� and �24� are equal to

�	1 long
�c� =

4 ln 2

�
, �	1 long

�s� =
2.78c�0

LB
, �25�

and the corresponding entanglement parameter R is given by

Rlong =
�	1long

�s�

�	1long
�c� =


2.78�

23/2 ln 2

c�


BL�0

=

2.78�

25/2 ln 2

A�


B

 L

�0

= 0.7537
A�


B

 L

�0
= 55.28� . �26�

The entanglement parameter Rlong �26� is a linearly growing
function of the pulse duration �. For example, at �=7 ps Eq.
�26� yields ��4.87 and Rlong�269�1.

Note that the linear dependence of Rlong on � arises be-
cause the coincidence spectral width of Eq. �25� is on the
order of the inverse pump-pulse duration, �	1long

�c� �1 /�,
which is true only for Fourier limited pump pulses and be-
comes wrong in the case of very long pulses or a cw pump
laser. In these cases the pump bandwidth �� becomes deter-
mined by factors different from the inverse pulse duration,
and �	1 long

�c� in the definition of Rlong �26� has to be replaced
by �� to give

Rcw � c/���
L�0B� . �27�

SPDC biphoton states with high spectral entanglement and
cw pump were observed in the work �3� where, however, the
degree of entanglement was not evaluated.

For evaluating the entanglement parameter R��� in the
whole range of variation of the pump-pulse duration �from
short- to long-pulse regions� we use the simplest interpola-
tion formula

R��� = 
Rshort
2 ��� + Rlong

2 ��� . �28�

Note that there is an amusing, though approximate, coinci-
dence relation between numerical coefficients in Eqs. �20�
and �26�: 
2� ln 2 /2.78�1.004
2.78� / �25/2 ln 2�. Hence
with a very good accuracy we can take coefficients in Eqs.
�20� and �26� coinciding with each other to get

R��� = 0.75
A

B

 L

�0

�2 +

1

�
= 55
�2 +

1

�
. �29�

The function R��� is plotted in Fig. 4.
The curve has a minimum at �0=2−1/3=0.79, which cor-

responds to �0=1.14 ps, and in the minimum

Rmin = R��0� �
A

B

 L

�0
� 73 � 1. �30�

So, the parameter R��� is very large and the degree of
entanglement is very high in both earlier considered cases of
short and long pump pulses, �
�0 and ���0; but R��� is
large and entanglement is high also in the most unfavorable
case of intermediate pump-pulse durations around �0. Actu-
ally, the value of R��� around its minimum is determined by
the well-defined parameter equal to the square root of the
ratio “length of the crystal divided by the pump wavelength.”
This result shows that in the type-I degenerate collinear
SPDC process, practically, spectral entanglement is never
small.

V. SCHMIDT NUMBER

As mentioned above �in the Introduction�, in the case of
double-Gaussian wave functions, the parameter R coincides
identically with the Schmidt number K �5�, which is widely
recognized to be a good quantifier of the degree of entangle-
ment in pure bipartite states. However, the wave function of
the form �11� is not double-Gaussian. Actually, if the pump
spectral amplitude can be taken Gaussian, the sinc function
with the argument containing both linear and quadratic terms
in variables 	1,2 cannot be even modeled by any Gaussian
form. For this reason, the question that often arises is

FIG. 4. The parameter R and K vs the control parameter � �Eq.
�14��.
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whether the parameter R can be used as the entanglement
quantifier for states characterized by such non-double-
Gaussian wave functions, while the relation between R and K
remains unknown. The question is reasonable and, to be an-
swered, it requires the Schmidt number to be explicitly cal-
culated. The solution of this problem is given below.

Let us use the well-known general integral definition of
the Schmidt number for bipartite systems with continuous
variables �Eq. �10� of Ref. �5��. In the case of spectral en-
tanglement this definition takes the form

K = N2�	 d	1d	2d	1�d	2���	1,	2���	1,	2��

� ��	1�,	2���	1�,	2��
−1

, �31�

where N is the norm of the wave function �,

N =	 d	1d	2���	1,	2��2, �32�

and ��	1 ,	2� is given by Eq. �11�.
In a general case, the integrals in Eqs. �31� and �32� can-

not be calculated analytically, and even their numerical cal-
culation is a rather difficult problem. To perform integrations

we will use approximations following from the main features
of the wave function �11� described above. Let us consider
separately the cases of short and long pulses, �
1 and �
�1.

A. Short pump pulses

The mismatch ��	1 ,	2� �8� entering the argument of the
sinc function in the definition of ��	1 ,	2� is quadratic in 	1.
Hence the equation �=0 has two solutions, 	1

+�	2� and
	1

−�	2�. Only one of these solutions is compatible with the
condition �	1,2�
�0, and this solution is given by an equa-
tion similar to Eq. �15�,

	1
−�	2� � f�	2� = − 	2 +

4B

A�0
	2

2.

In the vicinity of 	1
− the mismatch ��	1 ,	2� can be approxi-

mated by the linear function of 	1,

� � ��	1,	2� �
A

c
�	1 − f�	2�� . �33�

The same approximation can be applied to all other functions
� in the definitions of the Schmidt number �31� and the
norm of the wave function �32�, which take then the form

K−1N2 =	 d	1d	2d	1�d	2�exp�−
�	1 + 	2�2�2

8 ln 2

sinc�LA

2c
�	1 − f�	2��
exp�−

�	1 + 	2��
2�2

8 ln 2

sinc�LA

2c
�	1 − f�	2���


�exp�−
�	1� + 	2�2�2

8 ln 2

sinc�LA

2c
�	1� − f�	2��
exp�−

�	1� + 	2��
2�2

8 ln 2

sinc�LA

2c
�	1� − f�	2���
 �34�

and

N =	 d	1d	2 exp�−
�	1 + 	2�2�2

4 ln 2

�sinc�LA

2c
�	1 − f�	2��
�2

. �35�

Still, the integrals �34� and �35� are too complicated for ana-
lytical calculation; but we can remember now that in the case
of short pulses �c�
AL /2� the exponential functions in all
integrals are much wider than the sinc functions. Hence, with
a good accuracy, we can take off the exponential functions
from the integrals at values of their arguments determined by
the condition that the corresponding phase mismatch turns
zero. With such a procedure applied to Eq. �35� we get

N =
2�c

LA
	 d	2 exp�−

4B2	2
4�2

A2�0
2 ln 2



=

23/2�c

L
�ln 2�1/4��5

4
�
 �0

AB�
, �36�

where we took into account that �−�
� sinc2�x�dx=� and

�−�
� e−x4

dx=2��5 /4�, � denotes the gamma function, and
��5 /4�=0.9064.

For calculation of integrals in Eq. �34� we use the follow-
ing exact equation for the integrated product of two sinc
functions:

	
−�

�

dx sinc�x�sinc�x + y� = � sinc�y� . �37�

Known or not, this equality can be easily proved, e.g., by
means of analytical continuation to the complex plane x and
integration by the residue method. With the help of the rule
�37�, we perform integration in Eq. �34� separately in the first
and second pairs of lines under the symbol of integrals �cor-
respondingly, over 	1 and 	1��, with the exponential functions
taken out of the integrals, as explained above. As a result we
get
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K−1N2 = �2�c

LA
�2	 d	2d	2� exp�−

4B2�2

A2�0
2 ln 2

�	2
4 + 	2�

4�

� �sinc�LA

2c
�	2 − 	2��
�2

. �38�

Note that in the last expression the difference 	1�	2�
−	1�	2�� in the argument of the sinc function is approximated
by 	2�−	2, i.e., here the quadratic term of the expression in
Eq. �15� is dropped both in f�	2� and f�	2��. This is possible
because in Eq. �38� the argument of the exponential function
differs from that of the sinc function, and hence, small qua-
dratic terms in the sinc-function argument are not needed for
making integrals converging, as this was, e.g., in the case of
integrations over 	1 and 	1�. The integrals in Eq. �38� are
easily calculated with the help of the same procedure as used
above, with the slow exponential function taken off from the
integral over 	2� at 	2�=	2. The results are given by

K−1N2 = �2�c

LA
�3	 d	2 exp�−

8B2�2

A2�0
2 ln 2

	2
4


= �2�c

LA
�3

��5

4
��2 ln 2�1/4
A�0

B�
�39�

and

Kshort =
N2

K−1N2 =
�2 ln 2�1/4


�
��5

4
�A3/2


B

L

c��0

= 0.785
A


B�

 L

�0
=

57.5

�

. �40�

Comparison with Eq. �20� shows that in the case of short
pump pulses all functional dependences of Rshort and Kshort
are identical and, numerically, the difference between Rshort
and Kshort is very small, �4.5%.

B. Long pulses

In the case of long pump pulses ���1� calculation of the
Schmidt number is similar to that described above for short
pulses, though the roles of the exponential �pump� and sinc
functions are reversed: the pump spectral function is narrow
and the sinc function is wide. Owing to this, the sinc function
in Eq. �11� can be simplified in a way different from that
used in Eqs. �33�–�35�. In the case of long pulses the sum
	1+	2 is very small and the linear term in the argument of
the sinc function can be dropped. As the result we can write
down Eqs. �31� and �32� in the form

K−1N2 =	 d	1d	2d	1�d	2�exp�−
�	1 + 	2�2�2

8 ln 2

sinc�LB

2c

�	1 − 	2�2

�0

exp�−

�	1 + 	2��
2�2

8 ln 2

sinc�LB

2c

�	1 − 	2��
2

�0



�exp�−
�	1� + 	2�2�2

8 ln 2

sinc�LB

2c

�	1� − 	2�2

�0

exp�−

�	1� + 	2��
2�2

8 ln 2

sinc�LB

2c

�	1� − 	2��
2

�0

 �41�

and

N =	 d	1d	2 exp�−
�	1 + 	2�2�2

4 ln 2

�sinc�LB

2c

�	1 − 	2�2

�0

�2

. �42�

The norm N is calculated easily with 	2=−	1 substituted into
the argument of the wide sinc2 function, after which the in-
tegral over 	2 in Eq. �42� takes the Gaussian form to give

N =
2
� ln 2

�
	 d	1�sinc�2LB	1

2

c�0
�
2

=
2
� ln 2

�

 c�0

2LB

4
�

3
, �43�

where the last factor on the right-hand side of Eq. �43� arises
from integration over the dimensionless variable x
=	1


2LB /c�0: �−�
� dx sinc2�x2�=4
� /3.

The product of two exponential functions in the first and
second lines under the symbol of integrals in Eq. �41� equals

exp�−
�2

8 ln 2
��	1 + 	2�2 + �	1 + 	2��

2��
= exp�−

�2

4 ln 2
��	1 +

	2 + 	2�

2
�2

+
�	2 − 	2��

2

4

� .

�44�

In dependence on 	1 this narrow function has a maximum at
	1=−�	2+	2�� /2, and this is the value that has to be substi-
tuted instead of 	1 into the wide sinc functions in the first and
second lines under the symbol of integrals in Eq. �41�. This
substitution makes the sinc function independent of 	1, and
integration of the exponential function �44� over 	1 is easily
performed. Integration over 	1� in the last two lines of Eq.
�41� is performed exactly in the same way. Altogether, these
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two integrations �over 	1 and 	1�� reduce Eq. �41� to a simpler
form,

K−1N2 =
4� ln 2

�2 	 d	2d	2� exp�−
�2

8 ln 2
�	2 − 	2��

2

� sinc2� LB

8c�0
�3	2 + 	2��

2
sinc2� LB

8c�0
�	2 + 3	2��

2
 ,

�45�

where the first and second sinc2 functions arise, correspond-
ingly, from integration of the first and second pairs of lines in
Eq. �41�. In Eq. �45�, again, the exponential function is nar-
row and sinc functions are wide in their dependence on, e.g.,
	2�. Owing to this, we can substitute 	2� by 	2 in the argu-
ments of the sinc functions and take easily the arising Gauss-
ian integral over 	2� to get

K−1N2 =
8
2�� ln 2�3/2

�3 	 d	2 sinc4�2LB	2
2

c�0
�

=
8
2�� ln 2�3/2

�3 
 c�0

2LB
� 64

105
�23/2 − 1�
�
 ,

�46�

where the last factor in square brackets is the exact expres-
sion for the integral �−�

� dx sinc4�x2�.
Equations �43� and �46� determine the Schmidt number in

the long-pulse regime

Klong =
105
�

72
2 ln 2�23/2 − 1�
c�


BL�0

= 0.6
A�


B

 L

�0
= 44� .

�47�

Comparison of this result with that of Eq. �26� shows that in
the case of long pulses, as well as in the case of short pulses
�Eqs. �20� and �40��, the Schmidt number and the parameter
R are rather close to each other. Again, all functional depen-
dences of Eqs. �47� and �26� are identical. The parameters
Klong and Rlong differ only by numerical coefficients. In the
case of long pulses this difference is �20%, i.e., somewhat
larger than in the case of short pulses but, still, small enough
to consider R as a good entanglement quantifier.

The Schmidt number for arbitrary pulse durations can be
evaluated with the help of the same square-root interpolation
as in the case of R �Eq. �29��:

K��� = 
Kshort
2 + Klong

2 =
A�


B

 L

�0

�0.785�2

�
+ �0.6��2

=
�57.5�2

�
+ �44��2. �48�

The function K��� is plotted in Fig. 4 �the dashed curve�
together with R���. The difference between these two curves
is more pronounced in the case of long pump pulses and is
almost negligible in the case of short pulses; but even in the
case of long pulses the parameters R and K are close enough
to use the experimentally measurable parameter R as the en-
tanglement quantifier.

The ratio of R and K parameters �29� and �48� equals

K���
R���

� 1.04
1 + 0.586�3

1 + �3 . �49�

Numerical coefficients on the right-hand side of this equation
are not related to any parameters of the medium or pump and
arise from ln 2, 
�, and similar factors. For this reason the
ratio K /R can be considered as a universal function depend-
ing only on the control parameter � and valid for any crystals
�with the type-I phase matching� and any pump wavelengths.
Moreover, Eq. �49� and all other results derived above �ex-
cept the very final numerical estimates in Eqs. �20�, �21�,
�26�, �40�, �47�, and �48�� can be applied to any processes
generating bipartite states of the form �11� with arbitrary
pairs of variables substituting 	1 and 	2 and with any values
and physical origin of the constants A and B. In particular,
the results described here can be applied directly to the ear-
lier considered angular entanglement of SPDC biphoton
states in a continuous pump laser �1�. Specifically, for estab-
lishing one-to-one correspondence between the spectral and
angular entanglement, we have to substitute frequencies 	1,2
by angles �1,2 determining directions of the photon wave
vectors k1,2. In accordance with the approach of Ref. �1�, we
can consider the angular divergence of the pump �0 as a
varying parameter substituting in the case of a monochro-
matic pump the pump-pulse duration �. Then, to reduce the
angular wave function in the “parallel geometry” of Ref. �1�
to the form of Eq. �11�, we have to substitute the constants A
�Eq. �9�� and B �Eq. �10�� and the control parameter � �Eq.
�15�� by

Ã =
�c

�0

np�

np
, Ã =

�2c2

2np�0
, �̃ =

4 ln 2�0

��0L

np

np�
, �50�

where now np� is the angular derivative of the pump refrac-
tive index np. With these substitutions done, we can use all
the results derived above for the Schmidt number K and the
parameter R. In particular, with the help of Eq. �30� we can
find the minimal value of the parameter R characterizing
angular entanglement in the parallel geometry at varying an-
gular divergence of the pump �0:

Rmin�
angular = np�
 2L

np�0
. �51�

This result was not obtained earlier in Ref. �1�, and it shows
that the degree of angular entanglement is high even in the
most unfavorable circumstances owing to the same large fac-
tor as in the case of spectral entanglement, 
L /�0�1.

Note finally that in the analytical derivation of expres-
sions �40� and �47� for the Schmidt number in the short- and
long-pulse limits we used approximations, precision of
which was not controlled and, probably, could not be con-
trolled analytically. Hence exact numerical calculations of
the Schmidt number K��� are needed for making the final
conclusion on how close are K��� and R���. Such calcula-
tions were done recently by Mauerer and Silberhorn �18�.
They show that “Kexact���” and R��� are even closer to each
other than predicted by analytical calculations. Coincidence
of Kexact��� and R��� is almost perfect in the limits of short
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and long pump pulses. The largest discrepancy occurs in the
intermediate region around minima of the curves “Kexact���”
and R���; but even in this region the discrepancy is only
about 10%. This shows that for the wave function of the
form �11� the Schmidt number K and R parameter are really
close to each other and that even the used above simple
interpolation formula �28� gives a pretty good result.

VI. TEMPORAL STRUCTURE OF BIPHOTON WAVE
PACKETS

A. General expression

Temporal and coordinate features of biphoton states are

characterized by the function �̃�t1 , t2 ;z1 ,z2� depending on
two times t1 and t2 and two coordinates, z1 and z2,

�̃�t1,t2;z1,z2� =	 d�1d�2���1,�2�

�exp�− i��1t1 − k1��1�z1 + �2t2

− k2��2�z2�� . �52�

The wave function �̃ determines the probability density

dw

dt1dz1dt2dz2
= ��̃�t1,t2;z1,z2��2 �53�

of finding �registering� photons “1” and “2” in small vicini-
ties of arbitrary points �z1 , t1� and �z2 , t2� in the coordinate-
time plane �z , t� under the condition that z1 and z2 are within
the crystal, i.e., 0�z1,2�L.

The exponential factors depending on �z1 , t1� and �z2 , t2�
on the right-hand side of Eq. �52� are the time-coordinate
wave functions of one-photon states with momenta k1 and k2
�or frequencies �1 and �2�,

ei��1t1−k1z1� = �z1,t1�k1� = �z1,t1�ak1

† �vac� ,

ei��2t2−k2z2� = �z2,t2�k2� = �z2,t2�ak2

† �vac� . �54�

The two-time and two-coordinate wave function of Eq. �52�
is the projection of the two-photon state vector given by the
second term on the right-hand side of Eq. �1� upon the prod-
uct of two coordinate states,

�̃�t1,t2;z1,z2� = �z1,t1��z2,t2� �
k1,k2

��k1,k2��k1,k2� , �55�

for the case k1,2�=0.
Note that owing to the presence of coordinate parts in

these single-photon wave functions, the transition from spec-
tral to temporal picture determined by Eq. �52� is not equiva-
lent to the simple double Fourier transform of ���1 ,�2�
used in Refs. �9,19�. Though some results of these two types
of calculations can coincide �see Eq. �61� and explanations
below�, in a general case, transition to the temporal picture is
inseparable from transition to the coordinate representation,
and this is the transformation determined by Eq. �52� that
gives a rigorously defined two-time and two-coordinate bi-
photon wave function.

As it was done previously, the wave vectors k1,2��1,2� in
Eq. �52� can be expanded in powers of small differences
	1,2=�1,2− 1

2�0, with only the first and second orders to be
retained,

k1,2��1,2� �
�0

2c
+

	1,2

vg
�o� +

2B

c�0
	1,2

2 + ¯ . �56�

By using this expansion, the definition of Eq. �52�, and the
expression of Eq. �5� for the frequency-dependent wave
function ���1 ,�2�, we get the following integral represen-

tation for �̃:

�̃�t1,t2;z1,z2� � 	
0

L

dz	 d	1d	2 exp�−
�	1 + 	2�2�2

8 ln 2

exp�− i	1�t1 −

z1

vg
�o�� − i	2�t2 −

z2

vg
�o�� + i

Az

c
�	1 + 	2�


�exp�i
B

c�0
�z −

z1 + z2

2
��	1 − 	2�2
 , �57�

where, as previously stated, the squared frequencies 	1,2
2 = 1

4 �	1−	2� �	1+	2��2 in the expansion �56� are approximated by
1
4 �	1−	2�2 with the terms �

1
2 �	1−	2��	1+	2� and 1

4 �	1+	2�2 dropped as giving only small corrections to other terms �	1
+	2 and ��	1−	2�2 in the exponential functions of Eq. �57�.

In variables u=	1+	2 and v=	1−	2 the double integral over 	1 and 	2 in Eq. �57� splits for the product of two Gaussian
integrals over u and v which are easily taken to give

�̃�t1,t2;z1,z2� � 	
0

min�z1,z2� dz


z1 + z2

2
− z

exp�−
2 ln 2

c2�2 �Az −
c�t1 + t2�

2
+

c�z1 + z2�
2vg

�o� 
2�
�exp� i�c2

4B�0�z1 + z2 − 2z��t1 − t2 −
z1 − z2

vg
�o� �2� . �58�
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Here we restricted the region of integration over z by 1
2 �z1

+z2� �instead of L� because we interpret z as the coordinate
of birth of a single-idler pair, and z1 and z2 as possible loca-
tions of the emitted photons. As these photons propagate to
the direction of growing z1,2, these coordinates cannot be
smaller than the coordinate of their birth, i.e., z must be
smaller than min�z1 ,z2�.

At the exit from the crystal, where z1=z2=L, Eq. �58�
takes the form

�̃�t1,t2� � �̃�t1,L;t2,L� � 	
0

L dz

L − z

�exp�−
2 ln 2

�2 � z

vg
�e� +

�L − z�
vg

�o� −
�t1 + t2�

2 
2�
�exp�i

�c2

8B�0�L − z�
�t1 − t2�2� . �59�

Finally, by introducing new time variables

t̃1,2 = t1,2 −
L

vg
�o� , t+ =

1

2
�t̃1 + t̃2�, t− = t̃1 − t̃2, �60�

we can slightly simplify the first exponential factor on the
right-hand side of Eq. �59� and get

�̃�t̃1, t̃2� � 	
0

L dz

L − z

�exp�−
2 ln 2

c2�2 �Az − ct+�2�exp�i
�c2t−

2

8B�0�L − z�� .

�61�

The time shift L /vg
�o� in Eq. �60� is the time during which the

signal and idler photons moving exactly with their group
velocity cross all of the crystal from 0 to L. Hence if t1= t2
=0 is the time when the peak of the temporal envelope of the
pump enters the crystal, the zero point for t̃1,2 �t̃1,2=0� is the
time when the signal and idler photons, emitted at t1= t2=0
and moving with the speed vg

�o�, reach the end of the crystal.
Note that substitution of the integration variable z=z�+L

and some additional shift of the time variables t̃1 and t̃2 re-
duce Eq. �61� to the same form as that of Eq. �22� in the
paper by Keller and Rubin �9�. This equation of Ref. �9� was
obtained with the help of a simple double Fourier transfor-
mation rather than via the transition from momentum to
time-coordinate representation determined by Eq. �52�.
Though seemingly surprising, this coincidence is quite un-
derstandable. Indeed, in terms of z�, the crystal borders are
−L and 0, and at the exit from the crystal z1�=z2�=0. At this
point, the one-photon wave functions of Eq. �54� �with z
substituted by z�� turn into e−i�1,2t1,2, and the transformation
of Eq. �52� appears to be equivalent to the double Fourier
transformation. However, this is a very exceptional case re-
lated to the assumed in Ref. �9� location of the crystal at
�−L ,0�. Our attempt �19� to apply a simple double Fourier
transformation to the case when the crystal location is taken
as �0,L� gave a result qualitatively different from that of Eq.
�61� and, evidently, wrong. Here in Eq. �61� we correct it

with the help of derivation based on the transformation from
the frequency to time-coordinate representation of Eq. �52�.

Actually, the results of calculations have to be invariant
with respect to the choice of coordinates determining the
location of the crystal. We can easily find that the transfor-
mation determined by Eq. �52� provides such invariance
whereas the simple double Fourier transformation does not.
Indeed, the difference between Eqs. �61� and �10� of Ref.
�19� is in a different location of the singularity in the integral
over z: at z=L �the exit edge of a crystal� in Eq. �61� and z
=0 �the entrance edge� in Eq. �10� of Ref. �19�. Location of
the singularity is determined by the factor in front of �	1
−	2�2 in the last line of Eq. �57� and in similar equations of
Refs. �9,19�. Let in a general case the coordinates of the
crystal edges be z=L1 and z=L2=L1+L. We are interested in
the biphoton wave function at the exit edge, i.e., z1=z2=L2.
In this case, the coefficient in front of �	1−	2�2 in the last
line of Eq. �57� is proportional to z−L2, and the singularity in
the final integral over z �similar to that of Eq. �61�� occurs at
z=L2, i.e., always at the exit edge of the crystal. In contrast
to this, in the scheme of calculation with the double-Fourier
transformation the coefficient in front of �	1−	2�2 in the last
line of Eq. �57� becomes proportional to z, i.e., the singular-
ity in the final integral over z occurs at z=0. This point can
be arbitrarily located with respect to the crystal and, evi-
dently, the results are not invariant with respect to the choice
of the crystal coordinates. The only case when the results of
calculations in these two approaches coincide is the case
L1=−L and L2=0, and this is just the case of Ref. �9�.

B. Numerical results

1. Short pump pulses

The probability density of registering photons at the exit
from the crystal at times t̃1 and t̃2 is given by the squared

absolute value of the wave function �̃�t̃1 , t̃2� �61�, determin-
ing a surface in the three-dimensional �3D� space

�t̃1 , t̃2 , ��̃�2�. For short pump pulses �=50 fs and for the same
values of all other parameters which were used above, the

surface �̃�t̃1 , t̃2� is shown in Fig. 5.

The surface ��̃�t̃1 , t̃2��2 is seen to have the form of a long
plateau symmetric in t1, t2. The plateau is rather wide in the
beginning �at small values t̃1,2� and is narrowing and height-

FIG. 5. �Color online� The function ��̃�t̃1 , t̃2��2 �in relative units�
for �=50 fs, �a� 3D plot and �b� the top view; t̃1 and t̃2 are in units
of 10 fs.
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ening with a growing value of t̃1+ t̃2. Around the point t̃1

= t̃2=285.25 the plateau turns into a rather high and sharp

peak. The diagonal squared wave function ��̃�t̃1 , t̃1��2 char-
acterizes evolution of the plateau-peak height in its depen-
dence on t̃1+ t̃2, and this function is shown in Fig. 6. In
accordance with the 3D picture of Fig. 5�a�, the curve of Fig.
6 switches on rather quickly at t=0 �in a time on the order of
the pulse duration of the pump ��, and then it has a long and
slowly growing plateau ending with a high and narrow peak
at t=2.8525 ps followed by a very quick turn-off.

The temporal shape and parameters of coincidence and
single-particle signals are defined in the same way as in the
cases of frequency or angular distributions. The coincidence
signal is determined by the probability density dw�c��t1� /dt1
of registering at the exit surface of the crystal a photon “1” at
a varying time t̃1 under the condition that the photon “2” of
the same pair is registered at the same place at some given

time t̃2, dw�c��t1� /dt1� ��̃�t̃1 , t̃2��2 at t̃2=const. For 50-fs
pulses of the pump, two examples of coincidence curves are
shown in Fig. 7.

These curves correspond to the very beginning of the pla-

teau and to the peak of the surface ��̃�t̃1 , t̃2��2 in Fig. 5. The
FWHM of the curves �a� and �b� in Fig. 7 are equal to
�t1

�c��t̃2=0�=486.3 fs and �t1
�c��t̃2=2.8525 ps�=6 fs. This

huge difference in FWHM shows clearly that in the temporal
picture the coincidence widths �t1

�c� �or the duration of the
coincidence signal� depends very strongly on the registration
time t2 of the second photon of a pair. This contrasts with the
spectral picture where �	1

�c� was shown to be almost inde-
pendent of 	2. A strong dependence of �t1

�c� on t2 makes the
temporal picture inappropriate for defining the parameter R
and for determining in such a way the degree of entangle-
ment. Such a procedure can be used only in the spectral

picture. Some analogies can be found in the coordinate and
momentum pictures for massive particles, where spreading
of wave packets in the coordinate representation makes the
latter inconvenient for evaluation of the degree of entangle-
ment via the width-ratio parameter R; whereas the momen-
tum representation is free from such a problem because mo-
mentum distributions do not spread �4�. In the case of
photons, dispersion �or diffraction divergency� plays the role
analogous to spreading.

The single-particle temporal density of probability to reg-
ister a photon by a single detector at a varying time t1 is
determined by the integrated squared two-time wave func-
tion of Eq. �61�,

dw�s��t1�
dt1

�	 dt2��̃�t1,t2��2. �62�

For the pump-pulse duration as short as �=50 fs the result of
numerical integration is plotted in Fig. 8. Duration of the
single-particle signal, defined as FWHM of the curve in Fig.
8, equals 2.837 ps, which is more than 50 times longer than
the pump pulse.

Two other interesting features of the curve dw�s��t1� /dt1
are its constant value at a very long interval of time and the
anomalously long front wing �at small t̃1�. Explanations are
given below in Sec. VI C on the basis of simplified analytical
formulas.

2. Long pump pulses

All the results shown in Figs. 5–8 correspond to a short
duration of the pump pulses ��
1�. In the case of long
pulses ���1� the picture changes rather significantly. For
�=2 ps the 3D pictures of Fig. 5 are substituted by those of
Fig. 9.

FIG. 6. The diagonal squared wave function ��̃�t̃1 , t̃1��2 �in rela-
tive units�.

FIG. 7. Normalized coincidence signals at �a� t̃2=0 and �b� t̃2

=2.8525 ps.

FIG. 8. The normalized time-dependent single-particle probabil-
ity density; t̃1 and t̃2 are in units of 10 fs.

FIG. 9. �Color online� The same as in Fig. 5 but for �=2.
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The surface �̃�t̃1 , t̃2� is seen to have the form of a narrow
long bump concentrated along the diagonal t̃1= t̃2 in the plane
�t̃1 , t̃2�. As seen clearly in Fig. 10�b�, the width of the layer

�̃�t̃1 , t̃2� is almost constant in the middle part of the bump,
and the layer narrows slightly at its ends. Quantitative char-
acteristics of the temporal photon distribution are presented
below in Sec. VI D.

C. Analytical characterization for short pump pulses

1. Simplified formulas

If the pump pulses are short enough, c�
AL, the first
exponential factor in the integrand of Eq. �61� is very narrow.
Location of its peak determines the coordinate z0=ct+ /A, a
small vicinity of which gives the main contribution to the
integral over z. Under these conditions we can simplify the
integrand by substituting z=z0 into the preexponential factor
1 /
L−z and by expanding 1 / �L−z� in the second exponen-
tial factor in powers of �z−z0� /z0: 1 / �L−z��1 / �L−z0�+ �z
−z0� / �L−z0�2. As a result of such simplifications, the integral
in Eq. �61� takes the Gaussian form with finite limits of
integration, which gives rise to the sum of two error func-
tions:

�̃�t+,t−� �
1


LA − ct+

exp�− a2� ct−

LA − ct+
�4


��erf�
2 ln 2
AL − ct+

c�
+ ia� ct−

AL − ct+
�2


− erf�− 
2 ln 2
t+

�
+ ia� ct−

LA − ct+
�2
� , �63�

where

a =
�c�A

16
2 ln 2B�0

. �64�

The validity criterion of the approximation used for deriva-
tion of Eq. �63� is �z−z0�
L−z0 with z0=ct+ /A and �z−z0�
�c� /A, which gives

LA − ct+ � c� . �65�

As t+ is associated with the location z0 of the peak of the
pump envelope in the crystal, the condition �65� means that
the pump pulse is located far enough from the end of the
crystal, at a distance exceeding significantly c� /A. Note that

the times t+=0 and t+=LA /c are associated with the pump
pulse entry to and exit from the crystal.

If, in addition to Eq. �65�, the time t+ or coordinate z0
obey the conditions t+�� or z0�c� /A, the pump envelope is
located far from both edges of the crystal. In this case the
formula of Eq. �66� can be further significantly simplified.
Indeed, if a very short pump pulse is located deep in the
crystal, the limits of integration over z can be extended to −�
and +�. This is equivalent to approximation of the first and
second error functions in Eq. �63� by +1 and −1, and reduces
finally Eq. �63� to the simplest form:

�̃�t+,t−� �
1


LA − ct+

exp�− a2� ct−

LA − ct+
�4
 . �66�

Equations �63� and �66� are much more convenient than the
exact formula �61� for obtaining analytical expressions for
parameters characterizing coincidence and single-particle
signals.

2. Localization of the temporal biphoton wave packet

The localization region of the wave function �̃�t̃1 , t̃2� in
the �t̃1 , t̃2� plane can be defined in the following way: we plot

graphs of ��̃�2 as a function of t− at all given values of t+ and
find coordinates t−

��t+� of these curves at half-maxima. Then
the functions t−

��t+� together with the line t+=0 determine the

borders of the localization region of ��̃�t̃1 , t̃2��2. With the
functions t−

��t+� calculated numerically from Eq. �61� the re-
sult is given by the diagram of Fig. 10, in which t−

+�t+� and
t−
−�t+� determine the upper and lower borders of the shaded

area. Defined in such a way, the diagram of Fig. 10 agrees

perfectly with the top view of the surface ��̃�t̃1 , t̃2��2 in Fig.
5�b�. In Fig. 10 one can distinguish clearly three regions of
t+, I, II, and III, in which the dependence t−

��t+� is signifi-
cantly different. Below these regions are analyzed separately.

3. Coincidence width in the region II

The most extended of the three regions in Fig. 10 is the
region of intermediate values of t+, II, where the wave func-

tion �̃�t+ , t−� can be satisfactorily approximated by the sim-
plest exponential formula of Eq. �66�. This equation gives

t−
��t+� = �

4

c

 ln 2AB�0

�Ac�
�LA − ct+� . �67�

By definition, Eq. �67� determines the upper and lower
boundaries of the localization region in Fig. 10 at a given
value of t+. However, the same equation can be used to find
the upper and lower boundaries of the localization region t̃1

�

at a given t̃2. To find t̃1
��t̃2� one has to make a substitution in

Eq. �67�, t+= 1
2 �t̃1+ t̃2�, to replace t̃−

� by t̃1− t̃2, and to solve the
arising equation with respect to t̃1. In the first order in a small
parameter 2
ln 2B�0 /�c��0.1
1 �at �=50 fs� the solution
is given by

�

�

FIG. 10. Localization region of the function �̃�t̃1 , t̃2�; t̃1, t̃2, t+,
and t− are in units of 10 fs; �b� is the increased section III of �a�.
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t̃1
��t̃2� = t̃2�1 � 4
 ln 2B�0

�Ac�
� �

4L

c

 ln 2AB�0

�c�
. �68�

From this equation we obtain the following analytical ex-
pression for the width of the coincidence temporal distribu-
tion of photons in the region II of Fig. 10:

�t1
�c��t̃2� = t̃1

+ − t̃1
− =

8

c

B�0 ln 2

�Ac�
�LA − ct̃2� . �69�

This expression shows that for photons coming in pairs to
the exit from the crystal, their spread in the arrival time their
is determined by a joint influence of the temporal walk-off
and dispersion. The spread is large at small values of the
observation time �small t̃2� and falls with a growing t̃2. This
dependence of �t1

�c��t̃2� on the observation time t̃2 has a very
clear qualitative explanation. Dispersion of velocities ac-
quired by photons of a pair at their birth gives rise to retar-
dation of one photon with respect to another during their
propagation in a crystal. This retardation grows with the
length of propagation. For photons born at the crystal en-
trance �t̃2�0�, both the propagation length and retardation
are very large which results in a long duration of the coinci-
dence signal �the picture of Fig. 7�a��. For photons born
close to the crystal exit �t̃2�0�L /vg

�0��, the length of propa-
gation is almost zero, and the resulting retardation and dura-
tion of the coincidence signal are very small �Fig. 7�b��.

4. Region I

In region I the simplest approximate formula of Eq. �66�
is invalid; but the formula of Eq. �63� works perfectly and
can be used to find analytical expressions determining both
the shape of boundaries of localization region in Fig. 10 and
the coincidence width of the temporal distribution of pho-
tons. As in region I the time t+ is very small, the first error
function in Eq. �63� equals unity, and the term t+ can be
dropped everywhere except the first term in the argument of
the second error function to give

�̃ � e−y4
�1 + erf�b + iy2�� , �70�

where b=
2 ln 2t+�, y=ct−

a /LA, and a is defined in Eq.

�64�. From Eq. �70� we find easily �e.g., with the help of
simple calculation in Mathematica� that at b=0 the half-

width at the half-maximum �HWHM� of ��̃�2 equals one, and
at growing but small values of b it falls as 1−0.24b. In terms
of t+ and t− this yields

t−
��t+� = �

LA

c
a
�1 − 0.24


2 ln 2t+

�
�

=
4L�2 ln 2�1/4
AB�0

c
�c�
�1 − 0.24


2 ln 2t+

�
� . �71�

The lines t−
��t+� determined by Eq. �71� are sharper than the

lines determined by Eq. �67�. The crossing points of these
lines occur at t+�43 fs and they determine the boundary
between the zones I and II in Fig. 10. As seen well in Fig. 10,
the width of the localization region in the t− direction is

maximal at t+=0 where, in accordance with Eq. �71�, it
equals

�t−max = t−
+�t+ = 0� − t−

−�t+ = 0�

=
8L�2 ln 2�1/4
AB�0

c
�c�
� 1.46 ps. �72�

5. Pulse shape of a single-particle signal

A large width of the wave-packet localization region in
the t− direction at t+=0 explains the origin and parameters of
the anomalously long front wing of the single-particle signal
shown in Fig. 8. Indeed, owing to the condition t+=0, in the
�t̃1 , t̃2� frame the points C� and C� in Fig. 10 have coordi-
nates t̃1�=−t̃2�= 1

2�t−max and t̃1�=−t̃2�=− 1
2�t−max, where

�t−max is given by Eq. �72�. As the t1-dependent single-
particle signal can be considered as the sum of all coinci-
dence signals at all values of t2, it is clear that at t̃2� t̃2� there
are no signals at all, either in coincidence or single-particle
measurements. Hence t̃2� is that time since which the single-
particle signal become detectable. Actually, t̃2� is the begin-
ning of the transient period during which the amplitude of
the single-particle grows. This transient period ends at t̃2

= t̃2�, and its duration equals �t−max �Eq. �72��. The same
value characterizes the duration �fw of the front wing of the
single particle signal considered as a function of t1:

�fw = t̃1� − t̃1� =
8L�2 ln 2�1/4
AB�0

c
�c�
. �73�

As is seen from Fig. 8, the single-particle signal is con-
stant for all its duration after ending of the initial transient
period. This feature is easily explained by Eqs. �66� and �69�.
Indeed, at a given t̃1 the single-particle yield �62� can be
estimated approximately as the product of the height

��̃�t̃1 , t̃1��2 and width �t2
�c��t̃1� of ��̃�t̃1 , t̃2��2 considered as a

function t̃2. The first of these two factors is given by Eq. �66�
with t−=0 and, evidently, ��̃�t̃1 , t̃1��2�1 / �LA−ct̃1�. As for
the width �t2

�c��t̃1�, it is given by Eq. �69� with t̃2 on its
right-hand side substituted by t̃1, and this gives �t2

�c��t̃1�
�LA−ct̃1. Hence with a growing t̃1 the peak height of the

function ��̃�t̃1 , t̃2��2 �in its dependence on t̃2� grows, whereas
its width falls, but their product remains constant �indepen-
dent of t̃1�, i.e., the dependence dw�s��t̃1� /dt̃1 has the form of
a plateau.

The total duration of the single-particle signal is deter-
mined by the condition that the real part of the argument of
the second error function in Eq. �63� changes its sign, i.e.,

�single �
LA

c
=

L

vg
�e� −

L

vg
�o� . �74�

This result is absolutely understandable qualitatively: �single
is the period of time between the arrival and exit from the
crystal of almost first and almost last observable SPDC pho-
tons or the delay time between the arrival of the first
ordinary-wave photons and of the pump �extraordinary
wave�.

MIKHAILOVA, VOLKOV, AND FEDOROV PHYSICAL REVIEW A 78, 062327 �2008�

062327-14



Note that qualitatively the long-plateau shape of the
single-particle temporal signal was forecasted earlier �20�. In
our analysis we specify quantitatively parameters of the pla-
teau and, in addition, we describe such a striking feature of
the single-particle signal as its unusually long front wing.

6. Region III in the diagram of Fig. 10

This is the region behind the peak of the photon distribu-
tion in Fig. 5�a�, where the amount of photons is vary small.
Nevertheless, this region is interesting because here forma-
tion of the localization region of the temporal wave packet is
related to a mechanism qualitatively different from those de-
scribed above for regions I and II. In region III the condition
of Eq. �65� is not fulfilled, the fraction 1 / �L−z� in the inte-
grand of Eq. �61� cannot be expanded in powers of �z
−z0� / �L−z0�, and the simple formulas of Eqs. �63� and �66�
are invalid; but some estimates can be done directly on the
ground of Eq. �61�. Indeed, from the second exponential fac-
tor in the integrand on the right-hand side of Eq. �61� we can
deduce the following estimate of the characteristic half-width
of the wave-packet localization region

�t� � �

B�0�L − z�

c
. �75�

If the peak of the laser pulse is located exactly at the end of
the crystal, ct+=LA, then the maximal deviation of z from L,
where the integrand of Eq. �61� is not small, is L−z�c� /A.
Substitution of this expression into Eq. �75� gives

�t−
� � �


B�0�


cA
. �76�

This expression corresponds to the very beginning of zone
III in Fig. 10.

If ct+
L, the peak of the pump pulse is located behind
the crystal and only a small part if its rear wing remains in
the crystal. By expanding the Gaussian exponent in powers
of L−z, we find that now L−z�c2�2 / �A�ct+−LA��. By sub-
stituting this expression into Eq. �75�, we find the law by
which zone III in Fig. 10 slowly narrows,

�t−
� � � �
 B�0

A�ct+ − L�
. �77�

D. Long pump pulses: Analytical description and degree of
entanglement

The regime of long pulses of the pump arises if the pulse
duration is so long that ��LA /c or ��1 where � is given
by Eq. �14�. In this case the term proportional to z can be
dropped in the argument of the first exponential function in
Eq. �61� to give

�̃�t̃1, t̃2� � exp�− 2 ln 2� t+

�
�2
F�t−� , �78�

where

F�t−� = 	
0

L dz

L − z

exp�i
�c2t−

2

8B�0�L − z�
 . �79�

Equation �78� shows that for long pulses the dependences of

the wave function �̃ on t+ and t− are factorized, and the

dependence of �̃ on t+ repeats the time-dependence of the
pump envelope. As for the integral over z in Eq. �79� deter-

mining the dependence of �̃ on t−, it can be calculated to
expressed F�t−� in terms of the error function. To show this,
we have to substitute the variable of integration z=L�1
− i

s �
t−

�0
�2�, where

�0 =
1

c

8B�0L

�
�80�

and s is a new purely imaginary variable. Then the integral
�79� takes the form

F�t−� �
�t−�
�0
	

i�t−/�0�2

i� dse−s

s3/2 . �81�

In the complex plane s the integration contour can be turned
clockwise for 90° to be made parallel to the real axis. At this
new integration contour s= i�

t−

�0
�2+s�, where s�=Re�s� is a

new real integration variable changing from 0 to �:

F�t−� �
�t−�
�0
	

0

� ds�e−s�

�i� t−

�
�2

+ s�
3/2

= 1 + 
i� exp�i� t−

�0
�2
 t−

�0
�− 1 + erf�
i

�t−�
�0
�
 ,

�82�

where, as usual, all constant and phase factors are dropped.
Correctness of the last transformation in Eq. �82� �transition
to the error function� can be checked, e.g., by direct calcula-
tion of the integral in Mathematica. The normalized squared
absolute value of F�t−� �Eq. �82�� is plotted in Fig. 11 as a
function of the dimensionless variable t− /�0.

As the dependence of the function F�t−� on all parameters
of the crystal and pump is concentrated only in the scaling
factor �0 �Eq. �80��, the curve of Fig. 11 is universal and
valid for all values of these parameters under the only con-
dition that pump pulses are long, ��LA /c. In particular, this
curve and the analytical results of Eqs. �78� and �82� are
perfectly valid for the above considered case of 2-ps long

/| (0)|F

FIG. 11. Squared absolute value of the expression on the right-
hand side of Eq. �82�.
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pulses, for which the temporal wave packets are described in
Fig. 9.

Found from Eqs. �78� and �82�, single-particle and coin-
cidence widths of the temporal distribution of photons are
given by

�t1
�s� = � and �t1

�c� = 0.555�0 =
0.555

c

8BL�0

�
,

�83�

where 0.555 is the FWHM of the curve in Fig. 11. In contrast
to the case of short pulses, in the regime of long pulses of the
pump wave the coincidence width �t1

�c� does not depend on
t2. For these reasons, Eqs. �83� can be used for determining
the entanglement parameter Rt in the temporal representa-
tion:

Rt =
�t1

�s�

�t1
�c� =

c�

0.555

 �

8BL�0
� 0.75Rlong � 0.94Klong,

�84�

where Rlong is the R parameter �Eq. �26�� calculated for long
pulses in the frequency representation and Klong �Eq. �41�� is
the above-calculated Schmidt number in the long-pulse
asymptotic regime. As seen from Eq. �84�, the temporal R
parameter, Rt, has all the same functional dependences as
Rlong and Klong and slightly differs from them in numerical
coefficients. Moreover, Rt appears to be strikingly close to
the Schmidt number Klong, and this confirms once again a
good quality of the R parameter as the entanglement quanti-
fier.

The coincidence width �t1
�c� �Eq. �83��, or equal to it

“scaling factor” �0 �Eq. �80��, can be interpreted as the cor-
relation time of photons in the biphoton pair. It is important
to emphasize that this time does not depend on the pump-
pulse duration �. Hence the correlation time remains finite
even in the case of an infinitely long pulse or a purely mono-
chromatic pump. The only reason for a finite time of corre-
lation in the case of long pump pulses is the dispersion. If the
dispersion constant B formally tends to zero, the correlation
time �0 tends to zero too.

Note also that, owing to the assumption that pump pulses
are long, in this limit the temporal walk-off appears to be
completely switched off. The scaling duration �0 �Eq. �80��,
as well as the width and all structure of the curve in Fig. 11
are determined only by the dispersion constant B, rather than
by any combination of B and A as it was shown to occur in
the case of short pulses. Finally, the structure of the curve in
Fig. 9 reminds one quite strongly that the structure of the
coincidence curves for short pulses in the region of the peak
�Fig. 7�b�� and in zone III of Fig. 10. This resemblance is
related to the increasing role of dispersion and decreasing
role of the temporal walk-off in the cases when a short-pulse
pump exits the crystal.

VII. CONCLUSION

Let us summarize here our main results.
�1� For the degenerate collinear type-I SPDC process the

parameter R, characterizing the degree of spectral entangle-

ment, is found and shown to be large at any values of pulse
duration � of the pump. Even in the most unfavorable con-
ditions ��1 ps, where R��� has a minimum, its value does
not fall below 70, i.e., R����Rmin�1.

�2� The control parameter � �Eq. �14�� separating the re-
gions of short and long pulses is found to be determined by
the ratio of the double pump-pulse duration to the difference
of times during which a crystal is crossed by the pump and
idler-signal photons.

�3� By using fundamental features of the biphoton spectral
wave function we managed to find the Schmidt number K in
the cases of short and long pulses �compared to 1 ps�, though
the wave function was taken in the form significantly differ-
ent from the double-Gaussian one. By comparing R and K,
we found that they are very close to each other. All func-
tional dependences of R and K are identical, and the differ-
ence in numerical coefficients does not exceed 20%. For the
class of bipartite wave functions we consider, we found a
simple universal formula �Eq. �49�� establishing a relation
between R and K for any values of the control parameter �.
This means that as soon as the parameter R is measured and
� is evaluated, the Schmidt number can be easily found too.

�4� In the temporal picture, a structure of the two-time
biphoton wave packet ���t̃1 , t̃2��2 is investigated both nu-
merically and analytically �the latter with the help of a series
of very simple formulas we have derived�, in both cases of
short and long pump pulses. It is found that in these two
cases �short and long pump pulses� the shapes and localiza-
tion regions of the temporal biphoton wave packet are sig-
nificantly different. In the case of long pump pulses the lo-
calization region of ���t̃1 , t̃2��2 is more or less usual: it looks
like a long and thin cigar elongated along the diagonal t̃1

= t̃2 in the plane �t̃1 , t̃2� �Fig. 9�b��. In contrast to this, in the
case of short pump pulses, the localization region of
���t̃1 , t̃2��2 is found to be wedge-shaped �Figs. 5 and 10�.
Again, this “wedge” is elongated along the diagonal t̃1= t̃2;
but, very unusual, its width in the perpendicular direction
�t̃1=−t̃2� changes in very wide limits. In our example used
above, for estimates, from about 1.5 ps in a wide part of the
“wedge” down to a few femtoseconds in the narrow part.

�5� The above-described structure of the temporal wave
packet in the case of short pump pulses gives rise to the
following specific features of the single-particle signals. �a�
Duration of the single-particle signal is much longer than
that of the pump ��3 ps in our example compared to �
=50 fs�. �b� The front wing of the single-particle signal is
anomalously long, �1 ps, whereas the rear wing is as short
as the pump pulse itself. �c� In its middle part, the envelope
of the single-particle signal has the form of a plateau, i.e., is
constant. The long duration of the single-particle signal is
related to the temporal walk-off effect only, whereas its pla-
teau shape and a long front wing are related to a combined
action of the temporal walk-off and dispersion.

�6� In the same case of short pump pulses, coincidence
signals have a duration which depends strongly on the obser-
vation time. Soon enough after the first signal-idler photons
arrival to the end of the crystal, the duration of coincidence
signals �equal to the characteristic time of photon correlation
in a pair� is very long ��1 ps�, whereas close to the end of
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observability the duration of coincidence signals correlation
time becomes very short �a few fs�. This uncertainty in the
definition of the coincidence duration makes the temporal
picture in the case of short pump pulses very inconvenient
and inappropriate for defining the R parameter and evaluat-
ing in such a way the degree of entanglement of a biphoton
state.

�7� In the case of long pulses the wave packet ��̃�t̃1 , t̃2��2

is concentrated along the diagonal t̃1= t̃2 and is very narrow
and long. The duration of coincidence signals is small, de-
termined purely by dispersion, and independent of the obser-
vation time, i.e., constant. Owing to the last reason, the pa-
rameter R can be clearly and unambiguously defined, and it

appears to be very close to the Schmidt number. Actually, a
high degree of closeness between the parameters R and K
repeats itself symmetrically in the cases of �a� short pulses
and frequency representation and �b� long pulses and tempo-
ral representation. In both cases, with a good accuracy, R
=K�1.
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