PHYSICAL REVIEW A 78, 062324 (2008)
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We consider the problem of creating a long-distance entangled state between two stations of a network,
where neighboring nodes are connected by noisy quantum channels. We show that any two stations can share
an entangled pair if the effective probability for the quantum errors is below a certain threshold, which is
achieved by a local encoding of the qubits and a global bit-flip correction. In contrast to the conventional
quantum-repeater schemes, we do not need to store the qubits in quantum memory for a long time: our protocol
is a one-shot process (i.e., the elementary entangled pairs are used only once) involving one-way classical

communication. Furthermore, the overhead of local resources increases only logarithmically with the size of
the network, making our proposal favorable to long-distance quantum communication.
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I. INTRODUCTION

The task of creating entanglement over long distances has
attracted a lot of attention in the past ten years and has been
shown to be feasible using the so-called quantum-repeater
protocols [1-3], which alternates connection and purification
steps. One of the remaining problems for their technical re-
alization is the development of efficient and reliable quantum
memories [4]. An alternative to these (one-dimensional)
quantum repeaters is to exploit the high connectivity of
quantum networks through percolation strategies [5,6],
which, however, work only for pure states and perfect quan-
tum operations. The aim of this paper is to establish a new
theoretical scheme for generating long-distance entangle-
ment in noisy quantum networks without relying on efficient
quantum memories: we have to preserve the qubits from de-
coherence for a time that does not depend on the number of
connections between the two desired stations. To that pur-
pose, we propose to combine ideas of quantum error-
correcting codes [7] and some features of two-dimensional
quantum networks. Compared with the one-dimensional
quantum repeaters with encoding, based on general quantum
error correction [8], our network uses smaller and more effi-
cient quantum codes correcting one specific type of errors
(phase errors), while bit-flip errors are corrected by the net-
work.

Description of the model

The quantum network we consider throughout this paper
consists in a square lattice where nodes represent the stations
and edges the quantum channels; see Fig. 1. Quantum states
can be transmitted through these channels, and entanglement,
i.e., short-distance Bell states, can be created between neigh-
boring stations. We would like to use these local resources to
generate long-distance Bell pairs |®*),;=]00),5+|11),5 be-
tween some chosen destination stations A and B. We assume
perfect classical communication among all stations, but im-
perfect quantum operations and channels, so that the local
entangled pairs have limited fidelity; details of the error
model are given in Appendix A.
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II. NETWORK WITH BIT-FLIP ERRORS ONLY

We assume for the moment that only bit-flip errors occur
in the network, with a probability &,; phase errors will be
added in the next section. The first step of the procedure is to
generate an entangled pair for all the edges of the lattice and
to create a local state |P) at the station O; see Fig. 1. We
then use the entangled pairs to teleport the two qubits of |®*)
to the right and to the top until they reach C, in the following
way:

(i) Inner stations receive two qubits from their bottom and
left neighbors and they teleport them to the top and to the
right, respectively.

(ii) Stations on a boundary do the same, but they either
receive one qubit and “duplicate” it [by applying a
controlled-NOT (CNOT) with an additional qubit in the state
|0) as target], or they receive two qubits and “erase” one of
them (by measuring it in the X basis and by communicating
the outcome result; station C erases the two qubits it re-
ceives).

(iii) The destination stations A and B save each an addi-
tional duplicated qubit; this will create the long-distance en-
tangled state |D*), .

A. Bit-flip error correction

A syndrome detection and a network-based error correc-
tion are now used to suppress the bit-flip errors that occurred
while teleporting the initial state from O to C. A very similar

FIG. 1. (Color online) A quantum network with a station located
at each vertex of an NX N square lattice. The goal is to create a
long-distance entangled state between some previously chosen sta-
tions A and B.
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FIG. 2. (Color online) Bit-flip error correction: (a) Parity check
pattern associated with two erroneous edges, and (b) its plaquette
representation. (c) Two of the three possible edge identifications
(with the minimal number of errors) for the given syndrome pattern.
If the inferred edges do not correspond to the erroneous ones, a loop
is created and sites lying inside this region will apply the wrong
bit-flip correction.

procedure can be found in the context of fault-tolerant error
recovery in planar codes [9]; see the discussion in Appendix
B.

Parity checks. Each station coherently extracts the parity
information of the two qubits it receives, as shown in Fig. 4
and outputs +1 if the qubits have the same parity and —1
otherwise (error syndrome). Stations that receive only one
qubit define the parity check output as +1. Given the syn-
drome pattern for the lattice, the task is now to determine
which are the edges responsible for the bit-flip errors.

Plaquette representation. We assign for each plaquette
(i.e., for each vertex of the dual lattice) a value that is the
product of the four parity check outputs at its corners. For
example, the parity check pattern and its plaquette represen-
tation induced by one erroneous edge are shown in Figs. 2(a)
and 2(b). Thus, single erroneous edge results in two —1
plaquettes adjacent to the erroneous edge (except when that
edge is on the boundary, resulting in a single —1 plaquette).
Erroneous edges can be identified unequivocally as long as
they are isolated, but having two (or more) such edges adja-
cent to the same plaquette leads to some ambiguity, see Fig.
2(c), and this may cause a bit-flip error in the final state.

Fidelity of the resulting state. Since we assume bit-flip
errors only, the resulting state is a mixture of |®*)=|00)
+[11) and |P*)=|01)+]10),

pap=FIPNHD™|+ (1 - F)[W (W (1)

This mixed state is always entangled and can be distilled at a
rate of E=1-H,(F), which is called distillable entanglement
[11]. Tts fidelity F, i.e., the probability to apply the same
bit-flip correction at A and B, has been calculated numeri-
cally; see Fig. 3: this shows that there exists a critical value
sZ%O.ll above which the error correction fails to work. A
precise value of sZ is discussed in Appendix B, but we can
justify its existence and approximate it in a simple way by
the following argument: each imperfect quantum channel in-
troduces an entropy H,(e,)=—¢g,logre;,—(1—g)logy(1—¢))
into the network, and each parity check extracts at most 1 bit
of information. We thus can maintain an ordered phase if
2H,(g,) <1, i.e., when g,<11%.

Measurement errors. In practice, the parity check mea-
surements are imperfect and they give a wrong result with
probability .. We can generalize the entropy argument by
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FIG. 3. (Color online) Simulation of the (classical) bit-flip error
correction in a square lattice with periodic boundary conditions, so
that syndrome plaquettes always appear in pairs. An unknown bit is
sent through the lattice and a possible minimal set of erroneous
edges leading to the corresponding parity check pattern is found
using Edmonds’ algorithm for minimal weight perfect matching
[10]. We show here the probability that two random sites infer the
same value of the bit in an N X N lattice with bit-flip error probabil-
ity ;. The extrapolated function P, is plotted with a bold line and
the dashed line represents its behavior for small e,: P.(gp)=1
- 68£27+ 0(82).

including the measurement errors, so that at most 1 —H,(s,)
bits of information are extracted from a parity check. The
condition for maintaining an ordered phase becomes

2H,(g,) < 2H,(e,) = 1 - Hy(z,). )

We now try to get rid of the measurement errors by repeating
the parity checks 2r+1 times and using the majority vote to
infer the correct syndrome. If the parity check measurements
do not perturb the qubits, repeating them can suppress the
errors up to 0(8£+l). Even if additional errors are introduced
into the system, three repeated measurements can already
help in correcting errors; in fact, a measurement error can be
treated as an effective contribution to the error in the channel
(see Appendix A), which approximately becomes &,=¢,
+3e,, and an ordered phase is maintained whenever 81,7< 8:.

Other lattices. Even if the square lattice is the most natu-
ral one we can think of, ideas of network-based correction
can easily be generalized to other geometries. The triangular
lattice, for instance, has a slightly higher critical value: SZ
~17%. This threshold is found by solving the equation
3H2(8Z):2 (similar entropy argument as for the square lat-
tice), or by considering the corresponding random-bond
Ising model on the triangular lattice (see Appendix B and the
numerical result in [12]).

Comparison with pure-state percolation. Our protocol can
also be applied when the edges of the lattice are given by
pure_but nonmaximally entangled states of the form lo)
=\¢p|00)+ | 11), with ¢y=¢; and @y+¢@;=1, and when
quantum operations are supposed perfect. In this situation
there already exists a protocol, based on classical percolation
theory, that achieves long-distance entanglement [5,6]: one
first tries to convert each state |¢) of the network into the
Bell pair |®*), which is successful with a probability p
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FIG. 4. (Color online) Local resources and operations at each
station. At least five qubits are needed: one for the parity check
measurement (dashed box) and four for the teleportations (dotted
boxes). The choice of the rotations R, depending on the outcomes of
the Bell measurements, can be tracked classically and thus no clas-
sical communication is necessary between the stations during the
process; the interpretation of the parity checks can be postponed
until its very end.

=2¢;. If p is higher than some threshold p* depending on the
lattice (for instance p*=0.5 for an infinite square lattice),
then there exists with a strictly positive probability a path of
Bell pairs connecting any two sites. Performing entangle-
ment swappings along such a path finally leads to the desired
long-distance entangled pair. In order to use our approach,
we twirl [13] the pure state | @) to the mixed state
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which corresponds to a bit-flip error probability of (Vo
—¢;)?/2. Since the threshold for our protocol is about 0.11,
we can deal with states up to ¢;=0.81, and thus beat the
classical percolation protocol, which works only for ¢,
=<0.75.

B. Physical and temporal resources

As illustrated in Fig. 4 each station requires the following:
(i) four qubits for the connections with its neighbors; (ii) one
qubit for the parity check measurements, which can also be
used to store the final Bell state; and (iii) about two ancilla
qubits (not shown in the figure) to create the elementary
entangled pairs using nested entanglement pumping (see Ap-
pendix A). We therefore need approximately seven qubits at
each station, and this number is independent of the size of
the lattice.

Simultaneous measurements versus quantum memory.
One key advantage of the proposed procedure is that all sta-
tions can operate simultaneously: the quantum operations at
each station (including both Bell and parity-check measure-
ments) can be made without knowing the measurement out-
comes from the other stations. The interpretation of these
outcomes, i.e., the choice of the local Pauli frames, is done
using one-way classical communication. Since the goal is to
produce a Bell pair between stations A and B, only the two
concerned qubits have to be kept in quantum memory while
waiting for the measurement outcomes to be collected and
analyzed; at the same time another round of quantum com-
munication in the network can already start.

A more favorable application of our protocol is quantum
key distribution. To that purpose, all that is needed is the
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statistical correlation associated with the Bell pair, rather
than the pair itself. This observation allows us to avoid any
problem of decoherence of the qubits at stations A and B
since they can be measured even before the reception of all
measurement outcomes. In fact, the two qubits are measured
in one of two complementary bases (e.g., X and Z), which is
randomly chosen for each destination station, and the out-
comes are secretly stored while the choice of the basis is
publically announced. Once all measurement outcomes are
received, A and B can determine whether they chose the
same basis or not; this is the case with probability %, and thus
a raw key for cryptography is available. Even if the correla-
tion is not perfect due to various imperfections, we can apply
the procedure of privacy amplification before we obtain the
final highly correlated secret key (see [14], p. 186).

III. CORRECTING BIT-FLIP AND PHASE ERRORS

We now propose a way of suppressing both bit-flip and
phase errors that are present in the quantum network.

A. Encoding the qubits

Each physical qubit considered so far is replaced by an
encoded block of qubits, and we also implement all quantum
operations at the encoded level. Phase errors are suppressed
by the code redundancy, and bit-flip errors are corrected ex-
actly as explained in the previous section. The subspace for
the redundant code of n=2¢+1 physical qubits is spanned by
the two logical GHZ states,

0) = \,%(I Y
Ty = = (| + )%= |-)®") 3)
-+ ,

This choice of code can correct by majority vote up to ¢
phase errors in the block of n qubits, but it cannot correct any
bit-flip errors, which we denote as (z,,2,)=(,0). This is a
CSS code with stabilizers generated by
{X\X,,X,X5,...,X,_1X,}, and all the nice properties of a CSS
code can be used, as transversal CNOT gates or efficient mea-
surements [ 15]. Furthermore, all the quantum operations dis-
cussed in the previous section can still be applied, with some
minor changes: (i) physical qubits are replaced by encoded

qubits; in particular, we use the encoded Bell pair |66)

+|11) as elementary links; (i) the CNOT gate is implemented
by a transversal CNOT gate between two encoded qubits; (iii)

encoded Pauli operators X and Z are inferred by measuring
all X and Z operators on the qubits of the encoding block;
and (iv) classical error correction is performed to suppress up
to ¢ phase errors.

It is important for the encoding process to fulfill the re-
quirement of fault-tolerance: the probability to get errors on
J physical qubits should be of the order of s{, for all j=t¢
(with €, the phase error probability for a single qubit). Effi-
cient procedures to fault-tolerantly prepare GHZ states are
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available, see [16,17], Sec. IX. Hence we may treat errors on
physical qubits as independent.

B. Required resources for an N XN lattice

In order to estimate the fidelity of the long-distance en-
tangled state that is created using our protocol, one has to
quantify the amount of errors that occur at three different
levels: let e << 1 be the error probability at the physical level,
€ at the logical level, and € at the network level. In Appendix
A, we find the approximation e =g, ~¢,=<8.58, where S is
the maximum error probability associated with the local two-
qubit quantum gates, the measurements, and the quantum
memory. At the encoded level, we have to distinguish the
two types of errors, since the encoding preferentially sup-
presses the phase errors while it moderately increases the
bit-flip errors,

2t+1
2t+ 1) . 2t+1
g,= 2 ( . )yz( )8t+1,
j=el N r+1

t
_ 2t+1
8b_2<2j+1

)821“ =~ (2t+1)e. 4)
j=0

Phase errors accumulate as the 2N(N-1) links of the net-
work are consumed for the teleportations, and the right bit-
flip correction is applied with a probability Py(&),), see Fig.
3,

€,=1-(1-8)""D~2NN-1)8,,

€=1-Py(E,) =1-P,(g,) forN>1. (5)
This finally results in the state
pap= (1 €)(1 = €)[ P NP + &(1 - €,) [ V) (V|
+ (1 = €)|PHDT + 6, [ TNV (6)

By fixing, for example, the distillable entanglement E=1
—H,(€,)—H,(€,) of the final state, and under the conditions
that 7 is an integer and that €, and €, should be of the same
order of magnitude, one can now estimate the required re-
sources ¢ (number of qubits used for the encoding) and &
(tolerable error probability at the physical level) by solving
Egs. (4) and (5); see Table I. The number n=2¢+1 scales
only logarithmically with the size of the lattice, and even
though & decreases with N, it stays of the order of the percent
for any realistic quantum network.

C. Universal computation on a line

One more general question is whether entanglement dis-
tribution in a two-dimensional lattice, with a fixed local di-
mension and containing any kind of errors, is possible at all.
Here we show that this question is related to the existence of
fault-tolerant quantum computation in a one-dimensional set-
ting restricted to next-neighbor gates only.

Let us take one diagonal line of the lattice as a one-
dimensional quantum computer at time ¢=0; see Fig. 5(a).
We can move this quantum computer in the upper-right di-
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TABLE I. Estimation of the resources that are required to create
a long-distance pair of distillable entanglement E in an NXN
square lattice. The size of the encoding is n=2t+1, and ¢ is the
elementary error probability (in percent) that can be tolerated. The
total number of qubits at each station is approximatively 5n.

E N 10! 107 103 104 10°
0.75 t 2 3 4 5 6
g 1.38 0.96 0.75 0.62 0.54
0.50 t 2 3 4 5 6
€ 1.84 1.27 0.97 0.79 0.67
0.25 t 2 3 4 5 6
€ 2.02 1.41 1.08 0.88 0.74

rection by teleporting all its qubits to the right and then to the
top. The quantum computer is now supposed to be at time
t=1 and the errors that occurred during the teleportations are
seen as memory errors between times r=0 and 1; we further
can transport the line to reach any time 7. Any two-qubit gate
between neighboring qubits @ and b can be implemented by
slightly changing the path of the teleportation [Fig. 5(b)]:
one of the qubit is teleported as usual while the other is first
teleported to the top and then to the right such that both meet
at the center station, where the gate is applied. What we get
is a next-neigbor one-dimensional quantum computation
scheme with a simple error model, namely bit-flip and phase
errors occurring randomly with probabilities g, and &,,.

The “spacelike” task of teleporting a qubit in a two-
dimensional lattice has changed into the “timelike” one of
preserving a qubit in a one-dimensional quantum computer.
Since there exist fault-tolerant next-neighbor one-
dimensional quantum computation schemes using two qubits
per site [18], quantum information can be transported over
arbitrary distances if we replace all single-qubit links in our
lattice by two-qubit links.

IV. CONCLUSION

We have proposed an alternative way of looking at the
problem of entangling two distant stations in a noisy quan-
tum network to overcome the main drawbacks of the usual
one-dimensional repeaters, namely the need for good quan-
tum memories or for fault-tolerant operations via compli-
cated concatenated quantum codes. This is achieved by cor-

FIG. 5. (Color online) One-dimensional quantum computer em-
bedded in a lattice: (a) two teleportations transport the quantum
computer between time ¢ and t+1, and (b) two-qubit gates can be
applied on neighboring qubits.
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recting the quantum errors in two distinct ways: the high
connectivity of the network allows us to gain information on
the bit-flip errors and consequently to suppress most of them,
while a somewhat “classical” encoding prevents the phase
errors from propagating. For any realistic network size, we
need only a relatively small number of qubits at each station
(=40), while the tolerable error probability for the various
quantum operations is of the order of the percent. Further-
more, not much effort has to be put into the storage of the
qubits since the proposed scheme is a one-shot process in-
volving efficient classical algorithms.
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APPENDIX A: ERROR MODEL

In this appendix, we describe a general error model inde-
pendent of the physical realization of the system (see below
for one possible implementation with photons), in which the
major errors are as follows: (i) the infidelity 1-F, of the
elementary entangled pairs p, with Fo=(®*|p|®*); (ii) a lo-
cal two-qubit gate error probability 8 and a local measure-
ment error probability &; and (iii) the memory error w
=~ T, for a storage time 7|,, assuming 7|, to be the time scale
for generating encoded Bell pairs between neighboring sta-
tions.

We use the depolarizing channel for describing an error

on a two-qubit gate Oildfal, see Ref. [1],

p—>Oplpl=(1- ,B)Oi&eal[P] + %112 ® trp[pl, (Al)

and the following POVM for an imperfect measurement on a
single qubit:

Py=(1-8)[0)X0] + 8|1X1

El

Py=(1-8)|1)(1] + 5]0)0]. (A2)

Equivalently, we can model an imperfect measurement on
one qubit by applying the effective depolarizing channel

0¥lpl=(1-28)p+ 81, ® try[p] (A3)

followed by a perfect measurement. Even though the error
probability for this channel is 26, the probability to get a
wrong measurement outcome is only 8. Finally, the result of
an imperfect memory is modeled by the same depolarizing
channel, with error probability w. If the initial fidelity F|, is
not very close to unity, we may use the idea of (nested)
entanglement pumping [2] to efficiently pump the Bell pairs
to a higher fidelity. This is only limited by the imperfections
of local operations and the decoherence of the qubits, and
can lead to a fidelity Fj~ l—iﬂ—%,u; see [17].
Accumulated error on the physical qubits. With the con-
dition that all operations are performed fault tolerantly, we
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can estimate the total error probability that is accumulated on
an individual physical qubit during the creation of a long-
distance entangled pair. First, the probabilities for bit-flip and
phase errors [22] associated with the entanglement purifica-
tion, the local encoding, the CNOT gate, and the quantum
teleportation is approximately given by 48+246+u/2. Then,
m repeated parity check measurements may introduce bit-flip
and phase errors with probability mB/2. For m=3 rounds,
the effective measurement error probability is about S?/2
+3(B+ 6)>. Since one measurement error is equivalent to two
bit-flip errors in two connected edges, the measurement error
of order (8+8)? can be conservatively counted as a bit-flip
error of order B+ 6. Finally, if we assume B8~ 6= u, we find
that the accumulated probabilities for bit-flip and phase er-
rors are e=¢g,~¢g,<8.50.

Implementation with photons. The most important sce-
nario at the moment to implement our ideas is the one in
which photons carry the quantum information. Just to give
an example of how our scheme applies in that case, let us
consider the setup of [19,20], where entanglement is gener-
ated between two atoms by sending photons. The photons
travel through optical fibers and then interfere at a 50%-50%
beam splitter, with the outputs detected by single-photon de-
tectors. Post-selection on the detection events insures having
remote entanglement, but since this is a probabilistic process,
the time required to create all the links scales logarithmically
with the size of the lattice [23], so efficient quantum memo-
ries are needed. However, this last requirement can be re-
laxed in two-dimensional quantum networks: one can fix a
constant time (independent of N) for the preparation of the
links, and then create the separable state |D*)(®*|
+|WW*| wherever the entanglement generation failed.
This results in a slightly higher bit-flip error probability,
which can then be suppressed using our protocol.

APPENDIX B: COMPARISON WITH THE ERROR
RECOVERY IN PLANAR CODES

The identification of erroneous edges in our model of
quantum networks is very similar to the error correction for
the planar code ([9], Sec. IV), since in both cases we are
looking for a minimal set of edges that match a syndrome
pattern. In fact, since we consider the regime of small bit-flip
error probability, the most probable configurations that lead
to a given pattern of plaquettes are the ones that contain the
fewest errors. Hence, a crucial step of the error correction is
to find a coupling of the syndrome plaquettes that globally
minimizes the distance between any two paired “defects.”
These paired defects have then to be connected by a path of
minimal length, which is in general not unique. Since all
such paths are equally probable, the choice of the right one is
ambiguous and loops of wrongly inferred edges may be cre-
ated. If the error probability g, is too large, these loops pro-
liferate and eventually give rise to a chain that stretches from
one boundary to another, suppressing any long-distance cor-
relation. In an infinite square lattice this happens if g, is
larger than the critical value

e, ~0.1094, (B1)

which has been numerically calculated via a mapping to the
two-dimensional random-bond Ising model [21].
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At this point, a basic difference between the two models
has to be pointed out: in the planar code, homologically
trivial loops do not affect the state used as quantum memory,
while noncontractible ones induce a logical error. In our
quantum network, however, a contractible loop also affects
the final state if one of the destination stations lies in its
inside, since the wrong bit-flip error correction is applied to
it. In that sense, the destination stations in our model can be
viewed as punched holes in the planar code, which are used
to encode logical qubits.

This observation removes part of the ambiguity concern-
ing the choice of the path that connects two defects: it has to
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follow (as well as possible) a straight line. For the syndrome
pattern shown in Fig. 2(c), for instance, one can easily verify
that the path “—1—" (starting from the bottom-left
plaquette) minimizes the average number 7 of sites that infer
a wrong error correction,

n(—1—)=2/3, (B2a)
while we have for the two other possible paths
n(l— —)=n(——-1)=1. (B2b)
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