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The orbital angular momentum �OAM� of photons offers a suitable support to carry the quantum data of
multiple users. We present two optical setups that send the information of n quantum communication parties
through the same free-space optical link. Those qubits can be sent simultaneously and share path, wavelength,
and polarization without interference, increasing the communication capacity of the system. The first solution,
a qubit combiner, merges n channels into the same link, which transmits n independent photons. The second
solution, the OAM multiplexer, uses controlled-not �CNOT� gates to transfer the information of n optical
channels to a single photon. Additional applications of the multiplexer circuits, such as quantum arithmetic, as
well as connections to OAM sorting are discussed.
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I. INTRODUCTION

Quantum communication is the most developed area of
quantum information. There are a growing number of suc-
cessful optical implementations of quantum communication
protocols like teleportation or quantum cryptography that
have been conducted on a variety of real-world situations
inside optical fiber networks and through satellite free-space
optical links �1–3�.

At this point, quantum networks must face the question of
multiple access. The multiple-access problem appears when
the limited resources of a communication system have to be
shared by a certain number of users. Multiple-access tech-
niques are essential in classical communications �4,5�. In or-
der to share the channel capacity, the signals of different
users are designed to be orthogonal to each other in, at least,
one domain. For instance, in optical fiber communications,
one popular multiple-access technique is wavelength divi-
sion multiple access �WDMA�, where different users trans-
mit at different wavelengths so that their data can be sent
independently over the same physical link. Similarly, in
radio-frequency communications, each user is assigned a part
of the spectrum in what is known as frequency division mul-
tiple access �FDMA�.

There are already some results that extend WDMA and
FDMA for quantum key distribution networks over optical
fiber �6� and with radio-frequency qubits �7�. In this paper,
we show how a new resource, the orbital angular momentum
�OAM� of photons, can be exploited in a quantum multiple-
access technique. Transmission using OAM-encoded data
has already been proposed and experimentally demonstrated
�8�. In that scheme, the data bits are grouped into multival-
ued symbols that correspond to different OAM states of
light. Those techniques can be extended so that many inde-
pendent communication parties can send their quantum data
together. We will propose two models. In the first one, pho-
tons with different OAM are sent side by side in the same
channel, in a way similar to WDMA, where photons of dif-

ferent wavelengths were transmitted on the same link. The
second model employs controlled-NOT �CNOT� gates to en-
code the data of all the users as a multilevel symbol, which is
then transmitted like in the existing OAM-based communi-
cation systems.

Section II introduces the basic concepts of the angular
momentum of light. Section III gives a list of the building
blocks of our setups and discusses different alternatives for
implementation with standard optical elements. Section IV
describes a quantum combiner that can merge n single-
photon channels into one link. Section V puts forward a
model for a quantum multiplexer that transfers the data from
n optical qubits into a single photon. Section VI reviews
some of the possible applications of the OAM multiplexer
circuit, in particular its connections with quantum arithmetic
circuits and OAM sorters. Finally, Sec. VII closes the paper
with a recapitulation of the results and some comments on
the strong and weak points of each OAM multiple-access
approach.

II. ORBITAL ANGULAR MOMENTUM

Light fields, both classical and quantum, can carry angular
momentum. The total angular momentum of light has two
components, polarization and orbital angular momentum, or
OAM. Polarization can be associated to spin and OAM to the
azimuthal phase �9�. Both contributions can be studied inde-
pendently under the paraxial approximation. The separate
analysis and manipulation of the OAM allow for a wide
range of classical and quantum applications, such as new
free-space communication systems, high-precision atomic
control, and higher-dimensional quantum information pro-
cessing �10�.

Beams with different OAM values are defined by phase
terms ei��, where � is the azimuthal phase and � is the OAM
index, usually referred to as the winding number or topologi-
cal charge. The properties of OAM fields can be taken down
to the single-photon level and open the door for new single-
photon quantum states.

OAM is a particularly promising candidate to implement
optical d-dimensional quantum information units, the qudits.*juagar@tel.uva.es

PHYSICAL REVIEW A 78, 062320 �2008�

1050-2947/2008/78�6�/062320�10� ©2008 The American Physical Society062320-1

http://dx.doi.org/10.1103/PhysRevA.78.062320


Photons can be in different orthogonal ��� states that carry an
�� OAM. There is an infinite number of such orthogonal
states, one for every different integer value of �. There also
exist fractional OAM states �11�, but they will not be covered
here.

Light carrying an �� OAM can be readily generated by
many alternative techniques. For instance, light with an ei��

phase can be created from Hermite-Gauss beams using either
spiral phase plates �12�, computer-generated holograms �13�,
or cylindrical lenses �14�. At the quantum level, spontaneous
parametric down-conversion �SPDC� provides OAM en-
tangled photon pairs �15�.

OAM photon states can be manipulated with standard op-
tical elements and have been demonstrated to be good carri-
ers of quantum information �16,17�. For all those reasons,
they seem to be an ideal embodiment for the ideas of quan-
tum multiplexing.

III. BUILDING BLOCKS

The proposed systems will work with single-photon gen-
erators and dual rail qubits. We will assume that single pho-
tons can be produced on demand and that the user informa-
tion is encoded in the path dual rail representation, a photon
occupying a different position mode for logical �0� and logi-
cal �1�.

The usual notations for photon number, OAM, and logic
qubit states collide. By default, our quantum states will be
OAM states. In order to avoid confusion, we will write logi-
cal qubit states with boldface numbers, as �0� and �1�, and the
winding number inside OAM states with regular typeface so
that �0�,�1�,�2�,… are the states with an OAM of 0,� ,2� , . . ..
All these OAM states are states with a single photon. The
vacuum state, of zero photon number, will be represented as
�v�.

We will present the OAM multiplexing system from a
black box approach. First, we will describe the basic blocks
that will be needed and then use them as if they were perfect.
In this section, we will provide possible physical implemen-
tations and discuss limitations and alternatives for each
block.

A. Holograms

Special holograms can be designed so that any photon
traversing them increases or decreases its winding number �
by a fixed amount �� of choice �15�. These holograms will
be represented by the symbol of Fig. 1, which reproduces
their characteristic forked interference pattern.

A beam meeting a hologram is divided into components
in the different output diffraction orders. The output beam at
the nth order will suffer an increase of n �� in its winding
number value. We implicitly assume that only the first dif-
fraction order is selected. �� depends on the phase pattern of
the hologram. Different patterns, corresponding to different
gratings and different �� values, can be generated with the
help of a computer. Computer-generated holograms have
been successfully used in many OAM experiments, classical
and quantum.

However, holograms normally introduce important losses,
which can be critical at the single-photon level. In order to
reduce the effect of the losses, the holograms can be built
with blazed gratings that maximize the transmitivity in the
first order of diffraction �18,19�. Usually, the higher the value
of ��, the most difficult it is to obtain an efficient hologram.

Holograms are not the only alternative for producing this
increase or decrease of �. In the following, the word holo-
gram should be understood in a broad sense as the name for
any block capable of the transformation

���→
��

�� + ��� , �1�

for any input state ���. Most of the ���-state generation tech-
niques, like the use of spiral phase plates, can be adapted for
this purpose. Of particular importance for scalable design is
the introduction of spatial light modulators, which can dy-
namically switch between different hologram patterns and
allow an external classical control on the value of �� without
additional realignment of the optical system �8,20,21�. There
are also liquid crystal based configurable spiral phase plates
that can give a similar behavior �22�.

B. 50:50 beam splitters and mirrors

Beam splitters will be used to divide photons impinging
on them into superpositions with one-half of the photon’s
wave packet on each output port. In the given representation
of the 50:50 beam splitter �see Fig. 2, left�, the parts of the
superpositions resulting from reflection on the side with the
dot suffer a sign shift. In our schemes, beam splitters will
always appear as a part of an interferometer.

We will direct light with the help of mirrors. Mirrors must
be used with caution. The phase profile of an ��� state is

+∆�
FIG. 1. Hologram representation. The exact value of �� is in-

cluded below the symbol.
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2

FIG. 2. Basic optical building blocks. Left: 50:50 beam splitter.
Right: Dove prisms.
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altered on reflection and gives a �−�� state. This effect can be
easily taken into account in the designs.

C. Dove prisms

Dove prisms rotate any incoming light front by a certain
angle �23�. Two Dove prisms with a relative angle of �

2 �Fig.
2, right� rotate the passing beams through an angle of � with
respect to each other. This rotation introduces an OAM-
dependent phase shift of �� between photons that traverse
the first and second prisms. When light reaches a Dove
prism, it is refracted into a path that reflects from the bottom
plane of the prism and then is refracted again out of the
prism with the corresponding rotation. Inside the Dove
prism, apart from the phase effect, there is a reflection that
changes the sign of the winding number. An OAM state that
goes through an �

2 -rotated prism will show the evolution

��� →
Dove

ei���− �� . �2�

We will make use of Dove prisms inside interferometric
setups. Having two prisms performs the rotation in a sym-
metric way without compromising path stability by introduc-
ing an additional optical path only in one of the arms.

D. Sorting interferometer

The basic unit for our proposals will be a sorting interfer-
ometer like the OAM sorter blocks of �17�. In it, inputs of
different OAM will change their path or not depending on
their winding number. Figure 3 shows the whole setup, made
of two 50:50 beam splitters, four mirrors, and two Dove
prisms.

The given W-shaped setup takes into account the total
number of reflections so that the photons reach the Dove
prisms in the same ��� state they entered the interferometer
and, at the output, have suffered an even number of sign
shifts and � suffers no change. This includes reflections on
the beam splitters and inside the Dove prisms. Additionally,
the path lengths have been chosen so that all the photons
travel the same distance. This configuration guarantees that
interference takes place as expected. In our discussion, we
will work with a simplified conceptual representation �Fig.
4�. In the following, the effects of reflections will be ignored
and we will study the sorting interferometer only in terms of
the rotation that the Dove prisms introduce.

We can consider the effect of the sorting block on photons
with different OAM, for both inputs in the upper and lower
faces of the first beam splitter. All the photons will be in a
superposition of OAM states with indices that are multiples
of a constant K, which is related to the angle between the
Dove prisms so that �= �

K . Our inputs are, then, superposi-
tions of ��� states such that �=mK for any integer m. For this
restriction, the more general photon superposition can be
written as ���=�m�m�mK�.

Imagine ��� enters the upper port of the interferometer.
After the beam splitter we have

�
m

�m

�mK��v� + �v��mK�
�2

. �3�

There is only one photon. The beam splitter takes this input
photon into an equal superposition of being in the upper or
lower arm. For �= �

K and our OAM states in which � is a
multiple of K, the Dove prisms will introduce a phase shift of
� �

K =m� in the lower-path photons. This produces the state

�
m

�m

�mK��v� + �− 1�m�v��mK�
�2

. �4�

At the second beam splitter, the states with an even m will
have suffered no change and the original state is restored at
the upper port. States with an odd m, on the other hand, will
interfere destructively in the upper port and constructively in
the lower port. This system works as a sorter that directs all
the even multiples of K to the upper port and the odd ones to
the lower.

The same reasoning can be applied for inputs on the lower
port. The evolution can be summed up as

�
m

�m�v��mK�→
BS1

�
m

�m

�mK��v� − �v��mK�
�2

→
Dove

�
m

�m

�mK��v� − �− 1�m�v��mK�
�2

, �5�

where both modes, up and down, have been considered from
the beginning. In the even-m case, the sign shift coming from
the reflection at the first beam splitter will create a construc-
tive interference at the lower port and a destructive interfer-
ence at the upper one. Again, for an odd m, the extra sign
shift creates a change in the output port. This kind of opera-
tion, conditional on the OAM state, can be useful for later

FIG. 3. W sorting interferometer.

α = π
K

FIG. 4. Interferometer with two Dove prisms with a relative
angle of �

2 . The representation will always include the angle � of
the relative rotation of the lower arm beam with respect to the upper
arm beam.
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manipulations and even for the construction of different
phase gates.

The presented interferometric setup can be subject to im-
perfections. For instance, Dove prisms can introduce astig-
matism for highly focused beams, but this problem can be
avoided by a proper design �24�. We will assume, as usual,
that the Dove prisms produce a perfect ��-phase shift.

There exist alternatives to the use of Dove prisms.
Graded-index �GRIN� rods with a quadratic index profile and
certain configurations of bulk optical lenses can produce the
same �-dependent phase shift as the Dove prisms and can be
used in similar interferometric setups called spatial modal
interleavers �25�. The value of the corresponding K factor
can be adjusted by varying the rod’s length.

E. Photodetectors

Although not strictly necessary for the multiplexing, pho-
todetectors can be introduced to check for operation failures.
We will use photodetectors to ascertain the absence or pres-
ence of a single photon. If everything is working properly, no
photon will appear on certain ports.

Efficient single-photon detection can be problematic, even
in this case where exact photon counting is not required.
Avalanche photodiodes �APDs� are an interesting option for
these yes or no tasks of informing if there are any photons or
none, but dark counts can induce to error. Nevertheless, pho-
todetectors are not essential to any of the given applications.
In our schemes, even small efficiencies will improve the glo-
bal operation as long as the false counts are minimized. Early
detection of errors can save unnecessary further processing.

At some point of the optical quantum computation, pho-
todetectors might be needed. This is an important source of
error for many optical implementations, but it is common to
all the proposals. They are not introduced by the multiple-
access stage and will not be treated here.

IV. QUBIT COMBINER

The first multiple-access setup will use only off-the-shelf
optical components that have already demonstrated good be-
havior in previous OAM quantum information experiments.
This multiplexer will be called a qubit combiner to distin-
guish it from the more sophisticated alternative model of the
next section.

The OAM combiner will allow one to merge n qubits into
a single spatial channel by transforming their dual rail path
encoding into OAM dual rail. The result will be that n qubits
will be transmitted by n photons in one channel.

By encoding the different qubits in states orthogonal to
each other, they can be sent together without interferences
between them. In many aspects, the scheme works like
WDMA, where n photonic channels are sent in parallel
through a single fiber, ideally without affecting each other
because of their different wavelength modes.

A. OAM dual rail conversion

A previous necessary step for the combination is dis-
placing the qubit states to appropriate OAM subspaces. The
setup of Fig. 5 takes the path dual rail qubits of user i to a
	�−2i� , �2i�
-state space. In that form, qubits can be later
merged into the same channel.

The input is supposed to be a path dual rail qubit whose
photon carries no orbital angular momentum. The part of the
superposition that represents the logical �0� will not be af-
fected by the Dove prisms and will go out the interferometer
in the upper port. The part that encodes the logical �1�, how-
ever, meets a hologram before entering the interferometer
that will transform the input of the lower port into �2i+1�. This
state is divided into both arms so that the part of the photon
originally in the lower arm suffers a sign shift as a result of
the Dove prisms. This means that both components of the
photon will combine in the upper port in the state �i�0�
+�i�2i+1�. All the other qubits will follow a similar proce-
dure. In order for the logical �0� states of different qubits not
to interfere, an additional −2i displacement is introduced so
that the qubit is now in an OAM dual rail encoding �i�−2i�
+�i�2i�. The name dual rail is still appropriate as the encod-
ing is based on two orthogonal modes.

This encoding could also come from the original qubits to
avoid the presence of lossy holograms, as long as each
source is assigned a fixed index i from the beginning. Each
user would then work with OAM qubits of the corresponding
power of 2. OAM qubits could be manipulated in a way
much similar to the path or polarization dual rail qubits.
Dove prisms can produce phase-shift gates and cylindrical
lenses �26� or mirrors can convert ��� modes into �−�� modes
providing for a NOT gate in the new encoding. Two qubit
gates for this new encoding present the same difficulties as in

∆l = −2i

∆l = +2i+1

Error check.

α = π
2i+1

αi|0〉 + βi|1〉 ≡
αi|0〉a|v〉b + βi|v〉a|0〉b

αi| − 2i〉 + βi|2i〉

FIG. 5. Path dual rail to OAM qubit conversion.
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the path dual rail case, as there are still two photons that need
to interact.

B. OAM qubit merger

Once the OAM dual rail qubits are available, they can be
put in a superposition in a single path. Qubits will be merged
one by one with the help of the optical circuit of Fig. 6.

Imagine two qubits from sources of indices i and j such
that i� j. The qubits are encoded into ��� states of the powers
of 2 of the source index. For Dove prisms with �= �

K = �

2 j , the
jth qubit will be expressed in an odd, −1 or 1, multiple of the
prisms’ K, but any higher power of 2 will always be an even
multiple.

As a result, qubits encoded in the 	�−2i� , �2i�
 basis will
suffer no phase shift and will exit the interferometer in the
upper port, while the jth qubits will cancel for the lower port
as a consequence of the Dove-prism-induced phase shift.
They will also go out the upper port, which now has two
photons that form the multiplexed state:

��M� = �i� j�− 2i��− 2 j� + �i� j�− 2i��2 j� + �i� j�2i��− 2 j�

+ �i� j�2i��2 j� . �6�

The qubit merger will also work for the outputs of the
previous stages. As long as a descending OAM order is fol-
lowed, all the terms in the upper-port superposition will be-
have exactly like in the qubit case. They are even multiples,
and the new qubit in the lower port is an odd multiple that
will suffer a sign shift.

Repeating the merging for the n qubits, the final product
state put on the channel will be the tensor product

�
i=0

n−1

��i�− 2i� + �i�2i�� . �7�

The n photons coexist in orthogonal states without interfer-
ing. They can share the same position and wavelength, and
the users can send their information whenever it is ready, as
many photons can occupy the channel at the same time.

All the operations are reversible, and the same elements,
in reverse order, can be used to recover the original qubits in
a demultiplexer. The photodetectors will find no photons in a
perfect operation and act only as an error check. Notice that
the merging order must be strictly observed. Some qubits can
be skipped, but under no circumstances must a lower-index
qubit be merged before an upper-index one. In the proposed

setup, phase shifts must be either of � or 0. This is behind
the somewhat wasteful approach of leaving empty valid ���
states between the �2i� OAM states. Values of � that are not a
power of 2 cannot be efficiently extracted with this interfero-
metric approach. They would suffer partial phase shifts simi-
lar to the ones that appear if combination does not respect the
given qubit order.

The ordering is easy to implement. Different communica-
tion users usually join the channel at different points of the
link. We can assign the higher indices to the users that are
most distant to the end point and the lower indices to the
users that join the channel later. With some additional timing
considerations, we can even make the qubits of each user to
be inserted into the channel at the same time the photons
from the previous users reach their point of the link. If the
channels are independent, this step can be skipped. The dif-
ferent users can transmit their qubits at any time with the
guarantee that no interference with the other qubits will oc-
cur.

V. OAM MULTIPLEXER

The OAM multiplexing model can be further refined if
additional resources are available. In particular, it would be
interesting to be able to send as many channels as possible
with the minimum number of photons. The OAM multi-
plexer �OAM MUX� will transmit n qubits by one photon in
one channel. A reduction in the number of photons, from n to
1, implies that the original qubits must be destroyed. In order
to convey the path information to the OAM of the carrier
photon and to later erase the resulting correlations, dual rail
CNOT gates are needed. A dual rail CNOT gate, here, is con-
sidered to be any mechanism that switches two photon paths
when there is a photon present in a particular path mode. We
will assume that the CNOT gate is insensitive to the particular
OAM state of the photon. The control can be in any ��� state,
and the OAM of the target photons is preserved.

A. Multiplexing

In the multiplexing stage we will take the data of the n
channels from the computational basis binary states, made
out of n qubits, into the OAM state which has an � that
corresponds to the integer number expressed by the qubits.
We will assign each user an index i, from n−1 to 0, in
decreasing order. The data from the first users will determine
the most significant bits of the binary number that will define

i > j α = π
2j

Error check.

αi| − 2i〉 + βi|2i〉

αj | − 2j〉 + βj |2j〉

|ψM 〉 =
(

αi| − 2i〉 + βi|2i〉
)(

αj | − 2j 〉 + βj |2j 〉
)

FIG. 6. OAM qubit merger.
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the final OAM. The multiplexer will transform each
�00¯00�,�00¯01�,…,�11¯11� state into the corresponding
OAM �0� , �1� , . . . , �2n−1� state.

In the following, �	 j� will represent a multiplexed state
that can be in any superposition of ��� states for which � is a
multiple of 2 j. This multiplexed state can carry the data from
users n−1 to j.

Figure 7 shows how each qubit is added into the final
state. Dual rail CNOT gates are represented as switches con-
trolled by a photon path.

For the user of index i, the multiplexing block will add an
OAM of 2i to all the states of �	 j� if the ith qubit is �1�. If the
ith qubit is �0�, the state is not altered. The first dual rail
CNOT gate will convert the incoming qubit-qudit combination
��i�0�+�i�1���	 j��v� into the entangled superposition

�i�0��	 j��v� + �i�1��v��	 j� � �i�0��v��	 j��v� + �i�v��0��v��	 j� .

�8�

Then, all the ��� states in the lower port go through a +2i

hologram. The states in �	 j� will all be either the �0� state or
the results of previous sums of +2 j for indices j� i. Conse-
quently, by themselves, they are not affected by the Dove
prisms, which will always induce a phase shift that is a mul-
tiple of 2�. In the given setup, this means that the states on
the upper input port of the interferometer, which are associ-
ated with �i, will not be affected by it and will go out also on
the upper port. After the +2i sum, the part of the superposi-
tion that took the hologram path and is associated with �i
will suffer an odd number of �-phase shifts. The resulting
sign change will guide them to the upper port where they
will join the rest of the superposition. At this point we have
produced a new �	i� state, which encodes the data of the
users n−1, . . . , i+1 and i.

The additional dual rail CNOT gate we have not com-
mented on yet is essential for a correct procedure. It will
make sure that no entanglement with the original qubit is
left. With it, the evolution

�i�0��v��	 j��v� + �i�v��0��v��	 j�


 ——→
CNOT

�i�0��v��	 j��v� + �i�0��v��v��	 j� �9�

guarantees that the ith photon can be found with certainty in

the upper qubit port �the qubit state is always �0��. A photo-
detector can confirm that everything went as desired. If this
last CNOT step were not taken, the state would not be trans-
ferred to the qudit, but shared with the original qubit. That
could spoil later operations at the receiver because of un-
wanted distinguishability.

After all the multiplexing blocks, the OAM qudit, origi-
nally in �0�, will encode in its winding number the digit rep-
resented by the n qubits. The ith block adds to the OAM
qudit the corresponding power of 2 of the binary expansion
of �.

If there are superpositions, each binary number has its
own probability amplitude. In the final state, each possible
qubit combination is represented by an ��� state with the
corresponding probability amplitude. The transmitted qudit
will be

�
�=0

2n−1

�
k=0

n−1

��k
b�

k
�1�k

b�
k

���� , �10�

where �=b�
n−1

¯b�
k
¯b�

0 in binary notation, and � represents
modulo 2 addition. The procedure is valid for arbitrary inputs
and preserves any previous entanglement between channels.
Due to the Dove parity check that lies at the heart of the
procedure, the incorporation has to be made from the most to
the least significant qubits.

B. Demultiplexing

Similarly, it is possible to build the inverse block, either
from the realization that all the elements are, again, revers-
ible, or by undoing all the steps of the transmitter one by
one, extracting one qubit at a time. Reversibility is not ruined
by the detection steps. They are always on known states that
can be exactly reproduced at the other side of the communi-
cation.

Figure 8 presents the resulting demultiplexer circuit
�OAM DEMUX�. All the superposed states enter the upper
port. Only the terms carrying the +2i indicator of the �1� state
of the ith qubit will suffer a �-phase shift that will change
their paths. The part of the photon in the lower port still
carries the information of the rest of the qubits, so the qubit
cannot be extracted just by a path separation. The sequence

|v〉

∆l = +2i

Error check.

Error check.

α = π
2i

|µj 〉 |µi〉

αi|0〉 + βi|1〉 =

αi|0〉a|v〉b + βi|v〉a|0〉b

FIG. 7. OAM multiplexing block for the ith qubit.
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of the two dual rail CNOT gates transfers the state to the
upper qubit. The first CNOT gate modifies the path of the new
photon or not depending on the content of the ith qubit. The
second CNOT gate completes the transfer by erasing the ith
qubit from the OAM qudit.

The hologram will subtract the 2i contribution so that at
the next step the OAM qudit can be processed by a different
Dove prism with a higher K. After the second dual rail CNOT,
the qudits from the same states that were separated as a result
of the incorporation of the ith qubit, interfere again, restoring
their previous value. The extraction must mirror the encod-
ing and suffers from the same limitation on the operation
order. The recovery must start from the least significant qu-
bit. At each stage, the most significant qubits of the remain-
ing superposition are separated from the extracted, less sig-
nificant, qubit. This is again a consequence of the Dove
prism operation.

Figure 9 shows the nested configuration necessary for a
correct operation. The lack of efficient general OAM sorters
imposes a particular block order and a sequential recovery at
the receiver.

An additional user of index n can always be added with
an extra +2n stage before the existing scheme and a−2n stage
after it. There is no limit to the maximum number of users,
but they cannot be incorporated into the scheme once the
multiplexing has started. The least significant qubits can be
reserved to allocate unexpected new users up to a limit. They
need not to be occupied for a correct operation, and this
reservation will add flexibility. Nevertheless, practical re-
strictions will appear, making the use of high-� OAM states
inadvisable and there will be a trade-off between flexible and
easy to realize systems.

The first and last blocks can be avoided if the photon of
the first qubit is used as the qudit carrier. The path qubit can
be converted into OAM dual rail qubit with the converter
circuit of Fig. 5 �without the last hologram� with the same
resulting qudit state as the corresponding OAM MUX block.
We only lose the possibility of an error check that the erasure

of the original qubit gave. Similarly, the last qubit is already
an OAM dual rail qubit. It can be easily converted into a path
dual rail qubit either by the inverse of the converter circuit or
by the corresponding OAM DEMUX block. The only differ-
ence is the additional pair of CNOT gates that provides a state
transfer of the remaining qubit into a new photon. The qudit
that transmitted the information must then be in �0�. It can be
measured to check for operation errors. However, it is likely
that the CNOT gates will be the limiting factor for the
scheme’s implementation. Reducing their number is prob-
ably the safest option.

We can see that, from the total 4n CNOT gates of the
scheme �two gates for each of the n blocks, both at the trans-
mitter and the receiver�, four can be saved if the the trans-
mitted photon is recycled from the nth qubit, ��n−1�. For the
most likely applications, with just a few qubits, this can be
an important saving.

VI. OTHER APPLICATIONS

We have seen how the OAM MUX and DEMUX circuits
can increase the information transmission capacity of a quan-
tum communication system by sending data from more than
one source over the same link. Apart from this advantage in
data rate and user coordination, their capability to convert
between different quantum information encodings can be
useful in other situations. In this section, we discuss the ap-
plications of the OAM multiplexing setups to two different
problems: OAM sorting and the construction of quantum
arithmetic units.

A. Dual rail CNOT gates and efficient sorting

An OAM sorter is an optical system that can separate ���
states attending to their winding number. There are different
proposals, but no universal efficient separation exists. A good
review of OAM sorting can be found in �17�, which proposes
the ingenious sorter that is behind the main blocks of our
model. This sorter allows one to identify arbitrary OAM
states by chaining n parity separation stages in an exponen-
tially branching setup. The different values of � are separated
attending to their remainder in divisions by different powers
of two.

There is an unexpected side result from the MUX and
DEMUX scheme. The OAM DEMUX can act as an efficient

|v〉

|v〉

|0〉

Error check.

∆l = −2i

α = π
2i

|µi〉 |µj 〉

αi|0〉 + βi|1〉 =

αi|0〉a|v〉b + βi|v〉a|0〉b

FIG. 8. OAM demultiplexing block for the ith qubit.

+2n−1 +2i +2 +1 −1 −2 −2i −2n−1[
· · ·

[
· · ·

[ [
Channel

] ]
· · ·

]
· · ·

]

FIG. 9. Nested increasing level �OAM number� MUX and
DEMUX operations.
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OAM sorter with a gate complexity that grows logarithmi-
cally with the number of states to be sorted. In our OAM
MUX, there are m=2n possible OAM values and the number
of stages grows linearly with the number of qubits, n. A
general sorter is straightforward to derive from the same con-
siderations.

If we have an unknown input state ���, where it is guar-
anteed that ��M, and feed it into a DEMUX, the resulting
qubits will encode the value of �. Furthermore, superposi-
tions will be kept. If the qubits are measured, the operation
will correspond to the regular projective use of OAM sorters,
which detect only one value of � and act as a measurement.
For this case, we will need a DEMUX with �log2 M� blocks,
where �x� represents the ceiling function, which rounds the
number x up to the immediately higher integer.

The inclusion of optical dual rail CNOT gates allows one to
avoid an exponential branching. The blocks apply the corre-
sponding �� corrections so that the same interferometer can
act on what in the previous scheme were two different
branches. The n resulting qubits hold all the necessary infor-
mation about the winding number � of the input.

Unfortunately, efficient optical CNOT gates have not been
built yet. We can also propose an OAM sorter with quantum
nondemolition measurements instead of CNOT gates. Optical
quantum nondemolition �QND� measurements able to tell the
existence of a photon without destroying it, although also
difficult to realize, seem closer than CNOT gates. This kind of
QND measurement would determine a path for the photon.
The superposition between states with different parity would
be destroyed, but a photon in the port can still be in a super-
position of the different OAM states that take that path.

In most OAM sorting, it is not required to keep superpo-
sitions. We are only interested in a projective measurement
of the OAM state. The transfer to a series of qubits that was
an important part of the DEMUX operation is not strictly
necessary for the sorter. If we could ascertain the presence or
absence of a photon in a particular path mode, we would be
able to determine the parity of its winding number. In that
case, we can replace the first CNOT gate and the qubit of the
DEMUX by a classical bit storing the result of the QND
measurement �0 if the photon is in the upper port, 1 if it is in
the lower port�. Instead of the second CNOT gate, we can use
a classical switch that changes the photon paths if the bit is
in 1. The �� correction, like in the DEMUX, prepares the
state for the next sorting stage. Each block is equivalent to
measuring the value of one of the qubits. At the end, the state
is projected into a single OAM value, which can be deter-
mined by reading the bits with the result of the individual
QND measurements. This scheme also has �log2 M� stages.

It is worth noting that, conversely, a more general sorter
could improve the flexibility of the OAM MUX and the
OAM combiner. If we had at our disposal a sorter that could
separate OAM states according to the quotient of the division
of their winding number by a given power of 2, � div 2i, the
restriction in the user order at the transmitter and the receiver
could be lifted.

All these details suggest that the CNOT operation, QND
measurement, and efficient OAM sorting have a similar
power for quantum information processing. Optical CNOT

gates provide direct QND measurement and, conversely,

QND measurements can be part of efficient schemes to pro-
vide optical CNOT gates �28�. Given the difficulties in finding
both efficient optical CNOT gates and QND measurement
schemes, this will probably mean that realizing an efficient
OAM sorter that does not require exponential resources will
be far from trivial.

B. Quantum arithmetic

The basic units of OAM multiple access and the structure
of its circuits can be modified to provide efficient quantum
arithmetic in higher-dimensional spaces, followed by a later
conversion to the multiple-qubit space. The number of gates
and simplicity of those setups might constitute them as a
viable alternative for elementary quantum operations.

If the channels of the OAM multiplexer are not indepen-
dent users, but the different qubits of the binary representa-
tion of a number, different arithmetic operations can be per-
formed on the OAM states. The multiplexing stage will
convert them into a more manipulable domain. In the demul-
tiplexing stage, the result of the operation will be recovered
and put into the corresponding quantum registers. We have
already anticipated this use by speaking of most and least
significant qubits instead of speaking of channels.

All the operations suggested in this section will assume
non-negative integer operands that are encoded into the cor-
responding ��� state, where � is the decimal representation of
the qubit sequence. The operands will all have the same size
of n qubits.

1. Adder

After the multiplexing of the n qubits, the output qudit
will be a superposition of the integers encoded by each qubit
combination. For a non-negative integer N, those states can
be selectively added the different powers of 2 that define the
binary representation of a second number M. Both N and M
can be in a superposition of different values. A sequence of n
blocks like the one in Fig. 10 will add to the original state the
appropriate power of 2 for each of the terms of the superpo-
sition of M and, at the output, the corresponding superposi-
tion of sum states will appear.

Here, the qudit is only directed to the hologram when the
jth qubit is �1� and only in this case will the winding number
be increased. For this application, once the first number is in
an OAM state, no particular block order is required.

Notice that the second operand is not erased or com-
pletely absorbed into the OAM qudit. This is, in fact, a req-
uisite for reversible operation. A quantum adder must keep
one of the operands to be able to revert the operation.

The new OAM state can later be decoded by an OAM
demultiplexer. The only provision to be made is to consider
that the new value of the sum can be as high as 2n−1+2n

−1=2n+1−2, so that an additional qubit must be extracted
with an extra block for i=n after the usual i=n−1 step. Al-
ternatively, we could impose the most significant qubits of
the inputs to be �0�.

The complexity of the adder circuit is of n MUX blocks,
n+1 DEMUX blocks and n adders. In terms of CNOT gates,
the most critical element, this amounts to 6n+2 gates, or
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6n−2 gates if the first qubit of the MUX and last qubit of the
DEMUX are encoded in the same photon that carried the
information and suffered the addition.

This circuit can be compared to the full adders of previous
proposals such as �27�. Both adder circuits scale linearly
with the input size. The main advantage of our scheme is that
carries need not to be explicitly taken into account, allowing
for conceptually simpler circuits.

2. OAM ALUs

The arithmetic logic unit �ALU� is one of the basic build-
ing blocks in the standard von Neumann computer architec-
ture. The ALU performs all the logical operations that trans-
form the data. Among its tasks, the ALU must perform
integer arithmetic operations such as addition and multipli-
cation.

With the provided OAM MUX and DEMUX architec-
tures, all the operations can be translated to the integer OAM
domain. In the previous section, an OAM adder has been
described. A multiplier unit can also be built from a similar
model. If the hologram of Fig. 10 is replaced by a 
2 j block
of operation

��� ——→

2j

�2 j�� , �11�

the final state will encode the integer value N
M. Then, a
DEMUX can recover the product into qubits.

If the multiplying block could be performed by an optical
element, it would constitute an important complexity saving
when compared with the usual O�n2� blocks of the usual
multiplication algorithms �27�. However, to the best of the
authors’ knowledge, no element has been experimentally
demonstrated to provide efficient multiplication of arbitrary
OAM photon states while preserving the rest of the photon’s
parameters. Strong nonlinearities and conversion of multiple
photons are possible candidates for such an interaction, but
seem unlikely to be efficient at the single photon level.

OAM adders and multipliers based on OAM multiplexing
would have the advantage of using the same custom blocks.
The use of the same elements for different functions is im-
portant when it comes to scaling and production. If efficient
multiplexers are built, basic arithmetic operations could be
efficiently performed in the OAM domain.

VII. OUTLOOK

OAM can be used to implement two different kinds of
optical free-space multiplexers. The first proposal, the OAM
combiner, puts together n photons into the same path. The
second one, the OAM MUX, takes all the information from n
qubits into a single photon with the help of optical CNOT

gates.
Both OAM setups can have their own range of applica-

tion. The OAM combiner is already possible to build and has
to its favor that separate qubits are less vulnerable to errors.
Qubit losses or decoherence happen to the individual qubits.
The OAM MUX needs more advanced technology that in-
cludes an optical CNOT gate. The main advantage of this
setup is its ability to carry, in theory, arbitrary amounts of
information in one single photon. This is a mixed blessing.
By having all the information in a single photon, if it is
absorbed, all the qubits are lost.

In both cases there is an important limitation: recovery
must be sequential, in a certain prescribed order. This restric-
tion is a direct consequence of the OAM sorting procedure
we use. More flexible OAM sorters would permit more pow-
erful OAM multiplexing schemes.

Although, in theory, both proposals could be used for any
number of qubits, holograms and the other optical elements
are likely to allow only for a limited maximum number of ���
states to be created and processed. For clarity, we have used
� from 0 to 2n in the OAM MUX. However, easier to ma-
nipulate � values from −2n−1 to +2n−1, similar to those of the
OAM combiner, could be used for the scheme. Apart from
that, lossy elements can be avoided. There exist techniques
used to design more efficient OAM sorters �29� that could be
translated to our scheme.

All the schemes could also be used for classical optical
multiplexing, where losses are not so important and a part of
the light can be divided into the different users so that par-
allel extraction is easier to perform. It should be possible to
perform experiments for a few users. Classical OAM trans-
mission systems have already used with good results values
of OAM in the range of �16� �8�, and there are quantum
schemes that could produce different superpositions of pho-
tons with OAM up to �10� or even higher �16�. This means
that three or four channels could be sent together using a
qubit merger with the present technology.

|v〉

∆l = +2j

Error check.

αj |0〉 + βj |1〉 =
αj |0〉 + βj |1〉

|µj−1〉 |µj 〉

αj |0〉a|v〉b + βj|v〉a|0〉b

FIG. 10. Adder block.
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