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In this paper, we present results illustrating the power and flexibility of one-bit teleportations in quantum bus
computation. We first show a scheme to perform a universal set of gates on continuous variable modes, which
we call a quantum bus or qubus, using controlled phase-space rotations, homodyne detection, ancilla qubits,
and single-qubit measurement. Within our comparison criteria, the resource usage for this scheme is lower than
any previous scheme to date. We then illustrate how one-bit teleportations into a qubus can be used to encode
qubit states into a quantum repetition code, which in turn can be used as an efficient method for producing
Greenberger-Horne-Zeilinger states that can be used to create large cluster states. Each of these schemes can be
modified so that teleportation measurements are post-selected to yield outputs with higher fidelity without
changing the physical parameters of the system.
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I. INTRODUCTION

Bennett et al. �1� showed that an unknown quantum state
�a qubit� could be teleported via two classical bits with the
use of a maximally entangled Bell state shared between the
sender and receiver. The significance of teleportation as a
tool for quantum information was extended when Gottesman
and Chuang �2� showed that unitary gates could be per-
formed using modified teleportation protocols, known as
gate teleportation, where the task of applying a certain gate
was effectively translated to the task of preparing a certain
state. Since then, teleportation has been an invaluable tool
for the quantum-information community, as gate teleporta-
tion was the basis for showing that linear optics with single
photons and photodetectors was sufficient for a scalable
quantum computer �3�. Moreover, Zhou et al. �4� demon-
strated that all previously known fault-tolerant gate construc-
tions were equivalent to one-bit teleportations of gates.

Recently, the use of one-bit teleportations between a qubit
and a continuous variable quantum bus �or qubus� has been
shown to be important for fault tolerance �5�. Using one-bit
teleportations to transfer between two different forms of
quantum logic, a fault-tolerant method to measure the syn-
dromes for any stabilizer code with the qubus architecture
was shown, allowing for a linear saving in resources com-
pared to a general controlled-NOT �CNOT� construction. In
terms of optics, the two different types of quantum logic
used were polarization ��0�= �H� , �1�= �V�� and logical states
corresponding to rotated coherent states ���� , �e�i����, al-
though in general any two-level system �qubit� that can in-
teract with a continuous variable mode �qubus� would suf-
fice. The relative ease with which single-qubit operations can
be generally performed prompted the question of whether a
universal set of gates can be constructed with this rotated
coherent state logic. In this paper, we describe one such con-
struction, which we call qubus logic.

The fault-tolerant error-correction scheme using a qubus
�5� exploits the fact that entanglement is easy to create with
coherent cat states of the qubus, such as ���+ ��ei��, and
single-qubit operations are easily performed on a two-level
system. In this paper, we describe how these cat sates can be
used as a resource to construct other large entangled states,
such as cluster states �6–8�, using one-bit teleportations be-
tween a qubit and a qubus.

Although the average fidelities of qubus logic and cluster
state preparation are dependent on how strong the interaction
between the qubit and the qubus can be made, and how large
the amplitude � is, these fidelities can be increased arbi-
trarily close to 1 through the use of post-selection during the
one-bit teleportations, demonstrating the power and flexibil-
ity of teleportation in qubus computation for state prepara-
tion.

The paper is organized as follows. First, in Sec. II we
revisit one-bit teleportations for the qubus scheme. Next, in
Sec. III we present a technique to perform quantum compu-
tation using coherent states of the qubus as basis states. To
do this, we make use of controlled �phase-space� rotations
and ancilla qubits. This coherent state computation scheme is
the most efficient to date. In Sec. IV, we show how we can
efficiently prepare repetition encoded states using one-bit
teleportations, and how such encoders can be used to prepare
large cluster states.

II. ONE-BIT TELEPORTATIONS

In the original quantum teleportation protocol, an arbi-
trary quantum state can be transferred between two parties
that share a maximally entangled state by using only mea-
surements and communication of measurement outcomes
�1�. Modifications of the resource state allow for the appli-
cations of unitaries to an arbitrary state in a similar manner,
in what is known as gate teleportation �2�. The main advan-
tage of gate teleportation is the fact that it allows for the
application of the unitary to be delegated to the state prepa-
ration stage. In some physical realizations of quantum de-
vices, it may only be possible to prepare these states with
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some probability of success. In that case, the successful
preparations can still be used for scalable quantum computa-
tion �2�. When dealing with noisy quantum devices, it is
important to encode the quantum state across multiple sub-
systems, at the cost of requiring more complex operations to
implement encoded unitaries. In order to avoid the uncon-
trolled propagation of errors during these operations, one can
also employ gate teleportation with the extra step of verify-
ing the integrity of the resource state before use �2–4,9,10�.
In the cases in which the teleportation protocol is used only
to separate the preparation of complex resource states from
the rest of the computation, simpler protocols can be devised.
These protocols are known as one-bit teleportations �4�. Uni-
taries implemented through one-bit gate teleportation can
also be used for fault-tolerant quantum computation �4� as
well as measurement-based quantum computation �6�. The
main difference between one-bit teleportation and the stan-
dard teleportation protocol is the lack of a maximally en-
tangled state. Instead, in order to perform a one-bit telepor-
tation, it is necessary that the two parties interact directly in
a specified manner, and that the qubit which will receive the
teleported state be prepared in a special state initially.

Some unitary operations on coherent states can be diffi-
cult to implement deterministically, while the creation of en-
tangled multimode coherent states is relatively easy. Single
qubits, on the other hand, are usually relatively easy to ma-
nipulate, while interactions between them can be challeng-
ing. For this reason, we consider one-bit teleportation be-
tween states of a qubit and states of a field in a quantum bus,
or qubus. The two types of one-bit teleportations for qubus
computation are shown in Fig. 1, based on similar construc-
tions proposed for qubits by Zhou et al. �4�.

The one-bit teleportation of the qubit state a�0�+b�1� into
the state of the qubus, in the coherent state basis ���� , ��ei���,
is depicted in Fig. 1�a�. The qubit itself can be encoded, for
example, in the polarization of a photon, i.e., �0�= �H� and
�1�= �V�. The initial state, before any operation, is �a�0�
+b�1�����. The controlled phase-space rotation corresponds
to the unitary that applies a phase shift of � to the bus if
the qubit state is �1�, and does nothing otherwise. Physically,

this corresponds to the interaction Hamiltonian Ĥint

=−��â†â�̂ �11� between the bus and qubit, where �=−�t.

This interaction could be a cross Kerr nonlinearity with �̂

= b̂†b̂, possibly implemented with electromagnetically in-
duced transparency �EIT� �12,13� or a Jaynes-Cummings in-

teraction in the dispersive limit with �̂= �̂Z, possibly imple-
mented with cavity QED �14–16�. After the controlled
rotation by �, the state becomes a�0����+b�1��ei���. Repre-

senting the qubit state in the Pauli X eigenbasis, this is
�+ ��a���+b�ei���� /	2+ �−��a���−b�ei���� /	2. When we de-
tect �	�, we have successfully teleported our qubit into ���,
�ei��� logic. When we detect ���, we have the state a���
−b�ei���. The relative phase discrepancy can be corrected by

the operation Z̃, which approximates the Pauli Z operation in
the ���� , ��ei��� basis. This correction can be delayed until
the state is teleported back to a qubit, where it is more easily
implemented.

The one-bit teleportation of the state a���+b��ei�� of the
qubus to the state of the qubit can be performed by the cir-
cuit depicted in Fig. 1�b�. That is, we start with the state
�a���+b��ei�����0�+ �1�� /	2. After the controlled rotation by
−�, the state becomes ����a�0�+b�1�� /	2+ �b�ei����0�
+a�e−i����1�� /	2. Projecting the qubus state into the
x-quadrature eigenstate �x� via homodyne detection, which is

the measurement we depict as Z̃, we obtain the conditional
unnormalized state �
�x��

�
�x�� =
f�x,��

	2
�a�0� + b�1��

+
f„x,� cos���…

	2
�ei��x�b�0� + e−i��x�a�1�� , �1�

where

f�x,�� =
1

�2�1/4 exp
− �x − 2��2

4
� , �2�

��x� = �x sin��� − �2 sin�2�� , �3�

since �x ��e�i��=e�i��x�f(x ,� cos���) and �x ���= f�x ,�� for
real � �17,18�.

The weights f�x ,�� and f(x ,� cos���) are Gaussian func-
tions with the same variance but different means, given by
2� and 2� cos���, respectively. Given x0=��1+cos����, the
midpoint between f�x ,�� and f(x ,� cos���), one can maxi-
mize the fidelity of obtaining the desired state a�0�+b�1� �av-
eraged over all possible values of x� by simply doing nothing
when x�x0 �where f�x ,��� f(x ,� cos���)�, or applying
Z��x�=exp�−i��x�Z�, a Pauli Z rotation by ��x�, followed by
a Pauli X, when x�x0. For simplicity, the teleportation cor-
rections are not explicitly depicted in the circuit diagrams.

A. Average fidelities

In order to quantify the performance of the protocols just
described, consider the process fidelity �19–21�. The process
fidelity between two quantum operations is obtained by com-
puting the state fidelity between states isomorphic to the pro-
cesses under the Choi-Jamiołkowski isomorphism. The state
fidelity between the density matrices �1 and �2, when �1 is a
pure state �i.e., �1= �
1��
1�� reduces to F�
1 ,�2�
= �
1��2�
1� �21�. In order to compare a quantum process E
acting on a D-dimensional system to another quantum pro-
cess F acting on the same system, we define the process
fidelity as the state fidelity between the states

FIG. 1. �Color online� Approximate one-bit teleportation proto-
cols �4� using controlled rotations. Here, the light gray lines corre-
spond to qubits, and the thick red lines correspond to quantum bus
modes.
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�E = 11 � E2
 1
	d


i=1

D

�ii�12� , �4�

�F = 11 � F2
 1
	d


i=1

D

�ii�12� . �5�

In the case of single-qubit processes, we just need to con-
sider the action of the process on one of the qubits of the
state 1

	2
��00�� �11��. The operational meaning of the process

fidelity is given by considering the projection of the first
qubit of the state in Eq. �4� into a particular state a�0�
+b�1�. In this case, the second qubit collapses into the state
corresponding to the output of the process acting on the state
a�0�+b�1�. Thus a high state fidelity between the outputs �E
and �F, averaged over all input states a�0�+b�1�, is by defi-
nition a high process fidelity between the operations E and F.

Consider the state

�
�� =
1
	2

��0,�� � �1,�ei��� , �6�

produced when the circuit in Fig. 1�a� acts on one-half of the
maximally entangled state 1

	2
��00�� �11��, and which de-

pends on the qubit measurement outcome. As the relative
phase is known, and the correction can be performed after
the state is teleported back to a qubit, for each of the out-
comes we can compare this state with the ideal state ex-
pected from the definition of the basis states for the qubus.
Since this is the desired state corresponding to our coherent
state encoding, the process fidelity is 1 for one-bit teleporta-
tion into the qubus, without any approximations.

For the case in which we teleport the state from the qubus
back into the qubit, using the circuit in Fig. 1�b�, we consider
the action of the process on the second mode of the state �
+�
from Eq. �6�. When considering Fig. 1�b� alone, this is not,
strictly speaking, the Choi-Jamiołkowski isomorphism, al-
though it does give the same operational meaning for the
process fidelity as a precursor to the fidelity between the
outputs of the different processes being compared, as any
superposition of ���� , ��ei��� can be prepared from �
+� by
projecting the qubit into some desired state. We expect the
output state to be 1

	2
��00�+ �11�� from the definition of the

basis states, but we instead obtain the unnormalized states

�
E�x � x0�� =
f�x,��

	2

 �00� + �11�

	2
�

+
f�x,� cos����

	2

 e−i��x��01� + ei��x��10�

	2
� ,

�7�

�
E�x � x0�� =
f�x,��

	2

 e−i��x��01� + ei��x��10�

	2
�

+
f�x,� cos����

	2

 �00� + �11�

	2
� . �8�

The normalized output state, averaged over all x outcomes, is

� = �
x0

�

�
E�x � x0���
E�x � x0��dx

+ �
−�

x0

�
E�x � x0���
E�x � x0��dx , �9�

so that the average process fidelity for one-bit teleportation
into a qubit is

Fp =
1

2
��00� + �11�����00� + �11��

= �
x0

� 1

2
f2�x,�� + �

−�

x0 1

2
f2
„x,� cos���…

=
1

2
+

1

2
erf
 xd

2	2
� , �10�

where xd=2��1−cos�������2 for small �. Teleportation
from the qubus into the qubit is not perfect, even in the ideal
setting we consider, because the states ��� and �ei��� cannot
be distinguished perfectly. However, Fp can be made arbi-
trarily close to 1 by letting xd→�, or ��2→� if ��1, as
seen in Fig. 2. This corresponds to increasing the distinguish-
ability of the coherent states ��� and �ei���.

B. Post-selected teleportation

In order to improve the average fidelity of the teleporta-
tions without changing the physical parameters � and � of
the basis states, one can post-select the outcomes of the
x-quadrature measurements when teleporting states from the
qubus mode to a qubit, as these outcomes essentially herald
the fidelity of the output state with the desired state. Discard-
ing the states with fidelity below a certain threshold allows
for the average fidelity to be boosted, even in the case in
which ��2�1, at the cost of a certain probability of failure.
This is particularly useful for the preparation of quantum
states which are used as resources for some quantum
information processing tasks.

Instead of accepting all states corresponding to all x out-

comes of the homodyne measurement that implements Z̃, we

FIG. 2. �Color online� Fidelity Fp of one-bit teleportation from
the qubus to a qubit, as a function of xd.
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only accept states corresponding to outcomes that are far
enough away from the midpoint x0, since the state at x0 has
the lowest fidelity with the desired state. More explicitly, we
only accept states corresponding to measurement outcomes
that are smaller than x0−y or larger than x0+y. This post-
selection can only be performed for one-bit teleportation
from the qubus to the qubit, yielding a probability of success
given by

Pr��x − x0� � y� =
1

2�erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
�� ,

�11�

and process fidelity conditioned on the successful outcome
given by

Fp,y =

erfc
2y − xd

2	2
�

erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
� . �12�

The effect of discarding some of the states depending on the
measurement outcome for the teleportation in Fig. 1�b� is
depicted in Fig. 3. In particular, we see that the process fi-
delity can be made arbitrarily close to 1 at the cost of lower
probability of success, while � and � are unchanged, since

lim
y→�

Fp,y = 1. �13�

As the probability mass is highly concentrated due to the
Gaussian shape of the wave packets, the probability of suc-
cess drops superexponentially fast as a function of y. This is
because for large z, we have �22�

2
	

e−z2

z + 	z2 + 2
� erfc�z� �

2
	

e−z2

z +	z2 +
4



. �14�

This fast decay corresponds to the contour lines for decreas-
ing probability of success getting closer and closer in Fig. 3.
Thus, while the fidelity can be increased arbitrarily via post-
selection �by increasing y�, this leads to a drop in the prob-
ability of obtaining the successful outcome for post-
selection. Note that, despite this scaling, significant gains in
fidelity can be obtained by post-selection while maintaining
the physical resources such as � and � fixed, and while main-
taining a reasonable probability of success. In particular, if
xd=2.5, increasing y from 0 to 1.25 takes the fidelity from
0.9 to 0.99 while the probability of success only drops from
1 to 0.5.

If the probability of success is to be maintained constant,
a linear increase in xd can bring the fidelity exponentially
closer to unity, as is evident in Fig. 3. As xd is proportional to
the amplitude � of the coherence state, this can be achieved
while maintaining � constant. Since � is usually the param-
eter that is hard to increase in an experimental setting, this is
highly advantageous.

Instead of discarding the outputs with unacceptable fidel-
ity, one can also use the information that the failure is her-
alded to recover and continue the computation. In the case of
the one-bit teleportations described here, such an approach
would require active quantum error correction or quantum
erasure codes—the type of codes necessary for heralded
errors—which have much higher thresholds than general
quantum-error correcting codes �9�. We will not discuss such
a possibility further in this paper, and will focus instead on
post-selection for quantum gate construction and state prepa-
ration.

III. UNIVERSAL COMPUTATION WITH QUBUS LOGIC

Previous work by Ralph et al. �23,24� and Gilchrist et al.
�25� illustrated the construction of a universal quantum com-
puter using what we call coherent state logic. In these
schemes, a universal set of gates is applied to qubit basis
states defined as �0�L= �−��� and �1�L= ����, using partial Bell
state measurements and cat states of the form ��−���
+ ����� /	2 as resources. To perform a universal set of gates,
a total of 16 ancilla cat states are necessary �24�. For ��
�2, the qubits �−��� and ���� are approximately orthogonal
since ���� �−����2=e−4��2

�10−6.
Using the one-bit teleportations in Fig. 1, we can also

perform a universal set of gates on a Hilbert space spanned
by the states �0�L= ��� and �1�L= �e�i���, which we call qubus
logic. As mentioned in the previous section, the two states
defined for the logical �1�L are indistinguishable when we
homodyne detect along the x-quadrature, a fact that will be-
come important later. The overlap between these basis states
��� �e�i����2=e−2���2�cos �−1��e−���2�2

�for small �� is close to
0 provided ���1, so that we may consider them orthogonal;
e.g., for ���3.4, we have ��� �ei����2�10−6. It can be seen
that our basis states are equivalent to the basis states of co-

FIG. 3. �Color online� Contour lines for post-selected fidelity
Fp,y of one-bit teleportation from the qubus to a qubit �dashed blue�,
and success probability for post-selection �solid red�, as a functions
of xd and y.
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herent state logic given a displacement and a phase shifter.
That is, if we displace the arbitrary state a���+b��ei�� by
D�−� cos�� /2�ei�/2� and apply the phase shifter ei�−��n̂/2, we
have a�� sin�� /2��+bei�2 sin���/2�−� sin�� /2��. If we now set
��=� sin�� /2���� /2, for small �, we see that our arbitrary
qubus logical state is equivalent to an arbitrary coherent state
qubit. The ei�2 sin���/2 phase factor can be corrected once we
use a single-bit teleportation. If ���2, then ���4, which is
already satisfied by the approximate orthogonality condition
���1. It is important to note that, although the basis states
are equivalent, the gate constructions we describe for qubus
logic are very different from the gate constructions for co-
herent state logic.

We compare qubus logic and coherent state logic based on
resource usage, i.e., the number of ancilla states and con-
trolled rotations necessary to perform each operation. Since
the cat state ancillas needed in coherent state logic, ��−���
+ ����� /	2, can be made using the circuit in Fig. 1�a� with an
incident photon in the state ��0�+ �1�� /	2 provided ��
=�	�1−cos���� /2��� /2, we consider the 16 ancilla cat
states required in �24� for a universal set of gates to be
equivalent to 16 controlled rotations.

In the next two sections, we describe how to construct
arbitrarily good approximations to any single-qubit unitary
rotation as well as the unitary CSIGN=diag�1,1 ,1 ,−1� in qu-
bus logic, as this is sufficient for universal quantum compu-
tation �26�.

A. Single-qubit gates

An arbitrary single-qubit unitary gate U can be applied to
the state c0���+c1�ei��� by the circuit shown in Fig. 4. We
first teleport this state to the qubit using the circuit in Fig.
1�b� and then perform the desired unitary U on the qubit,
giving U�c0�0�+c1�1��. We can teleport this state back to the

qubus mode with Fig. 1�a�, while the Z̃ correction can be
delayed until the next single-qubit gate, where it can be
implemented by applying a Z in addition to the desired uni-
tary. If it happens that this single-qubit rotation is the last

step of an algorithm, we know that this Z̃ error will not effect
the outcome of a homodyne measurement �which is equiva-
lent to a measurement in the Pauli Z eigenbasis�, so that this
correction may be ignored. In total, this process requires two
controlled rotations.

Since arbitrary single-qubit gates are implemented di-
rectly in the two-level system, the only degradation in the
performance comes from the teleportation of the state from
the qubus to the qubit, resulting in the fidelity given in Eq.
�10�.

In the case in which we wish to perform a bit flip on the
qubit c0���+c1�ei���, we can simply apply the phase shifter
e−i�n̂ to obtain c0�e−i���+c1���, similarly to the bit flip gate in
�24�.

Post-selected implementation of single-qubit gates

The fidelity of single-qubit gates in qubus logic can be
improved simply by using post-selected teleportations. For
simplicity, if we disregard the second one-bit teleportation,
which transfers the state back to qubus logic, we obtain the
probability of success given in Eq. �11� and the conditional
process fidelity given in Eq. �12�.

B. Two-qubit gates

To implement the entangling CSIGN gate, we teleport our
qubus logical state onto the polarization entangled state
1
2 ��00�+ �01�+ �10�− �11��. The state 1

2 ��00�+ �01�+ �10�− �11��
= �1 � H���00�+ �11�� /	2, where H represents a Hadamard
gate, can be produced offline by any method that generates a
maximally entangled pair of qubits. As described previously
in the context of error correction, such a state can be pro-
duced with controlled rotations �5�. If we start with the qubus
coherent state �	2�� and an eigenstate of the Pauli X operator
��0�+ �1�� /	2 incident on Fig. 1�a�, we obtain �	2��
+ �	2ei���. Next we put this through a symmetric beam split-
ter to obtain 1

	2
��� ,��+ �ei�� ,ei���� �25�. If we now teleport

this state to polarization logic with Fig. 1�b�, we have, to a
good approximation, the Bell state ��00�+ �11�� /	2, and with
a local Hadamard gate we finally obtain 1

2 ��00�+ �01�+ �10�
− �11��. To make this state, we have used three controlled
rotations and one ancilla photon. Since we are only con-
cerned with preparing a resource state that in principle can be
stored, we can perform post-selection at the teleportations to
ensure the state preparation is of high fidelity, as described in
Sec. II B.

After this gate teleportation onto qubits, we teleport back
to the qubus modes after a possible X correction operation.
The overall circuit is shown in Fig. 5. This CSIGN gate re-
quires four controlled rotations. As with the single-qubit

gates, Z̃ corrections may be necessary after the final telepor-
tations of Fig. 5, but these corrections can also be delayed
until the next single-qubit gate.

We can see what affect the condition ��2�1 has on the
function of the gate in Fig. 5 by looking at the process fidel-
ity. As this gate operates on two qubits, the input state to the
process we want to compare is

FIG. 4. �Color online� A single-qubit gate performed on c0���
+c1�ei���. FIG. 5. �Color online� Circuit used to perform a CSIGN between

states in qubus logic.
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1

2
��0,0���,�� + �0,1���,�ei�� + �1,0���ei�,��

+ �1,1���ei�,�ei��� . �15�

From the basis states we have defined, we expect the out-
put

�
2� =
1

2
��0,0���,�� + �0,1���,�ei�� + �1,0���ei�,��

− �1,1���ei�,�ei��� . �16�

The unnormalized state output from Fig. 5 is

�
2,o� =
1

4
�f�x,��f�x�,����00��00� + �01��01� + �10��10�

− �11��11�� + f�x,��f„x�,� cos���…�e−i��x����00��01�

+ �10��11�� + ei��x����01��00� − �11��10���

+ f„x,� cos���…f�x�,���e−i��x���00��10� + �01��11��

+ ei��x���10��00� − �11��01���

+ f„x,� cos���…f„x�,� cos���…�e−i���x�+��x����00��11�

+ ei���x��−��x���01��10� + ei���x�−��x����10��01�

− ei���x�+��x����11��00��� , �17�

where x and x� are the outcomes of the Z̃ measurements �top
and bottom in Fig. 5, respectively�. For simplicity, we disre-
gard the final teleportations back to qubus modes, as we have
already discussed how they affect the average fidelity of the
state in Sec. II. Since we have two homodyne measurements
to consider, we need to look at the four cases: �i� x greater
than x0 and x� greater than x0; �ii� x greater than x0 and x�
less than x0; �iii� x greater than x0 and x� less than x0; �iv� x
less than x0 and x� less than x0. The necessary corrections for
each of these cases are �i� 1 � 1, �ii� 1 � Z��x��X, �iii� Z��x�X
� 1, and �iv� Z��x�X � Z��x��X. Integrating over x and x� for
these four different regions, one finds the process fidelity to
be

FCSIGN =
1

4�1 + erf
 xd

2	2
��2

, �18�

which just corresponds to the square of the process fidelity
for a one-bit teleportation into qubits, as the only source of
failure is the indistinguishability of the basis states for qubus
logic. A plot showing how this fidelity scales as a function of
xd is shown in Fig. 6.

Post-selected implementation of the entangling gate

We can counteract the reduction in fidelity shown in Fig.
6 in a similar way to the single-qubit gate case, by only
accepting measurement outcomes less than x0−y and greater
than x0+y. We find the success probability and conditional
fidelity to be

PCSIGN =
1

4�erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
��2

, �19�

FCSIGN,y =� erfc
2y − xd

2	2
�

erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
��

2

, �20�

respectively. As before, we see that the process fidelity can
be made arbitrarily close to 1 at the cost of lower probability
of success. It should also be immediately clear that as y
→0, we have PCSIGN→1 and FCSIGN,y→FCSIGN.

We see the effect of ignoring some of the homodyne mea-
surements in Fig. 7. Even though performance is degraded
because of the use of two one-bit teleportations, the general
scalings of the fidelity and probability of success with re-
spect to y and xd are similar to the one-bit teleportation. In

FIG. 6. �Color online� Fidelity FCSIGN of one-bit CSIGN telepor-
tation from the qubus to a qubit, as a function of xd.

FIG. 7. �Color online� Contour lines for post-selected fidelity
FCSIGN,y of CSIGN teleportation from the qubus to a qubit �dashed
green�, and success probability for post-selection �solid gold�, as
functions of xd and y.
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particular, we see that the fidelity can be increased signifi-
cantly by increasing xd �or equivalently, ��.

C. Comparison between qubus logic and coherent state logic

The total number of controlled rotations necessary to con-
struct our universal set of quantum gates on qubus logic,
consisting of an arbitrary single-qubit rotation and a CSIGN

gate, is nine—the construction of an arbitrary single-qubit
gate required two controlled rotations and the construction of
a CSIGN gate required seven, three for the entanglement pro-
duction and four for the gate operation. This is in contrast to
the 16 controlled rotations �where we assume each controlled
rotation is equivalent to a cat state ancilla� necessary for a
universal set of gates in coherent state logic �23–25�, where
an arbitrary single-qubit rotation is constructed via
exp�−i �

2 Z�exp�−i 
4 X�exp�−i �

2 Z�exp�i 
4 X�, with each rotation

requiring two cat state ancilla, and a CNOT gate requiring
eight cat state ancilla.

As a further comparison, we compare the resource con-
sumption of the qubus logic scheme with the recent exten-
sion to the coherent state logic scheme by Lund et al. �27�
that considers small-amplitude coherent states. In this
scheme, gate construction is via unambiguous gate teleporta-
tion, where the failure rate for each teleportation is depen-
dent on the size of the amplitude of the coherent state logical
states. Each gate teleportation requires offline probabilistic
entanglement generation. On average, an arbitrary rotation
about the Z axis would require three cat state ancilla and both
the Hadamard and CSIGN gate would each require 27 cat state
ancilla.

The scheme proposed here yields significant savings com-
pared to previous schemes in terms of the number of con-
trolled rotations necessary to apply a universal set of gates
on coherent states. These savings are for operations on physi-
cal, unencoded qubits. A full analysis of resources for en-
coded operations for some error model may lead to a reduc-
tion in resources compared to Lund et al. �27�, however this
is an open question.

It should be noted that in an experimental setting, the
construction of one type of resource, either controlled rota-
tions on a quantum bus or cat state ancilla, may be easier
than the other. In such a case, the resource consumption
mentioned here may require alterations.

IV. CONSTRUCTION OF CLUSTER STATES

As we have pointed out in the previous section, the GHZ
preparation scheme used for fault-tolerant error correction
with strong coherent beams �5� can be used to perform CSIGN

gate teleportation. This approach can be generalized to aid in
the construction of cluster states �6�, as GHZ states are lo-
cally equivalent to star graph states �28,29�. Once we have
GHZ states, we can either use CNOT gates built with the aid
of a qubus �30,31� to deterministically join them to make a
large cluster state, or use fusion gates �8� to join them proba-
bilistically.

Recent work by Jin et al. �32� showed a scheme to pro-
duce arbitrarily large cluster states with a single coherent

probe beam. In this scheme, N copies of the state ��H�
+ �V�� /	2 can be converted into the GHZ state ��H��N

+ �V��N� /	2 with the use of N controlled rotations and a
single homodyne detection. However, the size of the con-
trolled rotations necessary scales exponentially with the size
of the desired GHZ state–the Nth controlled rotation would
need to be 2N−1−1 times larger than the first controlled rota-
tion applied to the probe beam. For example, if we consider
an optimistic controlled rotation � of order 0.1, once N
reaches 10 we would require a controlled rotation on the
order of , which is infeasible for most physical implemen-
tations. In the next section, we describe how to prepare GHZ
states that only require large-amplitude coherent states while
using the same fixed controlled rotations � and −�.

A. GHZ state preparation and repetition encoding

We mentioned a scheme in the previous section to con-
struct the Bell state �00�+ �11�, but this can be generalized to
prepare GHZ states of any number of subsystems. We first
start with the state ��0�+ �1�� /	2 and teleport it to a qubus
initially in the larger amplitude �	N��. This will give
��	N��+ �	N�ei��� /	2. Sending this state through an N port
beam splitter with N−1 vacuum states in the other ports
gives �����N+ ��ei���N� /	2. Each of these modes can then be
teleported back to qubits, yielding ��0��N+ �1��N� /	2. The
resources that we use to make a GHZ state of size N are N
+1 controlled rotations, N+1 single-qubit ancillas, a single-
qubit measurement, and N homodyne detections.

This circuit can also function as an encoder for a quantum
repetition code, in which case we can allow any input qubit
state a�0�+b�1� and obtain an approximation to a�0��N

+b�1��N. In order to evaluate the performance of this pro-
cess, we once again calculate the process fidelity by using
the input state 1

	2
��00�+ �11�� and acting on the second sub-

system. Using a generalization of Eq. �17�, we calculate the
effect of ��2�1 on the production of a GHZ state of size N
to be

FREP =
1

2N�1 + erf
 xd

2	2
��N

. �21�

Again, this corresponds to the process fidelity of a single
one-bit teleportation into a qubit raised to the Nth power. The
fidelity of preparing repetition encoded states drops exponen-
tially in N. In Fig. 8, we show the fidelity as a function of xd
for N=3 and for N=9.

B. Post-selected implementation of GHZ state preparation
and repetition encoding

The reduction in fidelity due to ��2�1 in Eq. �21� can be
counteracted, as before, by simply performing post-selection
during the one-bit teleportations into the qubits.

We find the success probability and conditional fidelity to
be

PREP =
1

2N�erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
��N

, �22�
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FREP,y =� erfc
2y − xd

2	2
�

erfc
2y − xd

2	2
� + erfc
2y + xd

2	2
��

N

. �23�

As y→0, we see that PREP→1 and FREP,y→FREP.
The effect of discarding some of the states corresponding

to undesired homodyne measurement outcomes can be seen
in Figs. 9 and 10. Thus, as discussed in Sec. II B, one can
prepare a state encoded in the repetition code with an arbi-
trarily high process fidelity, regardless of what � and � are.
The expected degradation in performance due to the addi-
tional teleportations is also evident in the faster decay of the
probability of success with larger y.

V. DISCUSSION

We have described in detail various uses for one-bit tele-
portations between a qubit and a qubus. Using these telepor-
tations, we proposed a scheme for universal quantum com-
putation, called qubus logic, which, when the number of
controlled rotations is used as a measurement of resources, is
a significant improvement over other proposals for quantum
computation using coherent states. This scheme uses fewer
interactions to perform the gates, and also allows for the use
of post-selection to arbitrarily increase the fidelity of the
gates given any interaction strength at the cost of lower suc-
cess probabilities. Whether this scheme leads to a resource
reduction when encoded operations are considered is an open
question and will be the subject of a future paper.

The one-bit teleportations also allow for the preparation
of highly entangled N party states known as GHZ states,
which can be used in the preparation of cluster states. More-
over, the same circuitry can be used to encode states in the
repetition code, which is a building block for Shor’s nine-
qubit code. In this case, in which we are interested in pre-
paring resource states, the power and flexibility of post-
selected teleportations can be fully exploited, as the
achievable fidelity of the state preparation is independent of
the interaction strength available.

The main property of the qubus which is exploited in the
schemes described here is the fact that entanglement can be
easily created in the qubus through the use of a beam splitter.
Local operations, on the other hand, are easier to perform on
a qubit. The controlled rotations allow for information to be
transferred from one system to the other, allowing for the
advantages of each physical system to be exploited to maxi-
mal advantage.

The fidelity suffers as the operations become more com-
plex, as can be seen in Figs. 11 and 12. This is because

FIG. 8. �Color online� Process fidelity FREP of repetition encod-
ing as a function of xd.

FIG. 9. �Color online� Contour lines for post-selected process
fidelity FREP,y of threefold repetition encoding �dashed blue�, and
success probability for post-selection �solid red�, as functions of
��2 and y.

FIG. 10. �Color online� Contour lines for post-selected process
fidelity FREP,y of ninefold repetition encoding �dashed green�, and
success probability for post-selection �solid gold�, as functions of
��2 and y.
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multiple uses of the imperfect one-bit teleportation from qu-
bus to qubit are used. As the process fidelity is less than
perfect, error correction would have to be used for scalable
computation. However, as we have discussed, the fact that
the homodyne measurements essentially herald the fidelity of
the operations, it is possible to use post-selection in conjunc-
tion with error heralding to optimize the use of physical re-
sources.

While the scheme presented has been abstracted from par-
ticular physical implementations, any physical realizations of
a qubit and a continuous variable mode would suffice. The
only requirements are controlled rotations, along with fast
single-qubit gates and homodyne detection, which are neces-
sary to enable feed-forward of results for the implementation
of the relevant corrections.
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