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The entanglement properties of a class of topological stabilizer states, the so-called topological color codes
defined on a two-dimensional lattice or 2-colex, are calculated. The topological entropy is used to measure the
entanglement of different bipartitions of the 2-colex. The dependency of the ground-state degeneracy on the
genus of the surface shows that the color code can support a topological order, and the contribution of the color
in its structure makes it interesting to compare with Kitaev’s toric code. While a qubit is maximally entangled
with the rest of the system, two qubits are no longer entangled showing that the color code is genuinely
multipartite entangled. For a convex region, it is found that entanglement entropy depends only on the degrees
of freedom living on the boundary of two subsystems. The boundary scaling of entropy is supplemented with
a topological subleading term, which for a color code defined on a compact surface, is twice over the toric
code. From the entanglement entropy we construct a set of bipartitions in which the diverging term arising
from the boundary term is washed out, and the remaining nonvanishing term will have a topological nature.
Besides the color code on the compact surface, we also analyze the entanglement properties of a version of
color code with a border, i.e., triangular color code.
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I. INTRODUCTION

In quantum information theory and quantum computa-
tions, entanglement is recognized as an essential resource for
quantum processing and quantum communications, and it is
believed that the protocols based on the entangled states have
an exponential speedup over the classical ones. Besides, in
highly correlated states in condensed-matter systems such as
superconductors �1,2� and fractional quantum Hall liquids
�3�, the entanglement serves as a unique measure of quantum
correlations between degrees of freedom. In quantum many-
body systems such as spin, fermion, and boson systems, the
entanglement is connected to the phase diagram of the physi-
cal systems. Nonanalytic behavior of entanglement close to
the quantum critical point of the system and the occurrence
of finite-size scaling have provided intense research leading
us to refresh our insight of the critical properties from the
quantum information side. For a comprehensive discussion,
see the review by Amico et al. �4�, and references therein. In
recent years the appearance of new phases of matter has
intensified the investigation of entanglement in quantum sys-
tems. These are phases beyond the Landau-Ginzburg-Wilson
paradigm �5�, where an appropriate local order parameter
characterizes different behaviors of two phases on either side
of the critical point. These new phases of matter carry a kind
of quantum order called topological order �6� and the tran-
sition among various phases does not depend on the
symmetry-breaking mechanism. Therefore the Landau theory
of classical phase transition fails in order to describe these
phases. The ground state of such phases is a highly entangled
state and the excitations above the ground state have a topo-
logical nature, which is mirrored in their exotic statistics.

Among the models with topological properties, the Kitaev
or toric code �7� has been extensively studied. Ground-state

degeneracy depends on the genus or handles of the manifold
that the model is defined on, and there is a gap that separates
the ground-state subspace from the excited states. The
ground-state degeneracy cannot be lifted by any local pertur-
bations, which underlines Kitaev’s model as a test ground for
fault-tolerant quantum computations �7�. The ground state of
Kitaev’s model is indeed stabilized by the group generated
by a set of local operators called plaquette and star opera-
tors, making it useful as a quantum error-correcting code �8�.
The information is encoded in the ground-state subspace,
which is topologically protected making it robust as a quan-
tum memory �9�. For this model any bipartition of the lattice
has nonzero entanglement, which manifests the ground state
is generically multipartite entangled �10�. Bipartite entangle-
ment scales with the boundary of the subsystem, showing
that the entanglement between two parts of the system de-
pend only on the degrees of freedom living on the boundary,
which is a manifestation of the holographic character of the
entanglement entropy �11�.

For topological models a satisfactory connection between
topological order and entanglement content of a model has
been established via introducing the concept of the topologi-
cal entanglement entropy �TEE� �12,13� which is a universal
quantity with topological nature.

Another resource with topological protection character is
called color code. An interplay between color and homology
provides some essential features; for example, a particular
class of two-dimensional color codes with colored borders
will suppress the need for selective addressing to qubits
through the implementation of the Clifford group �14�. The
number of logical qubits that are encoded by a two-
dimensional color code are twice over the toric code �15�
defined on the compact surface.

In this paper we study the entanglement properties of a
color code defined on a two-dimensional lattice, the so-called
2-colex �16�. We consider different bipartitions of the lattice
and evaluate the entanglement entropy between them. The*kargarian@physics.sharif.edu
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connection between the topological nature of the code and
the entanglement entropy is also discussed.

The structure of the paper is as follows. In Sec. II the
basic notions of a color code on the surface is introduced. In
Sec. III, based on the stabilizer structure of the protected
code space, the reduced density matrix, which is needed for
evaluating the entanglement entropy, is calculated. Then in
Sec. IV the entanglement entropy for different bipartitions is
calculated. In Sec. V another class of color code on plane
and its entanglement properties are introduced, and the fi-
nally, Sec. VI is devoted to the conclusions.

II. PRELIMINARIES ON TOPOLOGICAL COLOR CODE

In this paper we consider a class of topological quantum
error-correction code defined on the lattice, the so-called to-
pological color codes �TCC� �14�. The local degrees of free-
dom are spin-1 /2 with the bases of the Hilbert space C2. The
lattice we consider is composed of vertices, links, and
plaquettes. Each vertex stands for a local spin. Three links
meet each other at a vertex and no two plaquettes with the
same color share the same link. We suppose this color struc-
ture is denoted by the notation TCC�V ,E , P� where V ,E , P
denotes the set of vertices, edges, and plaquettes, respec-
tively. For simplicity we define the model on the regular
hexagonal lattice on the torus, i.e., imposing periodic bound-
ary conditions as shown in Fig. 1. There is a subspace C�H,
which is topologically protected. The full structure of this
subspace and its properties are determined by a definition of
the stabilizer group. The stabilizer group is generated by a
set of plaquette operators. For each plaquette we attach the
following operators, which are products of a set of Pauli
operators of vertices around a plaquette:

�p
C = �

v�p
�v

C, � = X,Z, C = red,green,blue. �1�

For a generic plaquette, say blue plaquette P1 in Fig. 1,
we can identify green and red strings, which are the bound-

ary of the plaquette. It is natural to think of the product of
different plaquette operators, which may produce a collection
of boundary operators. For example, as is shown in Fig. 1,
the product of two neighboring plaquettes, say red and blue
ones, correspond to a green string P2, which is a boundary of
two plaquettes. All string operators produced in this way are
closed. Since all closed strings share either nothing or an
even number of vertices, they commute with each other and
with plaquettes. In addition to closed boundary operators,
there are other closed strings, which are no longer the prod-
uct of the plaquette operators. These closed strings form the
fundamental cycles of the manifold in which the lattice is
defined on and have a character of color. The number of
these closed loops depends on the genus of the manifold in
which the lattice is defined on. For the torus with g=1 there
are two such cycles that are noncontractible loops in contrary
to the closed boundary strings, which are homotopic to the
boundary of a plaquette. For the topological color codes
these noncontractible loops are shown in Fig. 1. For every
homology class of the torus there are two closed strings, each
of one color, say red and blue. The red string connects red
plaquettes and so on. Note that a generic string, say green,
can be produced by the product of the red and blue strings
when they are suitably chosen. In fact, since every Pauli
matrix squares identity, at a vertex �qubit� where two ho-
mologous strings cross each other, they cancel each other.
Indeed there is an interplay between color and the homology
class of the model. One can define a nontrivial closed string
as follows:

S�
C� = �

i�I
�i, �2�

where I indexed the set of spins on a generic string, � stands
for the homology class of the torus, and � is the X or Z Pauli
spin operators. Closed noncontractible loops turn on to form
bases for the encoded logical operators of topological code.
To clarify this, we label different loops as

X1 ↔ S2
RX, X2 ↔ S1

BX, X3 ↔ S2
BX, X4 ↔ S1

RX,

Z1 ↔ S1
BZ, Z2 ↔ S2

RZ, Z3 ↔ S1
RZ, Z4 ↔ S2

BZ. �3�

These operators form a four-qubit algebra in H2
4, so it

manifests a 16-dimensional subspace for the coding space C,
which is topologically protected. On the other hand, the to-
pological color code on the torus with g=1 encodes four
qubits. Now we move to construct the explicit form of the
states of the subspace C.

The above construction for the string operators in Eq. �3�
can be extended to an arbitrary manifold with genus g. For
such a manifold the coding space is panned with 24g vectors.
Note that for the toric code �white and dark code� �15� when
it is embedded in the same manifold with genus g, the coding
space will span with 22g vectors �10�, which explicitly shows
that the color codes have a richer structure than the toric
codes �15�.

A. Stabilizer formalism

The protected subspace C is spanned by the state vectors,
which are stabilized by all elements of the stabilizer group,

FIG. 1. �Color online� A piece of 2-colex, which has been de-
fined on the hexagonal lattice with periodic boundary conditions.
Lightest to darkest hexagons: green, red, and blue, respectively. All
circles stand for qubits living at the vertices. A hexagon �P1�, say
blue, can be denoted by either a red or green closed boundary
string, and the product of two neighboring plaquettes, say red and
blue, corresponds to a green string �P2�. Noncontractible loops
�X1 ,X2 ,X3 ,X4� stand for topological color codes, which determine
the structure of the encoded subspace C. A colored string connects
plaquettes with the same color.
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i.e., a subset of the Pauli group. Let U be a set of generators
of the stabilizer group and its elements are denoted by M.
So this subspace is

C = ����: M��� = ��� ∀ M � U� . �4�

Let G be the group constructed by the generators of spin-
flip plaquette operators, i.e., Xp

C. The cardinality of the group
is then �G�=2�P�−2, where �P� stands for the total number of
plaquettes. Note that all plaquettes are not independent since
the product of all plaquettes with the same color represents
the same action in the group, namely, 	RXp

C=	BXp
C=	GXp

C

=X� �V�, where �V� stands for the number of all vertices. By
starting from an initial vacuum state, say �0�� �V�, where
Z�0�= �0�, one can construct a state vector in the Hilbert
space that is stabilized by the group elements. This state
vector is a superposition of all elements of the stabilizer
group with equal weights. From the previous arguments, it is
convenient to denote it by �0000�, which has the following
form:

�0000� = �G�−1/2 

g�G

g�0�� �V�, �5�

where the g is an element of the stabilizing group, i.e., g
= � p�PXp

rp, where rp=0�1� corresponds to the plaquette op-
erator Xp appearing �not appearing� in the element group g.
There are many elements of the Pauli group that commute
with all the elements of the stabilizer group but are not ac-
tually in G, and it is defined as the centralizer of G in the
Pauli group. Since elements of the Pauli group either com-
mute or anticommute, the centralizer is actually equal to the
normalizer of G in the Pauli group. Considering the noncon-
tractible loops, the normalizer of the stabilizer group can be
obtained by a product of the stabilizer group and a group of

noncontractible loop operators. Let us denote it by Ḡ=A ·G,
where the group A is generated by noncontractible loop op-
erators, i.e.,

A = � 	
�=1,C=B,R

�=2g

�S�
CX�r�c, r�c = 0,1� . �6�

So, the group Ḡ reads

Ḡ = � 	
�=1,C=B,R

�=2g

�S�
CX�r�cG, r�c = 0,1� . �7�

Note that G� Ḡ. The group Ḡ is the normalizer of G in
the Pauli group, so the normal subgroup G divides the group

Ḡ into 24g cosets. The cardinality of the group will be �Ḡ�
=2�P�+4g−2. Therefore the protected subspace C is spanned by
24g states, which correspond to different cosets. In fact, ele-

ments in Ḡ−G take one encoded state of the stabilized sub-
space to another encoded state without leaving the stabilized
subspace. For the states of the stabilized subspace we have,
by construction,

C = ��ijkl�: �ijkl� = X1
i X2

j X3
kX4

l �0000�� , �8�

where X1 ,X2 ,X3 ,X4 are defined in Eq. �3� and i , j ,k , l=0,1.
These topological nontrivial string operators can take one

state of the coding space to another one, and any error of this
type will not be detectable. A generic state can be a super-
position of different vectors of coding space as follows:

��� = 

i,j,k,l

ai,j,k,l�ijkl�, 

i,j,k,l

�ai,j,k,l�2 = 1. �9�

B. Protected subspace as a ground-state subspace

From a practical point of view it is important to find a
state of quantum many-body systems for the implementation
of universal quantum computation. We can provide a con-
struction in which the protected subspace may be the ground
state of a local Hamiltonian �17�. The subspace C is the
ground state of the following exactly solvable Hamiltonian,
i.e.,

H = − 

p�P

Xp − 

p�P

Zp. �10�

The ground state of this Hamiltonian is 24g-fold degener-
ate and topologically protected from local errors. Different
states of the ground-state subspace, is clear from Eq. �8�, are
obtained by the product of noncontractible colored strings.
Each state is characterized by a set of topological numbers,
which are the sum of all zv modula 2 along noncontractible
loops. For example, for a generic state �ijkl� in Eq. �8� the
topological numbers are 
v�I1

Bzv= i, 
v�I2
Rzv= j, 
v�I1

Rzv=k,
and 
v�I2

Bzv= l, where the summations are evaluated in mod
2, zv stands for the z component of the Z-Pauli matrix of
vertex v and I�

C identifies a set of vertices �qubits� on a closed
noncontractible loop with homology � and color C. An ex-
cited state will arise when any of the stabilizing conditions in
Eq. �4� is violated. In the energy unit, which is defined by
Hamiltonian Eq. �10�, the first excited state will be separated
from the ground state by a gap of value 2.

III. REDUCED DENSITY MATRIX
AND VON NEUMANN ENTROPY

In this section we calculate the entanglement properties of
the topological color codes. We consider a generic bipartition
of the system into subsystems A and B. Let �A and �B be the
number of plaquette operators acting solely on A and B, re-
spectively, and let �AB stand for the number of plaquette
operators acting simultaneously on A and B, i.e., these are
boundary operators. We focus on the entanglement entropy
between two partitions A and B of the system. To this end,
first the reduced density operator of the one subsystem is
evaluated and then the entanglement entropy is measured. If
the state of the system is in an equal superposition of the
elements of group G, the reduced density matrix for a sub-
system, say A, has the following form �10�:

�A =
dB

�G� 

g�G/GB,�̃�GA

gA�0A�
A0�gAg̃A, �11�

where GA and GB are subgroups of G, which act trivially on
subsystems B and A, respectively, and dA and dB are their
cardinality. So the von Neumann entropy is
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SA = log2�GAB� , �12�

where GAB= G
GAGB

. It is a simple task to show that all states of
the coding space have the same entanglement entropy. To
show this, let X�t�=X1

i X2
j X3

kX4
l in which t= �i , j ,k , l� is a bi-

nary vector. So, for a generic state in the coding space we
have �t�=X�t��0�. Moreover, the string operators X�t� can be
decomposed as X�t�=X�t�A � X�t�B. Therefore we obtain

�A��t�� = TrB��t�
t�� = TrB�X�t��0�
0�X�t��

= X�t�A TrB��0�
0��X�t�A

= X�t�A�A��0��X�t�A. �13�

This implies that, by using the replica SA�t�
=limn→1 �n Tr��A

n�, the entanglement entropy for a state �t� is
SA�t�=SA�0�.

IV. ENTANGLEMENT OF TCC
FOR VARIOUS BIPARTITIONS

In this section we design different spin configurations as
subsystems and then evaluate their entanglement with its
complementary.

A. One spin

As the first example we consider the entanglement be-
tween one spin and the remaining ones of the lattice. In this
case there are no closed boundary operators acting exclu-
sively on the spin, i.e., subsystem A. So the reduced density
matrix �A is diagonal as follows:

�A = f−1 

g�G/GB

gA�0A�
A0�gA, �14�

where f = �G /GB� is the number of operators that act freely on
the subsystem A. As it is clear, there are three plaquette op-
erators that act freely on one spin since every spin in the
color code is shared by the three plaquettes �see Fig. 1�. This
leads to f =23=8. Only half of the operators of the quotient
group lead to flipping the spin, i.e., they will have a trivial
effect unless three plaquettes act either individually or alto-
gether. Therefore the reduced density matrix is

�A =
1

2
��1A�
A1� + �0A�
A0�� . �15�

Thus, in topological color code every spin is maximally
entangled with other spins. For the surface code �Kitaev
model� a single spin is also maximally entangled with other
spins �10�.

B. Two spins

We calculate the entanglement between two spins. For
this case also there is not any closed boundary operator with
a nontrivial effect on two spins, so the reduced density ma-
trix reads

�A =
1

4
��11�
11� + �10�
10� + �01�
01� + �00�
00�� . �16�

The entanglement between two spins, which is measured
by the concurrence �18�, vanishes. While each spin is maxi-
mally entangled with others, two spins are not entangled,
which is a manifestation of the fact that the topological color
code is genuinely multipartite entangled like the surface
codes.

C. Colored spin chain

In this case we aim to know how much a closed colored
spin chain winding the torus nontrivially, say blue or red in
Fig. 1, is entangled with the rest of the lattice. For the sake of
clarity and without loss of generality we consider a hexago-
nal lattice with �P�=3k�4k plaquettes, where k is an integer
number as 1 ,2 ,3. . ., for example, in Fig. 1, k=2. This choice
makes the color code more symmetric. So, the number of
plaquettes with a specific color, say red, is �2k�2, and the
number of spins that the colored chain contains is 4k. Let the
system be in the �0000�. For this state there is not any closed
boundary that exclusively acts on the chain. Therefore the
reduced density matrix is diagonal and the number of
plaquette operators that act independently on the subsystem
B is

�B = ��P� − 2� − �3 � 2k� + �2k + 1� , �17�

where the third term is the number of constraints on the
plaquette operators acting on the spin chain. In fact, these are
collective operators, i.e., products of boundary plaquette op-
erators between A and B, which act solely on B. With these
remarks in hand, the entanglement entropy becomes

SA = log2
�G�
dB

= 4k − 1. �18�

It is instructive to compare the obtained entanglement en-
tropy in Eq. �18� with the entanglement of the spin chain in
Kitaev’s model. For the latter case when the model is defined
on the square lattice on a compact surface, i.e., torus, there
exists a rather similar scaling with the number of qubits liv-
ing in the chain �10�.

In both cases the entanglement entropy in Eq. �18� can be
understood from the fact that only configurations with an
even number of spin flips of the chain are allowed in the
ground-state structure. Plaquettes that are free to act on the
spin chain are only able to flip an even number of spins of
the chain. The same arguments can be applied for the other
ground states �ijkl�, where for all of them the entanglement
entropy is given by Eq. �18�. By inspection of the other
ground states we see that there are 23=8 states in which an
even number of spins in the spin chain have been flipped.
These states are

�0000�, X1�0000�, X3�0000�, X4�0000�, X1X3�0000� ,

X1X4�0000�, X3X4�0000�, X1X3X4�0000� . �19�

Besides, there are 23=8 states with an odd number of spin
flipped for the spin chain, which have been listed below.

X2�0000�, X2X1�0000�, X2X3�0000� ,

X2X4�0000�, X2X1X3�0000�, X2X1X4�0000� ,
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X2X3X4�0000�, X2X1X3X4�0000� . �20�

Now we consider a generic state and calculate the en-
tanglement entropy between the colored spin chain and the
rest of the lattice. The density matrix �= ���
�� is

� = 

ijkl,mnpq

aijklāmnpqX1
i X2

j X3
kX4

l �0X1
mX2

nX3
pX4

q. �21�

With the explanations we made above, the eigenvalues of
the reduced density matrix �A for the even number of spin
flipped is as follows:

dB

�G�
��a0000�2 + �a1000�2 + �a0010�2 + �a0001�2

+ �a1010�2 + �a1001�2 + �a0011�2 + �a1011�2� =
dB

�G�
� ,

�22�

where �G�
dB

=24k−1. Note that the number of these eigenvalues
is 24k−1. Through the similar arguments we see that the ei-
genvalues of the reduced density matrix of the spin chain
with an odd number of spin flipped is

dB

�G� �1−�� and the num-
ber of these eigenvalues is 24k−1. So, we can calculate the
entanglement entropy as follows:

SA = − 

i=1

24k

	i log2 	i

= − 24k−1 dB

�G�
� log2

dB

�G�
�

− 24k−1 dB

�G�
�1 − ��log2� dB

�G�
�1 − ���

= 4k − 1 + H��� , �23�

where H�x�=−x log2 x− �1−x�log2�1−x�.
What about the entanglement of an open string? The open

strings in the color code stand for the errors and map the
coding space into an orthogonal one. These open strings an-
ticommute with plaquette operators that share in an odd
number of vertices. For an open string that contains k� qubits
the entanglement entropy is SA=log2

�G�
dBdA

=k�, i.e., an open
string will be maximally entangled with the rest of the sys-
tem.

D. Red strings crossing

As another bipartition we select all spins on the two red
strings with different homologies, say X1 and X4 in Fig. 1,
which have 2�4k=8k spins. Let the system be in the �0000�
state. There is not any closed boundary operator acting solely
on A. Considering the total number of independent plaquette
operators acting solely on subsystem B, the entanglement
entropy then reads

SA = 8k − 1. �24�

Again we see that there are only configurations with an
even number of spins flipped in the construction of the state

�0000�. For a generic state as in Eq. �21� where we can real-
ize all states with either an even or odd number of spin flips,
the entanglement entropy will be

SA = 8k − 1 + H��� . �25�

E. Red and blue strings crossing

By this partition we mean the spins on the X1 and X2
strings in Fig. 1. The subsystem A contains 8k−1 spins and
again there is no closed boundary acting on it. Enumerating
the independent plaquette operators acting on the subsystem
B, the entanglement entropy is

SA = 8k − 3. �26�

F. Two parallel spin chains

Two parallel spin chains, say red and blue �X1 and X3� in
Fig. 1, or equivalently, a green string, contain 2�4k=8k
spins and again there is not any closed string acting on it
nontrivially. 8k plaquettes act freely on subsystem A, but
there are some constraints on them that arise from the prod-
uct of plaquettes, which leave the subsystem A invariant and
makes a collective operator, which acts solely on B. The
product of blue and green plaquettes of those plaquettes that
are free to act on A will produce a red string leaving A
invariant. The same product holds for the red and green
plaquettes. So the entanglement entropy reads

SA = 8k − 2. �27�

Indeed this is entanglement entropy for a green string. How-
ever, the number of spins it contains is twice over the strings
we discussed in Sec. IV.

G. Spin ladder

A set of vertical spin ladders has been shown in Fig. 2. In
this section only one of them has been considered as sub-
system A. Let the system be in the state �0000�. In this case
the subsystem A contains 2�3k spins, and the total number
of independent plaquettes acting on subsystem B is ��P�−2�
−3�3k+3k. Since there are not any closed strings acting
solely on A, the entanglement entropy reads

SA = 6k . �28�

FIG. 2. �Color online� A set of vertical spin ladders �black solid
circles� on 2-colex as a subsystem for calculating entanglement
entropy.

ENTANGLEMENT PROPERTIES OF TOPOLOGICAL COLOR… PHYSICAL REVIEW A 78, 062312 �2008�

062312-5



So, it is clear that this spin ladder has a maximum en-
tanglement with the rest of the system and its state has the
maximum mixing, namely,

�A = 2−6kI6k�6k. �29�

H. Vertical spin ladders

Now we consider all vertical spin ladders as has been
depicted in Fig. 2 and again we suppose the system is in the
state �0000�. There is not any plaquette operator that acts
solely on subsystem A. However, there are several specific
products of plaquette operators producing closed strings,
which act solely on A. For example, the product of plaquettes
that are in a vertical column will produce a closed string
acting on one of the subsystems. Both subsystems A and B
are symmetric with respect to each other. So, the number of
closed strings that act only on A and B will be dA=dB=22k.
Finally, the entanglement entropy reads

SA = 12k2 − 4k − 2. �30�

I. Hexagonal disk

In this case we adapt a situation in which a set of
plaquettes intuitively forms a hexagon as shown in Fig. 3. In
this figure the dashed hexagon demonstrates a set of
plaquettes lying between two subsystems. We suppose that
the number of plaquettes crossed by the one edge of the
hexagon be n. Now we can enumerate the number of
plaquettes that act on A in terms of n, i.e., �A=3n�n−1�+1.
The total number of spins of the subsystem A is 6n2. There
are �AB=6n plaquettes that act between A and B. Let the
system be in the state �0000�. With these realizations of the
subsystems and since �P�=�A+�B+�AB, we can turn on to
calculate the entanglement entropy between two subsystems
as follows:

SA = log2 2�AB−2 = �AB − 2 = 6n − 2. �31�

We can relate this entropy to the perimeter of the sub-
system A by choosing the height of a plaquette as a unit. The
perimeter of A is �A=6n and the entropy will then be

SA = �A − 2. �32�

Generally, for an irregular lattice the entropy for a convex
shape will be SA=
�A−� where the coefficient 
 is a non-
universal constant depending on the shape of the region,
while the constant �=2 will be universal and has a topologi-
cal nature. So, we see that the entanglement entropy for the
topological color code scales with the boundary of the sub-
system, which is a manifestation of the so-called area law
�11,19,20�.

The latter relation we obtained for the entanglement en-
tropy is consistent with the derivation of Kitaev et al. �12�
and Levin et al. �13� where they proposed that for a massive
topological phase there is a topological subleading term for
the entanglement entropy that is related to the quantum di-
mension of the Abelian quasiparticles. The total quantum
dimension for the topological color code will be

� = log2 D, D = 4. �33�

The quantity D2 is the number of topological superselec-
tion sectors of Abelian anyons. For Kitaev’s toric code there
are only four such sectors leading to �=log2 2. So the total
quantum dimension in the topological color code is bigger
than the toric code. The Abelian phase of the toric code is
characterized via appearing in a global phase for the wave
function of the system by winding an electric �magnetic�
excitation around a magnetic �electric� excitation �12�. In the
case of color code the excitations are colored and they appear
as end points of open colored strings of a shrunk lattice �16�.
Winding a colored X-type excitation around the Z-type one
with a different color gives an overall factor ��� for the
wave function of the model, i.e., the phase is Abelian. There-
fore the contribution of the color to the excitations makes the
Abelian phase of the color code richer than the toric code
with a bigger quantum dimension.

Now let the system be in a generic state such as Eq. �21�.
The reduced density matrix then reads

�A = 

ijkl,mnpq

aijklāmnpq TrB�X1
i X2

j X3
kX4

l �0X1
mX2

nX3
pX4

q� .

�34�

Some remarks are in order. For two different nontrivial
closed string operators but with the same homology and
color, say X and X�, they will have the same support and
are related via a trivial closed string g�G, i.e., X�=gX.
Since �g ,X�=0, two strings will have the same effect on the
�0, i.e., X��0=gX�0=X�0. We can exploit this property of
string operators in order to choose the strings appearing in
Eq. �34� in which they do not cross subsystem A. Indeed
the strings Xi act only on the subsystem B, i.e., XiA=IA.
This leads to TrB�Xi�0Xi�=TrB��0� for i=1,2 ,3 ,4 and
TrB�X1

i X2
j X3

kX4
l �0X1

i X2
j X3

kX4
l �=TrB��0� for i , j ,k , l=0,1. Other

cases will be zero. To clarify this, let us for example, con-
sider the simple case TrB�X1�0� where we have

FIG. 3. �Color online� A manifestation of an hexagonal disk as a
subsystem. A set of plaquettes is chosen in such a way that forms a
large hexagon �the yellow line�, and all large yellow �light� spins
are in the subsystem. The dashed black line depicts the set of
plaquettes acting simultaneously on both subsystems.
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TrB�X1�0� = 

g,g��G

gA�0A�
A0�gA�

�

gB�


B0�gB�X4gB�0B�
B0�gB�gB� �0B�

= 

g,g��G

gA�0A�
A0�gA�
B0�gB�XBgB�0B� . �35�

On the other hand, from the group property g�=gg̃ the
above expression becomes

TrB�X1�0� = 

g,g̃�G

gA�0A�
A0�gAg̃A
B0�g̃BXB�0B� , �36�

which implies that g̃B=XB. Otherwise the above expression
will become zero. The fact g̃= g̃A � g̃B�G explicitly implies
that the operator g̃A must be a noncontractile string, which is
impossible since it must act solely on A. So we will leave
with TrB�X1�0�=0. The same arguments may also apply for
other cases. Finally, the entanglement for a generic state of
the system and a convex region will become

�A = TrB��0�, SA = �A − 2. �37�

J. Topological entanglement entropy

As we can see from Eq. �32�, in the entanglement entropy
of a region there exists a subleading term that is universal
and independent of the shape of region. This is a character-
istic signature of topological order, which has been found on
the subleading term of the entanglement entropy. To be more
precise on the topological character of the subleading term,
we can construct a set of bipartitions in which the boundary
contribution is dropped and the remaining term is stemmed
from the topological nature of the code and inspires the to-
pological order. To drop the bulk and boundary degrees of
freedom we consider a set of partitions that have been shown
in Fig. 4. Topological entanglement entropy then arises from
the following combination of entanglement entropy:

Stopo = lim
R,r→


�− S1A + S2A + S3A − S4A� . �38�

For each bipartition one can use the entanglement entropy
as before, namely, SG=log2��G��−log2�dAdB�. So far the car-
dinalities dA and dB were determined by the number of
plaquette operators acting solely on A and B, respectively,
i.e., dA=2�A and dB=2�B, where �B and �B stand for the
number of plaquette operators acting only on A and B, re-
spectively. However, for the calculation of the Stopo we
should take into account other closed strings in addition to

the above closed strings acting on subsystems. For the case
in which each partition is a single connected region, for ex-
ample, bipartitions �2� and �3� in Fig. 4, the previous argu-
ments work, but for disjoint regions such as �1� and �4� in
Fig. 4 we should extend the above result. As an example a
simple case has been shown in Fig. 5 where we have sup-
posed the subsystem A is composed of two disjoint regions
�two dashed rectangles, which we label as A1 and A2�, while
the subsystem B is a single connected one. By inspection we
see that the product of two sets of plaquettes, say the blue
and green ones, which act on A1, and the blue and green ones
acting simultaneously on A1 and B, result in a red string that
acts only on B. The same scenario can be applied for other
choices of the plaquettes, e.g., red and green or red and blue
plaquettes, which yield blue and green strings leaving the
subsystem A1. However, as we pointed out before, one of
them will be immaterial since there is an interplay between
homology and color.

The main point is that it is not possible to produce these
colored closed strings that act only on B from the product of
some plaquettes of region B. The same thing will be held for
another disjoint region of A, say A2. So, we have a collection
of closed strings with a nontrivial effect on B and we must
take them into account in the calculation of dB. But, a remark
is in order and that if, for example, we combine two red
strings, the resultant is not a new closed string because we
can produce these two red strings from the product of the
blue and green plaquettes of region B. Therefore for the case
shown in Fig. 5 there are only two independent closed strings
of this type with a nontrivial effect on B. With these remarks,
now the cardinalities dA and dB are

dA = 2�A, dB = 2�B+4−2. �39�

We can generalize the above results for the case that each
subsystem is composed of several disconnected regions. Let
the partitions A and B be composed of mA and mB disjoint
regions, respectively. So, the cardinalities will be

dA = 2�A+2mB−2, dB = 2�B+2mA−2. �40�

Now we move on in order to calculate the topological
entanglement entropy defined in Eq. �38�. For the partitions
shown in Fig. 4 we have

FIG. 4. Different bipartitions of the lattice in order to drop the
bulk and boundary effect through the definition of topological en-
tanglement entropy.

FIG. 5. �Color online� One of the subsystems, say A, composed
of two disjoint regions that introduce some nontrivial colored
closed strings acting solely on B. The closed blue and red strings
have been shown only for one region of subsystem A.
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m1B = m4A = 2,

m1A = m2A = m2B = m3A = m3B = m4B = 1, �41�

�1A + �4A = �2A + �3A. �42�

Finally, the topological entanglement entropy reads as fol-
lows:

Stopo = − 4. �43�

Topological entanglement entropy depends only on the
topology of the regions with no matter to their geometries
�12�. This derivation for the topological entanglement en-
tropy of color codes is consistent with the subleading term of
scaling of the entropy. The topological entanglement entropy
is related to the subleading term of the entanglement entropy,
i.e., Stopo=−2� �12�. This leads to �=2, which has also been
derived in Eq. �32�.

V. ENTANGLEMENT PROPERTIES
OF PLANAR COLOR CODES

An important class of topological stabilizer codes in prac-
tice is planar codes, which are topological codes that can be
embedded in a piece of planar surface. These planar codes
are very interesting for topological quantum memory and
quantum computations �9,15�. A planar color code will be
obtained from a 2-colex without a border when a couple of
plaquettes are removed from the code. For example, when a
plaquette, say green, is removed, only green strings can have
an end point on the removed plaquette, not the blue and red
strings. The same scenario holds for other plaquettes. By this
construction we will end with a 2-colex that has three bor-
ders, each of one color. To each border only strings can have
end points which have the same color of that border. The
most important class of such a planar color code is the trian-
gular code that has been shown in Fig. 6. The essential prop-
erty of such a code is determined via realizing a three-string
operator and its deformation. We denote them by TX and TZ

so that �TX ,TZ�=0 since they cross each other once at strings
with different colors. This latter anticommutation relation
can also be invoked by considering all qubits, which makes
the triangular color code very interesting for full implemen-
tation of the Clifford group without a need for selective ad-

dressing �15�. Instead of giving such fruitful properties, we
are interested in the entanglement properties of the triangular
code.

To have a concrete discussion, we consider a triangular
lattice that contains hexagons like what has been shown in
Fig. 6. The total number of plaquettes and vertices are �P�
= 3

2k�k+1� and �V�=3k�k+1�+1, respectively, where k is an
integer number. The plaquette operators like those defined in
Eq. �1� have been used in order to define a stabilizer sub-
space for this code. A main point about the planar code is
that there are no constraints on the action of plaquette opera-
tors, i.e., they are independent. For example, if we produce
all red and green plaquette operators, the resulting operator
will not be the same with the product of red and blue
plaquette operators, a property that was absent for the color
code on the compact surface. However, the product of dis-
tinct plaquettes is in the stabilizer group. The coding space is
spanned with the states that are fixed points of all plaquette
operators. With the above identifications for the number of
plaquettes and vertices, the dimension of the coding space
will be �= 2�V�

2�P�2�P� =2. This implies that the triangular code
encodes a single qubit. Two states are completely determined
by the elements of the stabilizer group and three-string op-
erator. Note that here the three-string operator plays a role
like nontrivial closed strings in the color code on the torus.
For triangular code the 3-string is nontrivial, i.e. it commutes
with all plaquette operators and is not a product of some
plaquettes. So the stabilized states will be

�0� = �G�−1/2 

g�G

g�0�� �V�, �1� = TX�0� . �44�

A generic state can be in a superposition of the above
states such as ���=
i=0

1 ai�i� where 
i=0
1 �ai�2=1. The reduced

density matrix in Eq. �11� gives what we need to evaluate the
entanglement entropy. Again we make different bipartitions
and calculate the entanglement entropy.

Let the system be in the state �0�. A single qubit is maxi-
mally entangled with the rest of the system while two qubits
are not entangled implying that the triangular code is also a
multipartite entangled structure. As another bipartition we
consider a colored spin chain such as the red chain in Fig.
6�b�. This string contains 2k qubits and anticommutes with
plaquettes, which the string has an endpoint on them, i.e.,
they share an odd number of qubits, thus its action on the
coding space amounts to an error or on the other hand, to the
appearance of excitations above the ground state if we adopt
the coding space as a ground state of a local Hamiltonian as
in Eq. �10�. However, such a string has maximal entangle-
ment SA=2k with other qubits of the lattice. This means that
all configurations of the spin chain are allowed in the state
�0� of the code, a feature that is similar to the entanglement
of an open string in the topological color code on the torus
�see Sec. IV C�.

Taking into account the qubits living on the three-string
net as subsystem A leads to the occurrence of configurations
of subsystem A with only an even number of spins flipped in
the state �0�. For this string net as shown in Fig. 6�a� the
number of qubits of the string is 2k+1, and the entanglement

FIG. 6. �Color online� A class of color code on the plane. It
includes borders, each of one color. It encodes one qubits and can
be produced from a 2-colex without a border by removing a couple
of plaquettes. To each border only strings with the same color of
border can have end points. �a� three-string net commutes with all
plaquette operators. Such a string net and its deformation makes the
encoded Pauli operators acting on the encoded qubit. �b� A mani-
festation of colored string as a bipartition. It stands for an error.
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entropy then will become SA=2k. By inspection we see that
the plaquette operators flip only an even number of qubits of
the string net. Now let the system be in a generic state such
as ���. All possible configurations of the string net are al-
lowed since all of them can be realized by applying some
three-string operators TX. There are 22k configurations with
an even number of spins flipped and 22k configurations with
an odd number of spins flipped. The states �0� and �1� include
even and odd configurations, respectively. Therefore the en-
tanglement entropy for a generic state will be SA=2k+H���,
where �= �a0�2.

What about the topological entanglement entropy of pla-
nar color codes? In order to answer this question we obtain a
set of bipartitions such as in Fig. 4 in a large triangular code.
Let �A and �B stand for the number of plaquette operators
acting only on A and B, respectively, and �AB stands for the
number of plaquette operators acting simultaneously on A
and B. All plaquette operators are independent. To make
things simpler, let us consider a simple case where the sub-
system A is a single convex connected region. The cardinal-
ity of the subgroup GA is 2�A. However, there are two non-
trivial closed strings acting on subsystem B, which is
impossible to provide them by the product of some
plaquettes of B. In fact these two independent strings result
from the product of some plaquettes, say red and green,
which are free to act on A. So the cardinality of the subgroup
B reads 2�B+2. Thus for the entanglement entropy we obtain
SA=�AB−2.

In order to calculate the topological entanglement entropy,
first the entanglement entropy is calculated for different bi-
partitions and then the expression in Eq. �38� gives the topo-
logical entropy. Because of the boundaries in the planar
codes, for a disconnected region like �1� or �4� in Fig. 4 the
constraint we imposed in Eq. �40� is no longer true. For the
bipartition �1� in Fig. 4 the cardinalities of subgroups GA and
GB will be dA=2�1A+2 and dB=2�1B+2, respectively. However,
for the bipartitions �4� in Fig. 4 the cardinalities will be dA
=2�4A and dB=2�4B+4, respectively. Thus the topological en-
tanglement entropy becomes Stopo

t =−4. Although the closed
string structures of bipartitions in the triangular code due to
the boundary effects differ from the color code on the torus,
the topological entanglement entropy is the same for both
structures that are related to the fact that both structures have
the same symmetry.

VI. CONCLUSIONS

In this paper we calculated the entanglement properties of
topological color codes �TCC� defined on a two-dimensional
lattice. The entanglement entropy was measured by the von
Neumann entropy. We considered two structures of TCC,
either defined on the compact or planar surface. The coding
space of TCC is spanned by a set of states in which are the
fixed points of a set of commuting Pauli operators, i.e., they
are common eigenvectors of all elements of the stabilizer
group with an eigenvalue +1. In fact this set stabilizes the
coding space. The stabilizer group is generated from
plaquette operators. The product of different plaquette opera-
tors produces colored strings, which in fact are the closed

boundary of several plaquettes. However, there exist some
independent nontrivial strings winding the handles of the
manifold where the model is defined on. These nontrivial
strings commute with all plaquette operators but are not ac-
tually in the stabilizer group. These nontrivial strings make
remarkable properties of the color code more pronounced.

The coding space of lattice embedded in a manifold with
genus g is spanned by 42g states. This coding space can be
adopted in which be a ground state subspace of a local
Hamiltonian. The degeneracy of the ground-state subspace
depends on the genus of the manifold, which is a feature of
topological order. Different states of the ground-state sub-
space can be constructed by means of spin-flipped elements
of the stabilizer group and nontrivial closed loops. In order to
calculate the entanglement properties of the TCC, the re-
duced density matrix of a subsystem is obtained by integrat-
ing out the remaining degrees of freedom. We did this by
using the group properties of the stabilizer group.

For both structures of color code on compact and planar
surfaces while a single qubit is maximally entangled with
others, two qubits are no longer entangled. This finding
manifests that the color code is a genuinely multipartite en-
tangled structure. We also considered other bipartitions such
as spin chains, spin ladders with various colors, and homolo-
gies. For all bipartitions we found the entanglement entropy
depends on the degrees of freedom living on the boundary of
two subsystems. However, in the entanglement entropy of a
convex region, there is a subleading term that is ascribed to
the topological properties of region, not the geometry, a fea-
ture that has also arisen in a massive topological theory �12�.
The fact that the entanglement entropy for a region of lattice
scales with its boundary is a feature of area law is also of
great interest in other branches of physics such as black holes
�21�.

We exploited the scaling of the entropy to construct a set
of bipartitions in order to calculate the topological entangle-
ment entropy of color codes. We find that it is twice over the
topological entropy in the topological toric code. The nonva-
nishing value for topological entanglement entropy and de-
pendency of degeneracy on the genus of the surface demon-
strate remarkable features on the fact that topological color
code is fabric to show topological order. For the toric code
model the total quantum dimension of excitation is 4, which
stands for different superselection sectors of its anyonic ex-
citations. The total quantum dimension of color code is 16
inspiring that the topological color codes may carry richer
anyonic quasiparticles. They may be colored and their braid-
ing will have a nontrivial effect on the wave function of the
system. Indeed braiding of a colored quasiparticle around the
other one with a different color will give rise to a global
phase for the wave function, i.e., they are Abelian excita-
tions. A triangular color code with a remarkable application
for entanglement distillation is also a highly entangled code.
Although the colored strings employed in the 2-colex in the
compact surface are not relevant in the triangular code, the
notion of string net gives some essential properties to the
triangular code. In the state of the triangular code all con-
figurations of a colored string, say a red one in Fig. 6�b�, are
allowed, i.e., it has maximal entanglement with the rest of
the system. However, for a string net only the configurations
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with an even number of spins flipped are allowed. Entangle-
ment entropy scales with a boundary of the region and in-
cludes a topological term. This topological term yields a non-
vanishing topological entanglement entropy, which is the
same as what we obtained for the color codes on the torus.
Similar entanglement properties of color codes defined on
the compact and planar surface are not a matter of chance
because both structures carry the same symmetry.
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