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The standard oracle operator corresponding to a function f is a unitary operator that computes this function
coherently, i.e., it maintains superpositions. This operator acts on a bipartite system, where the subsystems are
the input and output registers. In distributed quantum computation, these subsystems may be spatially sepa-
rated, in which case we will be interested in its classical and entangling capacities. For an arbitrary function f ,
we show that the unidirectional classical and entangling capacities of this operator are log2�nf� bits �ebits�
where nf is the number of different values this function can take. An optimal procedure for bidirectional
classical communication with a standard oracle operator corresponding to a permutation on ZM is given. The
bidirectional classical capacity of such an operator is found to be 2 log2�M� bits. The proofs of these capacities
are facilitated by an optimal distributed protocol for the implementation of an arbitrary standard oracle
operator.
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I. INTRODUCTION

The rapidly developing field of quantum information sci-
ence has yielded many new concepts in communications and
computation, which have led to major applications such as
quantum cryptography and fast quantum algorithms �1�. In
quantum as in classical information processing, situations in-
volving spatially separated parties are of particular interest. It
is therefore necessary to develop the theory of distributed
quantum information processing �2–9�. Here, we consider
quantum systems whose component subsystems are pos-
sessed by a number of spatially separated parties. These sub-
systems cannot interact directly, so the effect of an interac-
tion must be brought about using only local quantum
operations and nonlocal resources. The nonlocal resources
needed to implement an arbitrary quantum operation in this
manner are classical communication channels and shared en-
tangled states.

One particularly important quantum operation within the
context of quantum information processing is the standard
oracle operator. This operator is a key building block for
quantum algorithms. Generally speaking, an oracle operator
is a unitary operator that computes a function. The key dif-
ference between oracle operators and classical methods of
computation is that the former, being linear quantum-
mechanical operators, maintain superpositions. A superposi-
tion of different values of the independent variable, which
we denote by x, will then evolve into a superposition of the
corresponding values of f�x�, giving rise to the well-known
and important phenomenon of quantum parallelism. The
standard oracle operator is a convenient oracle operator
which can be used to compute an arbitrary function �10,11�.
However, it has different registers for x and f�x� and in a
distributed setting it is natural to consider these to be spa-
tially separated.

In this paper, we investigate numerous aspects of the dis-
tributed implementation of standard oracle operators. We

consider both the minimum entanglement and classical com-
munication resources, in both directions, required for this
implementation and also the corresponding capacities, which
relate to the fact that it is possible to use such an operator to
send classical information and create entangled states. It is
important to determine the values of these quantities for the
following reasons. Regarding the minimal resources neces-
sary for the distributed implementation of the standard oracle
operator, it is highly desirable to use classical communica-
tion and, even more so, shared entanglement, as efficiently as
possible when implementing distributed quantum operations.
Concerning the capacities, it is important to have knowledge
of these quantities in circumstances where we are able to
perform this operation and wish to use it to create entangled
states or transmit classical information.

The main result of this article is that for an arbitrary func-
tion f , all six minimum implementation resources and ca-
pacities are equal to log2�nf� bits/ebits, where nf is the num-
ber of different values this function can take. In the course of
this investigation, we provide optimal protocols for entangle-
ment creation and classical communication using an arbitrary
standard oracle operator, indeed also for bidirectional classi-
cal communication when the function f is a permutation. We
also give an optimal protocol for the distributed implemen-
tation of an arbitrary standard oracle operator.

Let us set the scene by reviewing the main properties of
standard oracle operators. Let M ,N be arbitrary finite inte-
gers �1. Consider FMN, the set of functions from ZM �ZN.
Let A and B be quantum systems with M- and N-dimensional
Hilbert spaces HM and HN. These systems are taken to be
spatially separated and in the possession of corresponding
parties Alice and Bob. To each f �FMN there corresponds a
unitary standard oracle operator on HM � HN:

Uf�x�A � �y�B = �x�A � �y � f�x��B. �1.1�

A and B may be referred to as the control and target systems,
respectively. In Eq. �1.1�, � denotes addition modulo N.
Also, x�ZM ,y�ZN and ��x�� is an orthonormal basis set for
HM, likewise with ��y�� and HN. These are the computational*anthony.chefles@btinternet.com
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basis sets for both systems. There are NM functions in FMN,
so there are NM associated standard oracle operators Uf.

To proceed, let us partition ZM into subsets corresponding
to different values of f�x�. Let nf be the number of different
values that f�x� can take. Clearly, nf �M ,N. Let f j, where
j� �0, . . . ,nf −1�, be the possible values of f�x�. We also
define Sj �ZM to be the set of values of x for which f�x�
= f j and denote by Pj =	x�Sj

�x�
x� the projector onto the sub-
space spanned by the states �x� for x�Sj. Finally, let Kj be
the cardinality of Sj. Clearly, Kj is the rank of Pj. It is a
simple matter to prove that Uf can be written in the form �11�

Uf = 	
j=0

nf−1

PjA � �e−if j�N�B, �1.2�

where we use the N-dimensional Pegg-Barnett phase opera-
tor

�N = 	
n�ZN

2�n

N
��Nn�
�Nn� , �1.3�

whose eigenstates are the N-dimensional Pegg-Barnett phase
states ��Nn�=N−1/2	y�ZN

e2�iny/N�y� �12�. These states form an
orthonormal basis for HN which is conjugate to the compu-
tational basis ��y��. One can readily verify that

e−i�N�y� = �y � 1� ∀ y � ZN. �1.4�

We note that Eq. �1.2� gives an operator Schmidt decompo-
sition of Uf, where the related Schmidt operator sets are
�Pj /�Kj� and �e−if j�N /�N�. These are orthonormal sets with
respect to the Hilbert-Schmidt inner product 
A ,B�
=Tr�A†B�. The Schmidt coefficients are �NKj and the
Schmidt rank of Uf, denoted by Sch�Uf�, is equal to nf.

II. LOWER BOUNDS ON THE ENTANGLING
AND CLASSICAL CAPACITIES

In a distributed setting, any type of nonlocal resource that
can be created by a quantum operation must also be con-
sumed in order to perform the operation. For a bipartite
quantum operation, there are three such resources: shared
entanglement E and classical communication in the Alice
→Bob and Bob→Alice directions, which we shall denote
by C→ and C←, respectively. We shall use the subscripts R
and C to denote, respectively, the minimum of the corre-
sponding resource required to perform a quantum operation
and the capacity of the operation corresponding to this re-
source. The entangling capacity is the maximum amount of
entanglement that the operation can create. The classical ca-
pacity, in a given direction, is the maximum amount of clas-
sical information that the operation can be used to send in
that direction.

A fundamental result in quantum information theory is
that, for any bipartite unitary operator U, each capacity can-
not exceed the amount of the corresponding resource that
must be consumed �4�. We therefore have the following in-
equalities:

ER�U� � EC�U� , �2.1�

CR→�U� � CC→�U� , �2.2�

CR←�U� � CC←�U� . �2.3�

There is a further capacity to consider, the bidirectional clas-
sical capacity CC↔�U�. This is the maximum total amount of
classical information that Alice and Bob can send to each
other with one use of the quantum operation. Since the uni-
directional classical capacities are optimized for transmission
in their associated directions, we have

CC↔�U� � CC→�U� + CC←�U� . �2.4�

It should be said at this point that we shall be considering the
true capacities of the operation, rather than those obtained
following the imposition of constraints. For example, when
considering the entangling capacity, we shall assume limit-
less auxiliary resources such as classical communication.
Similarly, when considering classical capacities, we shall as-
sume limitless auxiliary resources including shared entangle-
ment.

We shall now obtain, for an arbitrary standard oracle op-
erator Uf, lower bounds on the entangling and unidirectional
classical capacities EC�Uf�, CC→�Uf�, and CC←�Uf�. We be-
gin by examining entanglement creation. Consider some ar-
bitrary but fixed xj �Sj, for each j� �0, . . . ,nf −1�. Suppose
that A and B are initially prepared in the product state

��� = � 1
�nf

	
j=0

nf−1

�xj�A
 � �0�B, �2.5�

where �0� is the zeroth computational basis state in HN. Act-
ing upon this state with Uf gives

Uf��� =
1

�nf
	
j=0

nf−1

�xj�A � �f j�B. �2.6�

This is a maximally entangled state with Schmidt rank nf,
having log2�nf� ebits of entanglement. We conclude that

EC�Uf� � log2�nf� . �2.7�

Let us now show that Alice and Bob can send each other
log2�nf� classical bits using Uf. That Alice can send Bob
log2�nf� bits is almost trivially demonstrated. Let r
� �0, . . . ,nf −1� be the classical message she wishes to send
to Bob. She prepares A in the state �xr�. Meanwhile, Bob
prepares B in the state �0�. The oracle operator Uf then acts
on these systems, giving rise to the state �xr�A � �fr�B. Bob
can subsequently perform a computational basis measure-
ment to reveal fr and hence r, Alice’s log2�nf� bit message.

For Bob to send the same amount of classical information
to Alice, the two parties can use the following entangled
state:

��� =
1

�nf
	
j=0

nf−1

�xj�A � �N� f j�B, �2.8�

where � denotes subtraction modulo N. Bob wishes to send
the value of s� �0, . . . ,nf −1� to Alice. To encode his chosen
value of s in the above state, he makes use of a unitary phase
shift operator G acting on HN which is defined through
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G�N� f j� = e2�ij/nf�N� f j� . �2.9�

His encoding of s is performed through the transformation
���� ��s�= �1A � GB

s ��� �, giving

��s� =
1

�nf
	
j=0

nf−1

e2�ijs/nf�xj�A � �N� f j�B. �2.10�

The oracle operator Uf is then applied, resulting in the state

Uf��s� = � 1
�nf

	
j=0

nf−1

e2�ijs/nf�xj�A
 � �N�B. �2.11�

The states inside the parentheses, indexed by s, are orthonor-
mal and can be perfectly discriminated by Alice. Doing so
enables her to read Bob’s log2�nf� bit message s. The exis-
tence of these classical communication protocols implies that

CC→�Uf�,CC←�Uf� � log2�nf� . �2.12�

Let us now consider simultaneous, bidirectional classical
communication. Here we will see that, when f is permutation
from ZM �ZM, the above protocol can be modified to enable
Alice and Bob to send to each other log2�nf�=log2�M� clas-
sical bits simultaneously. Let f :ZM �ZM be a permutation of
degree M. We begin with the state

�	� =
1

�M
	

x�ZM

�x�A � �M �x�B, �2.13�

which resembles the state ��� in Eq. �2.8�. Here, � / � de-
notes addition/subtraction modulo M. Alice encodes her
message r�ZM with the unitary transformation �x�� �f−1�x
� r�� on A. Again, Bob encodes his message s with a unitary
phase shift on B; here �M � x��e2�isx/M�M � x� where s
�ZM. The total state transformation is �	�� �	rs�, where

�	rs� =
1

�M
	

x�ZM

e2�isx/M�f−1�x � r��A � �M �x�B.

�2.14�

The corresponding standard oracle operator Uf is then ap-
plied, which results in the transformation

Uf�	rs� =
1

�M
	

x�ZM

e2�isx/M�f−1�x � r��A � �M � r�B.

�2.15�

Alice and Bob are now able to read each other’s messages.
For the sake of clarity, let Alice now invert her earlier unitary
transformation on A and Bob perform the unitary transfor-
mation 	r��ZM

�r��
M � r�� on B. This results in the state

� 1
�M

	
x�ZM

e2�isx/M�x�A
 � �r�B. �2.16�

The states of A are the orthonormal eigenstates of �M in-
dexed by s. These states are perfectly distinguishable by Al-
ice, as are the states �r� by Bob. Discrimination among these
states enables Alice and Bob to read each other’s log2�M� bit
messages. We therefore conclude, for a standard oracle op-

erator corresponding to a permutation of degree M, that the
bidirectional classical capacity satisfies

CC↔�Uf� � 2 log2�M� . �2.17�

III. AN OPTIMAL DISTRIBUTED
IMPLEMENTATION PROTOCOL

Having obtained lower bounds on the entangling and clas-
sical capacities for a standard oracle operator, we now obtain
upper bounds on the corresponding minimum resources for
its distributed implementation. We will now show that

ER�Uf�,CR→�Uf�,CR←�Uf� � log2�nf� , �3.1�

by describing an explicit protocol that uses log2�nf� ebits of
entanglement and the same number of classical bits in each
direction to perform the distributed implementation of a stan-
dard oracle operator. We begin with an arbitrary initial state
of systems A and B, which may be written in the form

��� = 	
m�ZM

n�ZN

cmn�m�A � �n�B. �3.2�

In addition to A and B, Alice and Bob have respective ancil-
las a and b. Their Hilbert spaces can be described in the
following way. Let us define H f as the nf-dimensional sub-
space of HM spanned by the states �xj� for j� �0, . . . ,nf −1�.
Then the Hilbert spaces of a and b are copies of H f. The two
ancillas are initially prepared in the maximally entangled
state nf

−1/2	 j=0
nf−1�xj�a � �xj�b, which has log2�nf� ebits of en-

tanglement. The total initial state is therefore

��0� =
1

�nf
	
j=0

nf−1

	
m�ZM

n�ZN

cmn�m�A � �xj�a � �n�B � �xj�b.

�3.3�

Our protocol can be described in the following way.
Step 1. Alice applies the following unitary operator to Aa:


 = 	
k=0

nf−1

PkA � Vka. �3.4�

Here, Vk is a unitary operator on H f which acts as Vk�xj�
= �xj�̄k�, where throughout, �̄ ��̄� denotes addition �subtrac-
tion� modulo nf. The state transformation effected by this
operator is ��0�� ��1�, where

��1� =
1

�nf
	

j,k=0

nf−1

	
m�Sk

n�ZN

cmn�m�A � �xj�̄ k�a � �n�B � �xj�b.

�3.5�

Step 2. Alice performs a computational basis measure-
ment on a, getting result xr for some r� �0, . . . ,nf −1�. This
results in the state transformation ��1�� ��2r�, where
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��2r� = 	
k=0

nf−1

	
m�Sk

n�ZN

cmn�m�A � �xr�a � �n�B � �xr�̄ k�b.

�3.6�

Step 3. Alice communicates the value of r to Bob, thus
sending him log2�nf� classical bits. With his knowledge of r,
Bob performs the unitary transformation �xr�̄k�� �xk� on b,
resulting in the total state transformation ��2r�� ��3r�,
where

��3r� = 	
k=0

nf−1

	
m�Sk

n�ZN

cmn�m�A � �xr�a � �n�B � �xk�b. �3.7�

Step 4. Bob now performs the unitary transformation

�n�B � �xk�b � �n � fk�B � �xk�b, �3.8�

where � denotes addition modulo N. This transformation is
effectively the oracle operator Uf, with b and B being the
control and target systems, respectively, and the state of the
control system is restricted to the subspace H f of HM. This
gives ��3r�� ��4r� where

��4r� = 	
k=0

nf−1

	
m�Sk

n�ZN

cmn�m�A � �xr�a � �n � fk�B � �xk�b.

�3.9�

Step 5. Bob performs a discrete Fourier transform on the b
system whose effect is �xk��nf

−1/2	s=0
nf−1e2�iks/nf�xs�, resulting

in the total state transformation ��4r�� ��5r�, where

��5r� =
1

�nf
	

k,s=0

nf−1

	
m�Sk

n�ZN

cmne2�iks/nf�m�A � �xr�a � �n � fk�B

� �xs�b. �3.10�

Step 6. Bob now performs a computational basis measure-
ment on b. On obtaining the result xs, where s� �0, . . . ,nf
−1�, the total state is transformed as

��5r� � ��6rs� = 	
k=0

nf−1

	
m�Sk

n�ZN

cmne2�iks/nf�m�A � �xr�a

� �n � fk�B � �xs�b �3.11�

and he communicates the value of s to Alice. This requires
him to send her log2�nf� bits of classical information.

Step 7. Alice now uses the, in general degenerate, unitary
phase shift operator T=	k=0

nf−1e−2�ik/nfPk. Knowing s, she ap-
plies the operator Ts to A. This results in the transformation
��6rs�� ��7rs�, where

��7rs� = 	
k=0

nf−1

	
m�Sk

n�ZN

cmn�m�A � �xr�a � �n � fk�B � �xs�b

= �Uf����AB � �xr�a � �xs�b, �3.12�

which is the desired transformation of the state of AB. The
existence of this protocol for the distributed implementation
of the standard oracle operator Uf, with the specified re-
sources together with the lower capacity bounds in Eqs. �2.7�
and �2.12� and inequalities �2.1�–�2.3�, establishes that all six
quantities in these latter inequalities are equal to log2�nf�
�13�. We also see from Eq. �2.4� that when f is a permutation
of degree M, the bidirectional classical capacity CC↔�Uf� is
equal to 2 log2�nf� bits and that the bidirectional classical
communication protocol we described is optimal.

IV. DISCUSSION

There are several points to be made about this distributed
protocol. First, it generalizes earlier work on the distributed
implementation of the controlled-NOT �CNOT� gate �2,4,5�. In
fact, this unitary gate is the standard oracle operator corre-
sponding to the one-bit identity function. Our protocol has
interesting security properties. The actual classical data that
Alice and Bob send to each other consists of random mea-
surement results. It follows that if they wish to use Uf to
send classical information to each other, this will be con-
cealed from an eavesdropper listening to their classical trans-
missions. Also, we see that in step 4, Bob effectively imple-
ments the oracle locally. Only this step makes reference to
the details of the function f , which even Alice doesn’t have
to know for the successful implementation of Uf. The details
of f will also be concealed from a potential eavesdropper on
the classical transmissions.

It is also worth mentioning that this implementation pro-
tocol is always at least twice as efficient, with respect to the
consumption of all resources, as the bidirectional teleporta-
tion protocol which can be used for the distributed imple-
mentation of any bipartite operation, and is optimal for some
of them, for example, the SWAP and double CNOT operations
�3–5�. This protocol operates by having one party, say Alice,
teleport the state of her system to the other, Bob, upon which
Bob is able to perform any global operation locally. The
procedure concludes with Bob teleporting back to Alice the
transformed state of her system. From the well-known prop-
erties of quantum teleportation, we easily see that for two
quantum systems, the smallest of which �assumed here to be
Alice’s� has Hilbert space dimension D, this protocol con-
sumes 2 log2�D� ebits of entanglement and 2 log2�D� bits of
classical capacity in each direction.

To implement a standard oracle operator this way, we note
that nf is no greater than the dimensionalities of either Al-
ice’s or Bob’s Hilbert spaces. Hence, nf �D and we can eas-
ily see by comparing the above resources for bidirectional
teleportation with those required to implement the protocol
of the preceding section that the latter is always at least twice
as efficient as the former with respect to each of these re-
sources.
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We also point out that this protocol simplifies when f is a
permutation on ZM. When this is so, M =N=nf and all four
quantum systems have identical Hilbert spaces. The projec-
tors Pk have rank-one and project onto all of the computa-
tional basis states in HM. One further curious property of
permutations is the ease with which their standard oracle
operators can be seen to be locally equivalent. Kashefi et al.
�10� noted that for any permutation f on ZM, one can define
the unitary minimal oracle operator Qf =	x�ZM

�f�x��
x�,
which is related to Uf through Uf = �Qf

†
� 1M�UID�Qf � 1M�.

Here, UID is the standard oracle operator corresponding to
the ZM �ZM identity function. All standard oracle operators
for permutations of degree M are therefore interconvertible
with local unitary operations. It follows that the minimum
nonlocal resources to implement these operators and their
corresponding capacities are equal.

To conclude, we have studied numerous aspects of the
distributed implementation of standard oracle operators.
These arise frequently in the context of quantum algorithms

and the results presented here will be useful in relation to
distributed quantum computation. It is also to be expected
that the methods used to establish the minimum nonlocal
implementation resources and capacities of standard oracle
operators will be useful in a more general context. In particu-
lar, the optimal distributed protocol for standard oracle op-
erators has the potential to be modified for more general
unitary operators.
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