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The spectrum of non-Hermitian Hamiltonians is studied using the point-group symmetries of the Hermitian
and non-Hermitian parts of the Hamiltonian. We show that, in principle, the symmetry properties of the
Hamiltonian are responsible for the appearance of real eigenvalues in the spectrum of the non-Hermitian
Hamiltonian. In practice, however, one must take into account the “strength” of the non-Hermitian part of the
Hamiltonian. An effective energy-dependent Hermitian Hamiltonian is constructed that has the same real
spectrum as the non-Hermitian Hamiltonian. Several properties, including the self-orthogonality of the states at
branch points of the spectrum, are proven using this effective representation. An interesting possibility of
complex eigenvalues returning to the real axis is exemplified along with several examples of non-Hermitian
Hamiltonians with real eigenvalues.
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I. INTRODUCTION

Non-Hermitian Hamiltonians have been widely used in
many fields in order to describe the dynamics of a reduced
system. These effective Hamiltonians gain from the encap-
sulation of many degrees of freedom into a non-Hermitian
operator, thus making the remaining degrees of freedom trac-
table both computationally and conceptually. The exact
method by which the effective non-Hermitian Hamiltonian is
constructed varies according to the application at hand, but
in general this can be done either rigorously �usually by
some projection into a subspace� or phenomenologically.

Since the introduction of parity and time-reversal sym-
metric Hamiltonians, briefly referred to as PT-symmetric
Hamiltonians, by Bender and Boettcher �1�, a new class of
non-Hermitian Hamiltonians have been drawing a great deal
of attention. For a recent review, see �2� and references
therein. As later classified by Mostafazadeh �3�,
PT-symmetric Hamiltonians are a special case of pseudo-
Hermitian Hamiltonians, which are Hamiltonians that have
an antilinear symmetry �4�. Consider the antilinear operator:
ST, where S is a linear operator and T is the antilinear op-
erator of time reversal, i.e., the complex conjugation operator
in time-independent systems. If the Hamiltonian H com-
mutes with the antilinear operator ST, then

H�ST���� = ST�H���� = E*�ST���� . �1�

Therefore, if ��� is an eigenstate of H with the eigenvalue E,
then ST��� is also an eigenstate with the eigenvalue E*. We
can therefore conclude that the eigenvalues of a Hamiltonian
that has an antilinear symmetry, i.e., is pseudo-Hermitian,
can be either real or come in complex-conjugate pairs. Sev-
eral examples of such Hamiltonians with an antilinear sym-
metry where S is not the parity operator P have been given
in the literature, e.g., �5,6�. Only if an eigenstate of H is also
an eigenstate of ST is the corresponding eigenvalue real. If
all the eigenstates of H are also eigenstates of ST, then all

the eigenvalues are strictly real and the symmetry is said to
be exact. Otherwise, the symmetry is said to be spontane-
ously broken. This is part of the appeal of PT-symmetric
Hamiltonians as they can have, under certain conditions,
completely real spectra and thus can serve, under the appro-
priate inner products, as Hamiltonians for unitary quantum
systems.

As mentioned above, a PT-symmetric Hamiltonian can
possess a completely real spectrum. In most cases, the tran-
sition between exact and broken PT symmetry is governed
by some parameter serving as a measure of the non-
Hermiticity. At the transition point, two �or more� of the real
eigenvalues of the Hamiltonian coalesce �6,7�. However, this
is no ordinary degeneracy as the corresponding eigenfunc-
tions coalesce as well forming a self-orthogonal state �8�.
Such points in the spectrum are often referred to as excep-
tional points �9� and have been studied in connection with
several physical systems �10–14�. Beyond this point, the ei-
genvalues separate into a pair of complex-conjugate solu-
tions and the eigenvalues cease to be simultaneous eigen-
functions of both the Hamiltonian and the PT operator.

In the past several years, there have been many sugges-
tions of pseudo-Hermitian Hamiltonians, specifically
PT-symmetric Hamiltonians; see, for example, �15–21�.
These have exemplified in a multitude of one- and multidi-
mensional Hamiltonians the transition from a strictly real
spectrum to a spectrum comprised of real and complex-
conjugate pairs of eigenvalues. Constructing a one-
dimensional PT-symmetric Hamiltonian is a straightforward
matter of adding an ungerade perturbation of the form
i�W�x�, where W�−x�=−W�x� is a real ungerade potential
and � is a real parameter, to a gerade real Hamiltonian, H0.
The resulting Hamiltonian, H=H0+ i�W, clearly commutes
with the PT operator, i.e., �H ,PT�=0. The real parameter �
then serves as the non-Hermiticity parameter inducing the
transition from exact to broken PT symmetry. In much the
same way, a multidimensional PT-symmetric Hamiltonian
can be constructed in which the parity operator is now the
multidimensional inverse operator.

Although the possibility of finding new fundamental
forces that give rise to non-Hermitian Hamiltonians that have*shachark@tx.technion.ac.il
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real spectra is of great interest, to our knowledge there has
yet to be any progress in that direction. Still, one can con-
struct an effective PT-symmetric Hamiltonian, which can
then be studied. Recently, several such effective �Hamilto-
nians� have been proposed using optical waveguides with
complex refractive indices �22–24�. However, as emphasized
by the quotation marks, these examples have more to do with
PT-symmetric operators in classical optics than with physi-
cal Hamiltonians. Until new forces are found, the best one
can hope for is to find a physical system that under certain
conditions, e.g., a limited energy range, can be described by
an effective ST-symmetric non-Hermitian Hamiltonian.

In this work, we aim to give a simple physically oriented
method of constructing ST-symmetric Hamiltonians using
point-group symmetries. Such considerations can not only
facilitate finding effective Hamiltonians with the appropriate
symmetry, but, as will be shown below, also provide a deep
understanding of the mechanism by which the symmetry is
broken.

II. REAL EIGENVALUES OF NON-HERMITIAN
HAMILTONIANS

Consider the following non-Hermitian Hamiltonian:

H = H0 + i�W , �2�

where H0 is a real Hermitian Hamiltonian composed as usual
of a kinetic and potential energy term, � is a real parameter,
and W is any real local potential. The corresponding
Schrödinger equation reads

H� = E� . �3�

If we limit ourselves to solutions of Eq. �3� that have real
eigenvalues and separate between the real part and the imagi-
nary part of the equation, we can rewrite the Schrödinger
equation in matrix form,

� H0 − �W

�W H0
���

�
� = E��

�
� , �4�

where � and � are real functions corresponding to the real
and imaginary parts of �, respectively, i.e., �=�+ i�. The
above matrix equation has a very special property. Using the
formal solution �=��E−H0�−1W�, we can write an equation
strictly for �,

�H0 − �2W�E − H0�−1W�� = E� . �5�

Pursuing the same course of action for � reveals that both �
and � are solution of the same reduced equation. Thus we
can write

�H0 − �2W�E − H0�−1W�� = E� , �6�

where � is either � or �. As it turns out, the real and imagi-
nary parts of the wave function � are degenerate solutions of
Eq. �6� with the energy E. As we shall show below, this
reduced equation is very helpful in understanding the mecha-
nism leading to symmetry breaking and complex eigenval-
ues.

Equations of the form

�HAA + VAB�E − HBB�−1VBA�� = E� �7�

are very common in physics. They often stem from the use of
a projection into a smaller space of a matrix eigenvalue equa-
tion. In fact, whenever a continuum channel is projected out,
the resulting equation is non-Hermitian. The most important
difference between such equations and Eq. �6� is the minus
sign before the energy-dependent term on the left-hand side.
It is this minus sign that brings forth the special spectral
properties of real eigenvalues of non-Hermitian Hamilto-
nians causing them to coalesce and move into the complex
energy plane.

Recently, the reality of the spectrum of PT-symmetric
Hamiltonians has been proven by showing that all odd-order
corrections of the Rayleigh-Schrödinger perturbation expan-
sion in the parameter i� vanish �26�. This is of course a
sufficient condition, since all even-order terms are real by
definition, so long as the perturbation series converges, i.e.,
the radius of convergence is not zero. We can now, using Eq.
�6�, expand this idea and show that it is also a necessary
condition under the same limitation of a nonzero radius of
convergence. Clearly, the real energy in Eq. �6� is dependent
solely on even powers of �. The even power correction of
the Rayleigh-Schrödinger expansion of Eqs. �6� and �3� can
be shown to be the same �25�, therefore all odd power per-
turbation corrections must vanish.

As pointed out earlier, in order to find real eigenvalues of
the Hamiltonian in Eq. �2�, we need two solutions of Eq. �6�
to be degenerate. The noncrossing rule ensures that this can
only be a direct consequence of symmetry. The role of sym-
metry was further emphasized by the vanishing odd-order
perturbation corrections. As we shall see in the next section,
this enforces strict demands on the potential W.

Before delving into the symmetry consideration, let us
examine more carefully the solutions of Eq. �6�. We can
rewrite Eq. �6� as an eigenvalue equation where the Hamil-
tonian is dependent on the parameter E,

�H0 − �2W�E − H0�−1W��n�E� = zn�E��n�E� , �8�

where zn�E� denotes the nth eigenvalue, which is now depen-
dent on the parameter E. This type of analysis is often used
when dealing with such equations; see, for example, �27�.
The solutions we seek correspond to the points where the
curves y=zn�E� cross the line y=E, i.e., the solution of the
transcendental equation z�E�=E. In fact, we expect two such
curves to cross each other exactly on the line y=E, one be-
longing to the real part of the wave function, �=� while the
other will belong to the imaginary part of the wave function,
�=�. Figure 1 displays an example of the curves zn�E� for
different values of �. Evidently, whenever the equation
z�E�=E is satisfied, two curves cross the line y=E. Another
important feature that is observable in Fig. 1 is the horizontal
and vertical asymptotes of the curves zn�E� at the eigenval-
ues of H0 as clearly seen from Eq. �8�. The importance of
these asymptotes will be made clear below.

Even if the spectrum of the Hamiltonian given in Eq. �2�
has a real eigenvalue for a given �, chances are that if we
increase �, the solution will eventually coalesce with another
real eigenvalue and form a complex-conjugate pair of eigen-
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values. In the reduced equation introduced here, Eq. �7�, we
expect such a phenomenon to appear as the disappearance of
two solutions. As discussed above, the two real solutions
correspond to crossing points between the curve z�E� and the
line y=E. Therefore, at the critical value �c at which the
solutions coalesce, the curve z�E� becomes tangent to the
line y=E �where we have removed the index n from z�E� for
brevity�. One can now show using the derivative of z�E� that
at this critical point the wave function � corresponding to
the real eigenvalue, see Eq. �3�, becomes self-orthogonal.
Concentrating on one of the crossing curves, for example the
one that belongs to a solution for the real part of the wave
function, the derivative of z�E� with respect to the energy is
given by the Hellmann-Feynman theorem,

dz

dE
=

	���2W�E − H0�−2W���
	����

. �9�

From Eq. �4� we have that ���=��E−H0�−1W��� and 	��
= 	���W�E−H0�−1. Therefore,

dz

dE
=

	���W�E − H0�−1��E − H0�−1W���
	����

=
	����
	����

.

�10�

At the critical value of � where the two solutions merge, the
curve y=zn�E� becomes tangent with the line y=E. There-
fore, the following condition is fulfilled:


 dz

dE



�=�c

= 1, �11�

resulting in

	���� = 	���� . �12�

Thus the square of the norms of the real and imaginary part
of the wave function � becomes the same at the critical
point where the two solutions coalesce. The state � can be
normalized by using the bi-orthonormal set of H, which for
our case where H†=H* reads

N = 	�*��� = 	���� − 	���� , �13�

where we have already used the fact that � and � are real
orthogonal solutions of Eq. �6�, i.e., 	� ���=0. Evidently, at
the critical point �c the norm of the state � is zero, making
the state � self-orthogonal.

Note that the preceding analysis is rather general, impos-
ing only the form of Eq. �2� on the Hamiltonian and the
existence of a real eigenvalue. From this alone we have
shown that if this real eigenvalue should disappear as � is
increased, then the corresponding eigenstate � would be-
come self-orthogonal. In order to proceed further, we need to
look at the symmetries that need to be imposed on the po-
tential W in order for a real solution of Eq. �3� to exist.

Before concluding this section, we return to discuss the
differences between the regularly encountered reduced equa-
tion, i.e., of the form given in Eq. �7�, and our reduced equa-
tion, Eq. �6�. As already pointed out, the sign difference be-
fore the energy-dependant term is very important. This
difference in sign causes all the curves zn�E� to increase mo-
notonously between vertical asymptotes, as can be seen from
Eq. �9�. Increasing � changes the slope of these curves and
can eventually cause two solutions, i.e., crossing points with
the line y=E, to coalesce and even disappear. This process is
portrayed in Figs. 1�b� and 1�c�. At the critical value �c, the
two twofold degenerate solutions of Eq. �6� become a single
degenerate pair of eigenvalues. Therefore, given the right

conditions, the operator W̃�Ec�=−�2W�Ec−H0�−1W can make
two former nondegenerate eigenvalues of H0 degenerate at
the energy Ec. We call such a special operator a degenerating
operator. Note that it is hardly a trivial matter to make two
solutions of a Hermitian operator degenerate by adding a
Hermitian perturbation as done in Eq. �6�. The second differ-
ence between Eqs. �6� and �7� is the appearance of a different
Hamiltonian in the energy-dependent term. The eigenvalues
of the Hamiltonian HAA in Eq. �7� will serve as the horizontal
asymptotes, i.e., E→ �	 of the curves zn�E�. In the same
manner, the eigenvalues of HBB determine the vertical as-
ymptotes of the curves zn�E�. If a curve zn�E� has the same
horizontal and vertical asymptotes, then it cannot cross the
line y=E and therefore there will be no solution to Eq. �7�.
Such a situation is portrayed in Fig. 1�d�. At first glance it
seems that Eq. �6� suffers from exactly this problem and
could not support any solutions. However, much is depen-
dent on the choice of W, as will be explained in the following
section.

III. SPACE-TIME SYMMETRY

After analyzing the general properties of real eigenvalues
of non-Hermitian Hamiltonians in the previous section, we
are now prepared to classify these non-Hermitian Hamilto-
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FIG. 1. �Color online� The first two solutions of Eq. �8�, z1�E�
and z2�E�, as a function of E �black� measured in atomic units for
different values of �: �a� �=0.5, �b� �=1.5, �c� �=1.83��c. Also
plotted is the line z=E �dashed-blue�. The points of intersection
between the curves z1�E� and z2�E� and the line z=E are the real
eigenvalues of the non-Hermitian Hamiltonian in Eq. �2�. Here H0

is the Hamiltonian for a particle in an infinite square well, i.e., x
� �−L /2,L /2�, where L=�
 /2. The non-Hermitian potential is
taken as W=��x�−1, where � is the Heaviside function. The plot
�d� displays the resulting curves when the non-Hermitian potential
is taken to be a constant potential, i.e., W=1, and �=0.5. Note that
for such a choice of W there are no intersection points.
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nians using the symmetry properties of H0 and W. Let H0
belong to the Nth-order Abelian point group G, which con-
tains N spatial symmetry operators Si�i=1

N �including the
identity operator S1=E� and N irreducible representations
�irreps� �i�i=1

N . We denote the totally symmetric irrep as �1
and assume the spectrum of H0 has no accidental degenera-
cies.

Once the symmetry of H0 is determined, we need to con-
sider the symmetry of W. As shown in the previous section,
a real eigenvalue of the Hamiltonian, H=H0+ i�W, corre-
sponds to a degenerate solution of the Hermitian energy de-
pendent “Hamiltonian,”

H̃�E�� = �H0 − �2W�E − H0�−1W�� = E� . �14�

Such degeneracy must be the result of a symmetry in the

energy-dependent term W̃�E�=−�2W�E−H0�−1W. We choose
the eigenstates of H0 as a basis for the representation of

H̃�E�, where we order the states according to the irreps to
which they belong. In such a representation, in order for the

spectrum of H̃�E� to be degenerate W̃�E� has to be of block-
diagonal form. Clearly, if W transforms as one of the irreps

of the group G, then the symmetry of H̃�E� is the same as
that of H0 since WW��1. However, this is insufficient to
ensure the existence of degenerate solutions to Eq. �14�. Sup-
pose W transforms as the irrep �p, where p� �1,2 , . . . ,N�.
�p determines which of the eigenstates of H0 are coupled

through W̃�E�. Consequentially, this determines the relations
between the horizontal and vertical asymptotes of the curves
zn�E� introduced in the previous section. As noted there, we
must abstain from making the curves zn�E� have the same
horizontal and vertical asymptotes. This can be achieved by
preventing the coupling of eigenstates of H0 to themselves

via W̃�E�. It is, therefore, not sufficient that W transforms as
one of the irreps of G and we must add the condition that W
does not transform as the totally symmetric irrep, i.e.,
W��1. This shows that one way in which real eigenvalues
can appear in the spectrum of H is to choose W such that it
transforms as one of the irreps of the point group G exclud-
ing the totally symmetric one. Such a choice of W ensures
the existence of one or more antiunitary space-time symme-
tries of the form SiT of the Hamiltonian H. This will be
exemplified in detail in the following section. Of course the
appearance of real eigenvalues of H is still likely to be con-
strained by a critical value of �. If we choose W such that it
does not transform as one of the irreps of G, one needs to
search for a subgroup of G under which W will transform as
one of the subgroup’s irreps. If such a subgroup can be
found, then the preceding analysis can be done in the same
manner considering the subgroup rather than the point group
G.

The above analysis shows that in principle one can get an
entirely real spectrum for a non-Hermitian Hamiltonian H if
W is chosen such that it transforms as an irrep of the point
group �or subgroup� of H0. We assumed all along that the
spectrum of H0 is nondegenerate, thus restricting ourselves
to Abelian groups with real character tables. This restriction
is crucial if W is to transform as one of the irreps of the point

group of H0 since degenerate states belonging to higher-
dimensional irreps tend to couple to themselves no matter
what irrep we choose for W. If the non-Abelian point group
of H0 �in the case of a degenerate spectrum� has an Abelian
subgroup of order larger than 1, we can still choose W such
that it transform under the irreps of the Abelian subgroup and
H can still, in principle, have a completely real spectrum.
Note, however, that if one wishes to keep only part of the
spectrum of H on the real axis, many more options become
available.

IV. EXAMPLES

A. PT-symmetric Hamiltonians

The majority of research on the real spectrum of non-
Hermitian Hamiltonians has been directed to Hamiltonians
exhibiting parity-time symmetry. We shall, therefore, start
this section by implementing the above analysis on a
PT-symmetric Hamiltonian. The parity operator P stands for
the inversion operator, i.e., Pr�P−1=−r�.

The time-reversal operator T is simply the complex con-
jugation operator in the case of a time-independent Hamil-
tonian, i.e., TiT−1=−i. Clearly, if we wish a Hamiltonian of
the form H=H0+ i�W to be PT-symmetric, where H0 and W
have been previously defined, we must demand that
PH0P−1=H0 and PWP−1=−W. In one dimension, these con-
ditions imply that H0 belongs to the point group Ci whose
character table is given in Table I. The condition on W means
that it transforms as the irrep Au. For this point group this is
the only possible choice for W that will allow the non-
Hermitian Hamiltonian H to have real eigenvalues. If we use
the eigenstates of H0 to represent Eq. �14� and order the
eigenstates such that we first take all states belonging to Ag,
i.e., the even states, and then all the states belonging to Au,
i.e., the odd states, the reduced equation will read

��EAg

0 0

0 EAu

0 � − �2� 0 W

W 0
���EI − EAg

0 �−1 0

0 �EI − EAu

0 �−1�
� 0 W

W 0
���C� Ag

C� Au

� = E�C� Ag

C� Au

� , �15�

where EAg�u�

0 is a diagonal matrix comprised of the eigenval-
ues of H0 corresponding to the even �odd� eigenstates of H0,
0 is a matrix of zeros, I is the identity matrix, W is the

potential coupling between the different states, and C� Ag�u�
is a

vector of expansion coefficients belonging to the even �odd�
basis functions, respectively. Expanding the left-hand side,
Eq. �15� decouples into two equations,

TABLE I. Character table for the point group Ci.

Ci E P

Ag 1 1

Au 1 −1
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�EAg

0 − �2W�EI − EAu

0 �−1W�C� Ag
= EC� Ag

, �16�

�EAu

0 − �2W�EI − EAg

0 �−1W�C� Au
= EC� Au

. �17�

As described earlier, the systematic degeneracy required
from the solutions of Eq. �15� in order to obtain real eigen-
values depends on the decoupling of the matrix equation. In
the case of one-dimensional PT-symmetric Hamiltonians,
this is clearly achieved. Note that although originally the odd
states were coupled to the even states by the potential W,
after the decoupling each symmetry is coupled only within
itself. Because there are only two irreps under which we can
classify the eigenstates, Eq. �15� is the only way in which
Eq. �6� can decouple. Still the knowledge of the original
coupling also reveals which of the real eigenvalues of the
non-Hermitian Hamiltonian H can eventually coalesce be-
fore turning into a complex-conjugate pair. Note that when �
is nonzero it is the real and imaginary parts of the eigenstates
���� of H that have the symmetry Ag and Au, respectively, or
vice versa. The eigenstates ���� of the non-Hermitian
Hamiltonian H do not retain the symmetry of Ag or Au them-
selves. Still the knowledge of the symmetry of the corre-
sponding eigenstate of H0, i.e., the symmetry of ���→0�, is
sufficient to determine which of the states may eventually
merge. Here, the gerade eigenstates of H0 are coupled to the
ungerade eigenstates of H0 through the ungerade potential
W, therefore originally gerade solutions of H0 can only coa-
lesce with solutions that were originally ungerade solutions
of H0 as � is increased. Even though in the case of the point
group Ci there is only one possible answer, for point groups
with more than two irreps one can control which of the states
eventually coalesce.

In more than one dimension it is rather difficult to con-
struct a Hamiltonian, H0, belonging to the point group Ci.
Still several examples have been given of multidimensional
PT-symmetric Hamiltonians. These have been achieved by
taking Hamiltonians that possess the point group Ci as a
subgroup and taking W to transform as the irrep Au of the
subgroup. One such example was given by Bender et al. �6�,
where H0=−�x

2−�y
2+x2+y2 and W=x. In this case, H0 be-

longs to the point group C	v and possesses the dynamical
symmetry of SU�2�. The non-Hermitian perturbation, how-
ever, transforms as the irrep Au of the subgroup Ci contained
in C	v �in the two-dimensional case�. Therefore, the entire
analysis shown above can be repeated by considering the
subgroup Ci and labeling the eigenstates of H0 only by the
irreps Ag and Au.

B. Multiple space-time symmetries

We move now to consider the two-dimensional Hamil-
tonian

H0 = −
1

2
��x

2 + �y
2� + �xx

4 + �yy
4. �18�

Figure 2 displays the potential term of H0.
This Hamiltonian belongs to the two-dimensional ana-

logue of the point group D2h, which is isomorphic to C2v. We

will denote this point group by D2h
2D. The character table for

this point group is given in Table II.
The separability of H0 allows one to write the eigenstates

of H0 as

�nx,ny� = �nx� � �ny� , �19�

where �n� stands for the nth eigenstate of the one-
dimensional quartic oscillator and nx�y�=0,1 , . . .. The eigen-
states can be classified into four groups according to the
different irreps of the point group. If both quantum numbers
nx and ny are even �odd�, then the eigenstate �nx ,ny� will
transform as Ag �Bg�. If, however, nx is even �odd� and ny is
odd �even�, then the eigenstate �nx ,ny� will transform as Au
�Bu�. By appropriately choosing W, one can decide which of
the eigenstates will couple to each other.

Suppose one chooses W to transform as the irrep Bg. As
an example we choose W=xy. The Hamiltonian H=H0
+ i�W is not PT-symmetric but rather PxT- and
PyT-symmetric. Thus unlike the PT-symmetric examples,
the Hamiltonian possesses more than one antiunitary space-
time symmetry. The first seven eigenvalues are depicted in
Fig. 3 as a function of � �see the figure caption for the pa-
rameters chosen�.

In order to understand which of the eigenstates of H0
couple to each other via the perturbing potential W, we con-
struct the triple product table with respect to the irrep under
which W transforms. Table III contains such a multiplication

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

5

V
(x

,y
)

x
y

FIG. 2. �Color online� The potential energy function in Eq. �18�:
V�x�=�xx

4+�yy
4, where �x=1 and �y =�2. Note that the potential

belongs to the two-dimensional analogue of the point group D2h;
see Table II. All variables depicted are measured in atomic units.

TABLE II. Character table for the two-dimensional analog of
the point group D2h. As usual, E denotes the identity operator, P is
the two-dimensional inversion operator, Px reflects with respect to
the y axis, and Py reflects with respect to the x axis.

D2h
2D E P Px Py

Ag 1 1 1 1

Bg 1 1 −1 −1

Au 1 −1 1 −1

Bu 1 −1 −1 1
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table for the case in which W transforms as Bg. Only when
the multiplication of the irreps includes the totally symmetric
irrep, i.e., Ag, are the eigenstates coupled. All other couplings
vanish due to symmetry. Therefore, for the W chosen above,
eigenstates that transform as Ag �Au� couple to eigenstates
that transform as Bg �Bu�. This is clearly portrayed in Fig. 3.

Although Fig. 3 displays only seven of the eigenvalues,
our numerical solution of the non-Hermitian Hamiltonian H
showed that it is possible to find a range of values of � for
which all the eigenvalues calculated were real.

The fact that H0 belongs to a point group that has more
than two irreps allows one to design which of the eigenval-
ues of H will eventually coalesce and become complex. The
choice made above and depicted in Fig. 3 is but one of sev-
eral choices allowed for the point group D2h

2D. Suppose we
choose now W such that it transforms as the irrep Au, e.g.,
W=x2y. The corresponding triple product table, see Table IV,
now shows that the eigenstates that transform as Ag �Bg�
couple to those that transform as Au �Bu�.

The first six eigenvalues of H as a function of � for this
choice of W are displayed in Fig. 4. This second example
shows that one can control which of the eigenstates will
eventually coalesce by appropriately selecting the potential
W. Note that the Hamiltonian H now possesses two different
space-time symmetries, i.e., �H ,PT�=0 and �H ,PyT�=0.

So far we have explored two possible ways of choosing W
that resulted in different couplings schemes between the
eigenstates of H0 and different space-time symmetries. If we
continue to limit ourselves and only choose W such that it

transforms as one of the irreps of the point group of H0, we
are left with only one unexplored choice for which W trans-
forms as Bu, e.g., W=xy2. For such a choice, the Hamiltonian
H will now be PT- and PxT-symmetric.

The point group D2h
2D has three isomorphic subgroups: Ci,

CPx
, and CPy

. Each of these subgroups contains two symme-
try operators: the identity and either P, Px, or Py, respec-
tively. The character tables are equivalent to that given in
Table I with the respective interchange of the second sym-
metry operator for the groups CPx

and CPy
, and where the

subscript u �g� given to the irreps corresponds to symmetric
�antisymmetric� with respect to the appropriate axis reflec-
tion. If the potential W does not transform as one of the
irreps of D2h

2D but transforms as the nontotally symmetric
irrep of one of the subgroups of D2h

2D, the non-Hermitian
Hamiltonian H might still have real eigenvalues. Note that in
such a case one analyzes the coupling between the eigen-
states of H0 by using the irreps of the subgroup rather than
those of D2h

2D. Unlike with the irreps of D2h
2D, the subgroups

can support only one space-time symmetry. Therefore, one
can construct W by combining potentials that transform as
different irreps of D2h

2D. For example, consider the potential
W=WBg

+WAu
=xy+x2y. This potential does not transform as

one of the irreps of D2h
2D but rather as the irrep Au of the

subgroup CPy
. Note that the Hamiltonian H with each of the

potentials WBg
�WAu

� possessed two space-time symmetries,
i.e., H was PxT and PyT �PT and PyT� -symmetric. With the
combined potential, however, the Hamiltonian possesses
only one space-time symmetry, i.e., PyT. The coupling be-

TABLE IV. Triple product table for the group D2h
2D with respect

to the irrep Au.

Au Ag Bg Au Bu

Ag Au Bu Ag Bg

Bg Bu Au Bg Ag

Au Ag Bg Au Bu

Bu Bg Ag Bu Au

Non-Hermiticity Parameter ( )λ Non-Hermiticity Parameter ( )λ

FIG. 4. �Color online� The first six eigenvalues of the Hamil-
tonian H=H0+ i�W, where H0 is given in Eq. �18� ��x=1, �y =�2�
and W=x2y. The eigenvalues and � are given in atomic units.

Non-Hermiticity Parameter ( )λ Non-Hermiticity Parameter ( )λ

FIG. 3. �Color online� The first seven eigenvalues of the Hamil-
tonian H=H0+ i�W, where H0 is given in Eq. �18� ��x=1, �y =�2�
and W=xy. The eigenvalues and � are given in atomic units.

TABLE III. Triple product table for the group D2h
2D with respect

to the irrep Bg.

Bg Ag Bg Au Bu

Ag Bg Ag Bu Au

Bg Ag Bg Au Bu

Au Bu Au Bg Ag

Bu Au Bu Ag Bg
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tween the eigenstates can be identified by noticing that under
the subgroup the irreps Ag �Au� and Bu �Bg� of D2h

2D become
the irrep Ag �Au� of CPy

. Therefore, eigenstates of H0 for
which the quantum number ny is even will couple to those
for which the quantum number ny is odd.

In the above examples, we have stuck to two-dimensional
examples for simplicity and brevity, but the analysis is easily
extended to three-dimensional potentials where more inter-
esting space symmetries are available. The important thing to
note is that by classifying the point group of H0 and the irrep
under which W transforms, one can know whether real ei-
genvalues are possible at all, what are the space-time sym-
metries of the Hamiltonian H, and which of the eigenstates
can eventually coalesce. One could also find many other po-
tentials, W, for which the Hamiltonian H will have real ei-
genvalues by using the irreps of the point group of H0 and
thus control which of the eigenstates coalesce.

V. BACK TO REALITY

In the previous sections we have seen that non-Hermitian
Hamiltonians of the form H=H0+ i�W with a correct choice
of W can have real eigenvalues for some range of �. At
certain critical points, the real eigenvalues tend to coalesce
and form complex-conjugate pairs. It appears as if every pair
of real eigenvalues can only remain on the real energy axis
up to a certain non-Hermiticity of the Hamiltonian, which is
measured by �. Occasionally, however, one can find real ei-
genvalues for any value of �; see, for example, �6�.

Suppose that at a certain value of �=�c, two real eigen-
values of the Hamiltonian H coalesced. If we increase �
further, then these previously real solutions form a pair of
complex-conjugate eigenvalues that move away from the
real axis as � is increased. Clearly, if we reduce �, the ei-
genvalues will return to the real axis but one might still
wonder whether the eigenvalues can return to the real axis by
further increasing �, i.e., the non-Hermiticity. To the best of
our knowledge, we are unaware of any such examples in the
literature. In the following, we shall show that the above
scenario is not only possible but actually turns out to be very
common.

Consider the Hamiltonian H0 presented in the previous
section, see Eq. �18�, along with the potential W=x2y+y2x.
With this choice of W, the Hamiltonian is PT-symmetric and
the relevant subgroup is Ci. The potential W transforms as
the irrep Au of this subgroup. Figure 5 shows the first eight
eigenvalues of the Hamiltonian H=H0+ i�W as a function of
�.

We first analyze the behavior of the third and fourth ei-
genvalues. These two states belong to different irreps and are
thus coupled by W. At first they approach each other as usual
and coalesce at the critical value of �b�3.13. After a short
excursion into the complex plane, see the right-hand side
frame in Fig. 5, they return to the real axis and coalesce once
again at the point �c�3.47. The self-orthogonal state at �c
now separates into two real eigenvalues as � is increased and
the two eigenvalues start moving on the real axis in different
directions. A further increase in the non-Hermiticity causes
these two real solutions to move toward each other yet again

and re-coalesce at the point � f �5.6. Note that for the range
of � portrayed in Fig. 5, the third and fourth eigenvalues pass
through three exceptional points where the eigenstates coa-
lesce into a self-orthogonal state. Even more interesting is
the behavior of the six, seventh, and eighth eigenvalues. The
seventh and eighth eigenvalues are coupled via W and in-
creasing � moves them toward one another until � reaches
�a�1.33, where the two eigenvalues coalesce. Increasing �
further causes the two eigenvalues to separate into a pair of
complex-conjugate solutions and moves them away from the
real axis. At some value of � the two complex solutions start
moving back toward the real axis, and when �=�d�4.93
they coalesce once again on the real axis. The two real solu-
tions that now form once � is further increased move to
opposite directions on the real axis. One of them now moves
toward the sixth eigenvalue and will coalesce with it at the
point �e�5.3.

The above example shows that even after the real eigen-
values of the Hamiltonian H became complex-conjugate
pairs, they might still return to the real axis for some other
value of �. This could be a mechanism by which a sponta-
neously broken symmetry returns to an exact symmetry. We
have yet to find an example for which this occurs for the
entire spectrum. That is an example where a pair of real
eigenvalues became complex and returned to the real axis so
that the entire spectrum was real once again. For a part of the
spectrum, however, this is easily accomplished. For example,
the eigenvalues of H portrayed in Fig. 5 are all real while
��1.33 and are once again all real when 4.93���5.3.

VI. CONCLUSIONS

The energy spectra of non-Hermitian Hamiltonians
present a very rich foundation where new spectral properties
can be observed. At first, the study of non-Hermitian Hamil-
tonians may seem rather academic or a purely mathematical
study, but first impressions can be deceiving. Whenever there
is more than one degree of freedom, a non-Hermitian repre-
sentation of the Hamiltonian is but a projection away. There-

Ag

Ag

Ag

Ag

Au

Au

Au

Au

a

b

c
f

e

d

a b c

d
e

f

Non-Hermiticity Parameter ( )λ Non-Hermiticity Parameter ( )λ

FIG. 5. �Color online� The first eight eigenvalues of the Hamil-
tonian H=H0+ i�W, where H0 is given in Eq. �18� ��x=1, �y =�2�,
and W=x2y+y2x. The eigenvalues and � are given in atomic units.
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fore, understanding the spectral properties of non-Hermitian
Hamiltonians can facilitate the analysis of a quantum system
and lead to new understandings and predictions of observed
quantities. Such insight into the quantum system is rarely
possible when all degrees of freedom are taken into account,
i.e., directly from the original Hamiltonian.

Here we have presented a method of characterizing a non-
Hermitian Hamiltonian using the point-group symmetries of
the Hermitian and non-Hermitian parts of the Hamiltonian.
This characterization provides a method of analyzing the
spectrum of the non-Hermitian Hamiltonian, thus predicting
the possible appearance of real eigenvalues. If the non-
Hermitian Hamiltonian indeed originated from a Hermitian
counterpart, through a projection, a real eigenvalue indicates
the existence of a bound state in the continuum. An example
of such a situation was observed in �28�, where bound states
in the continuum were found in a system composed of two
coupled electronic surfaces.

The applicability of the symmetry analysis presented here
can be applied to many fields. In the study of complex po-
tential energy surfaces �CPES�, for example, one can study
the point-group symmetry of the real and imaginary parts of
the CPES and determine whether the molecule ionizes. Such
a study, however, is beyond the scope of this paper. Another

field in which understanding the properties of non-Hermitian
Hamiltonians will be invaluable is waveguide optics. In op-
tics, complex potentials are frequent and all the properties
presented above can be easily demonstrated by constructing
the appropriate waveguide structures �26�.

Finally, we emphasize that the several examples of non-
Hermitian Hamiltonians presented here are but a few of the
myriad possible non-Hermitian Hamiltonians one can con-
struct by first choosing the point-group symmetry of H0 and
then choosing W such that it transforms as one of the nonto-
tally symmetric irreps. Many more possibilities become
available if one further chooses W such that it contains more
than a single non-Hermiticity parameter. For example, one
could modify the potential studied in Sec. V so that it reads
W=�1x2y+�2y2x. One can now study the spectrum as a
function of two non-Hermiticity parameters: �1 and �2.
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