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The relation between level crossings, entanglement, and Berry phases is investigated for the Breit-Rabi
Hamiltonian of hydrogen and sodium atoms, describing a hyperfine interaction of electron and nuclear spins in
a magnetic field. It is shown that the entanglement between nuclear and electron spins is maximum at avoided
crossings. An entangled state encircling avoided crossings acquires a marginal Berry phase of a subsystem like
an instantaneous eigenstate moving around real crossings accumulates a Berry phase. Especially, the nodal
points of a marginal Berry phase correspond to the avoided crossing points.
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I. INTRODUCTION

Energy levels, eigenvalues of a Hamiltonian, play the
most primary role in determining the properties of a quantum
system. When energy levels cross or almost cross as param-
eters of a Hamiltonian vary, various interesting phenomena
happen. For example, if two instantaneous energy levels of a
time-dependent Hamiltonian undergo an avoided crossing,
nonadiabatic tunneling, called Landau-Zener tunneling, be-
tween them takes place �1�. Closely related to this, the run
time of adiabatic quantum computation is inversely propor-
tional to the square of the energy gap between the ground
and first excited levels �2�. An eigenstate encircling adiabati-
cally degeneracy points accumulates a Berry phase in addi-
tion to a dynamical phase �3,4�. In quantum chemistry, a
conical intersection of electronic energy surfaces of mol-
ecules plays a key role in understanding ultrafast radiation-
less reactions �5,6�. A quantum phase transition, a dramatic
change in a ground state as parameters of a system vary, is
related to crossings or avoided crossings of two lowest-
energy levels �7�. Kais and co-workers have shown that the
finite-size scaling method can be used for studying the criti-
cal behavior—i.e., the level degeneracy or absorption—of a
few-body quantum Hamiltonian H��1 , . . . ,�k� as a function
of a set of parameters ��i� �8,9�. These parameters could be
the external fields, interatomic distances, nuclear charges for
stability of negative ions, cluster size, and optical lattice pa-
rameters such as the potential depth �10�. Thus, it is impor-
tant to develop a way of finding level crossings and to un-
derstand how eigenstates or relevant physical quantities
change at crossing or avoided crossings.

Recently Bhattacharya and Raman presented a powerful
algebraic method for finding level crossings without solving
an eigenvalue problem directly �11�. Along with this math-
ematical way, it is necessary to understand what physical
quantities can be used to detect or characterize crossings or
avoided crossings. First of all, the measurement of a Berry
phase could be a good way to detect level crossings because
it is due to level crossings. It is well known that avoided

crossings or glancing intersections are not the source of
Berry phases �5�. Is there any way that Berry phases can
detect avoided level crossings? Here we show that the mar-
ginal Berry phase of an entangled state could be an indicator
of avoided level crossings.

The entropy is an another indicator of level crossings.
Since level crossings or avoided crossings are accompanied
by a drastic change in eigenstates, any contents of informa-
tion on relevant eigenstates may also vary. The Shannon en-
tropy of the electron density measures the delocalization or
the lack of structure in the respective distribution. Thus the
Shannon entropy is maximal for a uniform distribution—that
is, for an unbound system—and is minimal when the uncer-
tainty about the structure of the distribution is minimal �12�.
González-Férez and Dehesa showed that the Shannon en-
tropy could be used as an indicator of avoided crossings �13�.
The level crossings or avoided crossings of a single particle
are well known. Here we focus on the level crossing of a
system with two or more particles and its relation to en-
tanglement. The von Neumann entropy, the quantum version
of the Shannon entropy, is a good entanglement measure for
a bipartite pure state. In quantum information, much atten-
tion has been paid to the relation between entanglement and
quantum phase transitions �14,15�. Recently one of the au-
thors investigated the relation between entanglement, Berry
phases, and level crossings for two qubits with an XY-type
interaction and found that the level crossing is not always
accompanied by an abrupt change in entanglement �16�.

In this paper, in order to study how entanglement and
Berry phases vary at level crossings, we consider the Breit-
Rabi Hamiltonian describing a hyperfine interaction of elec-
tron and nuclear spins in a uniform magnetic field �17�. It is
shown that the von Neumann entropy of the electron �or
nuclear� spin is maximum at avoided crossings. It is demon-
strated that the significant changes in Berry phases and en-
tanglement are closely related to level crossings. We show
that the marginal Berry phase of the electron �or nuclear�
spin could be a good indicator of avoided level crossings.
The marginal Berry phase has nodal points at the avoided
crossing points.

The paper is organized as follows. In Sec. II, the Breit-
Rabi Hamiltonian is introduced. In Sec. III, as a specific
application of the Breit-Rabi Hamiltonian, we consider a hy-
perfine interaction between a nuclear spin 1 /2 and an elec-
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tron spin 1 /2 of a hydrogen atom in a magnetic field. We
analyze the close relation between entanglement, Berry
phases, and level crossings. In Sec. IV, we make an similar
analysis for a sodium atom with a nuclear spin 3 /2 and an
electron spin 1 /2. In Sec. V, we summarize the main results.

II. BREIT-RABI HAMILTONIAN

Let us consider an atom with a single valence electron in
the ground state with orbital angular momentum L=0. In the
presence of a uniform magnetic field B in the z direction, its
atomic spectrum is described by the Breit-Rabi Hamiltonian
�17�, which is given by the sum of the hyperfine interaction
between a nuclear spin I and an electron spin S and their
Zeeman couplings to the magnetic field

H = AI · S + �aSz + bIz�B , �1�

where A is the hyperfine coupling constant, a=�e�, and b
=�n�. Here �e and �n are the electron and nuclear gyromag-
netic ratios, respectively. The electron spin operator S and
the nuclear spin operator I are measured in the unit of �.

The Breit-Rabi Hamiltonian �1� is well studied to describe
double resonance in nuclear magnetic resonance �18� and
muon spin rotation in semiconductors �19�. Although simple
and well understood, it still continues to provide new in-
sights. Recently Bhattacharya and Raman found a new class
of invariants of the Breit-Rabi Hamiltonian �11�. As will be
shown here, it is a prime example for showing the close
relation between level crossings, entanglement, and geomet-
ric phases. Also it is related to a Hamiltonian of electron spin
qubits in quantum dots �20� where the Heisenberg interaction
between two electron spins can be turned on and off to
implement the controlled-NOT gate.

Before applying the Hamiltonian �1� to specific systems,
let us look at its general properties. If B=0, then H com-
mutes with both the square of the total spin operator, J2, and
Jz, where the total spin operator is defined by J�I+S. How-
ever, for B�0, due to the fact that a�b, the Hamiltonian �1�
no longer commutes with J2, but still commutes with Jz. So
the eigenvalue m of Jz is a good quantum number for the

Breit-Rabi Hamiltonian. With ladder operators S�=Sx� iSy
and I�= Ix� iIy, the Hamiltonian �1� can be rewritten as

H = AIzSz +
A

2
�S+I− + S−I+� + B�aSz + bIz� . �2�

Let us use a simple notation �mS ,mI	 to represent the product
state �S ,mS	 � �I ,mI	, where �S ,mS	 is an eigenstate of S2 and
Sz, and �I ,mI	 is an eigenstate of I2 and Iz. The first and third
terms in Eq. �2� give the diagonal matrix elements


mSmI�H�mSmI	 = f�mS,mI� = AmSmI + mSaB + mIbB .

�3a�

The second term in Eq. �2� corresponds to the off-diagonal
matrix elements


mS�mI��S+I−�mSmI	 = ��S − mS��S + ms + 1�

���I + mI��I − mI + 1��mS�,mS+1�mI�,mI−1.

�3b�

Since mS�−mS=1 and mI�−mI=−1 �or vice versa�, one has the
selection rule �m= �mS�+mI��− �mS+mI�=0; that is, the mag-
netic quantum number m=mS+mI is conserved. This implies
that the Hamiltonian �1� is block diagonal in the basis set
��mS ,mI	� ordered by m.

III. HYDROGEN ATOM IN A UNIFORM MAGNETIC
FIELD

A. Eigenvalues and eigenstates

As a simple but real system described by the Hamiltonian
�1�, let us consider the interaction between the nuclear spin
I=1 /2 and the electron spin S=1 /2 of a hydrogen atom in a
uniform magnetic field. Since H commutes with the z com-
ponent of the total spin operator, Jz=Sz+ Iz, it is convenient
to arrange the product basis ��mS ,mI	� in decreasing order of
the magnetic quantum number m of Jz as �� 1

2 , 1
2 	 , � 1

2 ,− 1
2 	 , �

− 1
2 , 1

2 	 , �− 1
2 ,− 1

2 	�. By means of Eqs. �3a� and �3b�, the Breit-
Rabi Hamiltonian for a hydrogen atom can be written in the
ordered basis

H =
1

4�
A + 2�a + b�B 0 0 0

0 − A + 2�a − b�B 2A 0

0 2A − A − 2�a − b�B 0

0 0 0 A − 2�a + b�B

 . �4�

The Hamiltonian �4� is block diagonal, so it is straightfor-
ward to obtain its eigenvalues and eigenvectors. The sub-
space of m= �1 is spanned by �� 1

2 , 1
2 	 , �− 1

2 ,− 1
2 	�. The block

Hamiltonian on this subspace is already diagonal and has its
eigenvalues and eigenvectors

E�1 =
A

4
�

1

2
�a + b�B , �5a�

�E�1	 = � �
1

2
, �

1

2
� , �5b�

where the subscripts �1 in E�1 denote the magnetic quan-
tum number m= �1. The block Hamiltonian with m=0 is
defined on the subspace of �� 1

2 ,− 1
2 	 , � 1

2 ,− 1
2 	� and is written as
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Hm=0 =
1

4
�− A + 2�a − b�B 2A

2A − A − 2�a − b�B
� . �6�

One can interpret the Hamiltonian Hm=0 as that of a spin in
an effective magnetic field in the x-z plane, Beff
��A /2,0 , �a−b�B /2�. The eigenvalues and eigenvectors of
Hm=0 can be written easily as

E0
� = −

A

4
�

1

2
��a − b�2B2 + A2, �7a�

�E0
+	 = cos

	

2
�1

2
,−

1

2
� + sin

	

2
�−

1

2
,
1

2
� , �7b�

�E0
−	 = − sin

	

2
�1

2
,−

1

2
� + cos

	

2
�−

1

2
,
1

2
� , �7c�

where tan 	� A
�a−b�B . In a weak-magnetic-field limit �so

called the Zeeman region�, the Zeeman energy is smaller
than the hyperfine coupling. At B=0—i.e., 	=
 /2—the
ground eigenstate �E0

−	 becomes the singlet state, �E0
−	

= 1
�2

��− 1
2 , 1

2 	− � 1
2 ,− 1

2 	�. In a strong magnetic field called the
Paschen-Back region, the Zeeman couplings are dominant.
That is, in the limit of B→�, one has 	→0 and �E0

−	
→ �− 1

2 , 1
2 	.

The eigenvalues and eigenstates of the Breit-Rabi Hamil-
tonian for a hydrogen atom, Eqs. �5� and �7�, depend on two
parameters: the hyperfine constant A and the magnetic field
B. The hyperfine constant A of the hydrogen atom in vacuum
is positive. However, if a hydrogen atom is in an inert gas,
the hyperfine constant A could be negative �21�, resembling
the spin-spin coupling constant in a Heisenberg model. We
assume that A as well as B varies and can be negative. To
this end, A in Eqs. �5� and �7� is replaced by f A with −1
� f �1, so A is still kept as a positive constant in vacuum. If
f is negative, so is the hyperfine constant.

Depending on f and B, the ground state of the Hamil-
tonian �4� is given either by �E�1	 or by �E0

−	. It is convenient
to plot the energy levels normalized by A. Then, Eqs.
�5� and �7� become E�1 /A= f

4 �
1
2 �a�+b��B and E0

� /A
=− f

4 �
1
2
��a�−b��2B2+ f2, where a��a /A�19.767 T−1 and

b��b /A�−0.03 T−1 are taken from Ref. �22�, and B is mea-
sured in units of tesla. The energy levels Em /A are plotted as
functions of B for f =1 in Fig. 1�a� and for f =−0.5 in Fig.
1�b�. For f 
0, the ground level is E0

−. For f �0, two levels
E0

� and E�1 with different magnetic quantum numbers cross
at f = 2a�b�

a�−b�
�B�. Figure 2�a� shows the energy gap � /A between

the ground and first excited states as a function of f and B,
where we take a�=0.1 T−1 and b�=−0.01 T−1 to see clearly
the phase diagram of the ground state of the Hamiltonian �4�
determined by the magnetic quantum number m. As shown
in Fig. 2�a�, the energy gap � /A vanishes along the lines
defined by f = 2a�b�

a�−b�
�B� and the negative f axis. In the region

of f �
2a�b�
a�−b�

�B�, the ground state becomes either �E+1	 or �E−1	
with magnetic quantum number m=1 or m=−1, respectively.
On the other hand, the ground state in the region defined by
f �

2a�b�
a�−b�

�B� is given by �E0
−	 with magnetic quantum number

m=0. One can see that the magnetic quantum number m of

the ground state changes abruptly at the level crossing
points.

B. Entanglement

Let us discuss the relation between level crossings and
entanglement. Entanglement refers to the quantum correla-
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FIG. 1. �Color online� Energy levels Em /A of the Breit-Rabi
Hamiltonian for a hydrogen atom as functions of the magnetic field
B with �a� f =1 and �b� f =−0.5. �c� The von Neumann entropy S of
the electron �or nuclear� spin for each eigenstate. Here a�
=19.767 T−1 and b�=−0.03 T−1 are taken from Ref. �22�.
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FIG. 2. �Color online� �a� Energy gap � /A between the ground
and first excited states, �b� the von Neumann entropy S of the elec-
tron �or nuclear� spin, and �c� the Berry phase � /� of the ground
state for a hydrogen atom as a function of f and B. Here a�
=0.01 T−1 and b�=−0.1 T−1 are taken to see the jumps clearly at
the level crossings.
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tion between subsystems and has no classical analog �23,24�.
When level crossing happens as the parameter of the Hamil-
tonian varies, the ground state changes drastically. Entangle-
ment as a physical quantity may also undergo a significant
change. However, entanglement is not always a good indica-
tor of level crossing as shown in Ref. �16�.

First, let us examine the relation between entanglement
and level crossings for each eigenstate. The von Neumann
entropy S of a subsystem is a good entanglement measure for
a pure bipartite system. If ��AB	 is a quantum state of a sys-
tem composed of two subsystems A and B, the entanglement
between A and B is measured by the von Neumann
entropy of the subsystem, S��A�=−tr��A log �A�=S��B�
=−tr��B log2 �B�, where the reduced density matrix �A of the
subsystem A is obtained by tracing out the degrees of free-
dom of B as �A=trB���AB	
�AB��. If the ground state is given
by �E�1	—i.e., a product state—then the von Neumann en-
tropy S of the electron �or nuclear� spin is zero. On the other
hand, for the quantum state �E0

�	 of the electron and nuclear
spins, the von Neumann entropy of the electron �or nuclear�
spin can be written as

S��A� = −
1 + cos 	

2
log2

1 + cos 	

2

−
1 − cos 	

2
log2

1 − cos 	

2
. �8�

Figure 1�c� shows the von Neumann entropy of the electron
�or nuclear� spin for each eigenstate as a function of B. For
the eigenstates �E0

�	, it is maximum at B=0—i.e., at the
avoided crossing point. This is analogous to the sharp change
in Shannon entropy at the avoided crossing in Ref. �13�.

Now, let us look at how entanglement changes at level
crossings as the parameters of the Hamiltonian vary. Figure
2�b� plots the von Neumann entropy S of the electron �or
nuclear� spin for the ground state as a function of f and B.
Across the level crossing line f = 2a�b�

a�−b�
�B�, the von Neumann

entropy changes abruptly. For f �0, S becomes 1 as B goes
to 0. Along the line of f =0, the von Neumann entropy S
vanishes even though there is no level crossing. It will be
interesting to investigate the more general case that entangle-
ment does not work as an indicator to level crossings.

C. Berry phase

An instantaneous eigenstate encircling the energy level
crossing points acquires the Berry phase in addition to the
dynamical phase. The information on the level crossings is
encoded in the Berry phase. At B=0 and f =1, the two levels
E�1 cross and the other two levels E0

� avoid crossing. Also
E�1 and E0

− cross at f = 2a�b�
a�−b�

�B�. Here we focus on the Berry
phase due to the level crossing or avoided crossing at B=0.

Due to the fact that a� �b�, an electron spin rotates much
faster than a nuclear spin. We assume that the magnetic field
B is rotated slowly enough for both the electron and nuclear
spins to evolve adiabatically. The magnetic field B=Bn̂ in
the direction of n̂= �sin � cos � , sin � sin � , cos �� is con-
structed starting from B=Bẑ. First, it is rotated about the y
axis by an angle �. And it is subsequently rotated about the z

axis by an angle �. The SO�3� rotation of the magnetic field
described above corresponds to the SU�2� � SU�2� transfor-
mation on the Hamiltonian �1�; thus, one obtains the Breit-
Rabi Hamiltonian in the magnetic field B=Bn̂:

H��,�� = AI · S + aB · S + bB · I . �9�

The hyperfine interaction AI ·S is spherical symmetric, so the
eigenvalues and eigenvectors of the Hamiltonian �9� are
identical to those of the Hamiltonian �4� except replacing
�� 1

2 	 by �n̂ ; �
1
2 	. Here �n̂ ; �

1
2 	 are eigenstates of n̂ ·S or

n̂ ·I. If the magnetic field B is rotated slowly about the z axis
by 2
 to make a cone with a solid angle �=2
�1−cos ��,
then the instantaneous eigenstate �n̂ ; �

1
2 	 follows it and ac-

cumulates the Berry phase ��= �
1
2�. The total Berry phase

� of electron and nuclear spins is the sum of two phases
acquired by each one. It depends on the magnetic quantum
number m:

� = ��� for m = � 1,

0 for m = 0.
� �10�

As expected, the Berry phase is nonzero only for real
crossings—i.e., m= �1. Figure 2�c� plots the total Berry
phase as a function of B and f and shows that the total Berry
phase jumps at the level crossings. The zero Berry phase of
the eigenstates �E0

��� ,��	 can be understood in two ways.
First, two levels E0

� avoid crossing at B=0, so it is zero.
Another view is as follows. Since �E0

�	 is a superposition of
� 1
2 ,− 1

2 	 and �− 1
2 , 1

2 	, the Berry phase of the electron spin is
opposite to that of the nuclear spin and they cancel each
other.

Although the entangled states �E0
�	 of electron and nuclear

spins accumulate no Berry phase, each subsystem �electron
spin or nuclear spin� can get nonzero marginal Berry phases
of mixed states. Following studies on the geometric phase of
mixed states �25,26� and the relation between entanglement
and marginal Berry phases �26–28�, we investigate the rela-
tion between avoided level crossings, marginal Berry phases,
and entanglement. For an adiabatic cyclic evolution param-
etrized by x, an instantaneous eigenstate of a bipartite system
AB can be expressed in a Schmidt decomposition ���x�	
=�i=1

M �pi�ei�x�	 � �f i�x�	, where ��ei�x�	�i=1
NA is an orthonormal

basis for a subsystem A, ��f i�x�	�i=1
NB for a subsystem B, M

�min�NA ,NB�, and �i=1
M pi=1. Here our attention is restricted

to the case that the Schmidt coefficients �pi are independent
of x. After an adiabatic cyclic evolution implemented by
x�0�=x�T�, the total Berry phase of the bipartite system AB
is given by

� = �
i=1

M

pi��i
A + �i

B� , �11�

where �i
A= i�Cdx · 
ei�x���x�ei�x�	. Then the marginal mixed-

state Berry phase �A of a subsystem A is defined by

�A = arg �
i

pi exp�i�i
A� . �12�

With Eqs. �11� and �12�, let us analyze how the total Berry
phase and the marginal Berry phase of �E0

−	 depend on B. The

OH et al. PHYSICAL REVIEW A 78, 062106 �2008�

062106-4



two Schmidt coefficients are given by p1=sin2 	
2 and p2

=cos2 	
2 . It is easy to obtain the marginal Berry phase of the

electron spin, �e=arctan�cos 	 tan �
2 �, and the average Berry

phase of the electron spin, �e� p1�1
e + p2�2

e = �
2 cos 	. In the

limit of B�1—i.e., 	→0—one has �E0
−	→ �− 1

2 , 1
2 	 and �e

=� /2. Also the marginal Berry phase of the electron spin is
given by �e=� /2 for 0���



2 . Figure 3 plots �e as a func-

tion of B and the azimuthal angle �. The marginal Berry

phase of the electron spin jumps at �=
 /2 and B=0. The
node at B=0 corresponds to the avoided crossing.

IV. SODIUM ATOM IN A UNIFORM MAGNETIC FIELD

A. Energy spectrum

Now we consider an 23Na atom in its 3S1/2 ground state in
the presence of a uniform magnetic field B along the z axis.
The nuclear and electron spins of an 23Na atom are I=2 /3
and S=1 /2, respectively. Although the Breit-Rabi Hamil-
tonian of an 23Na atom is similar to that of a hydrogen atom
in Sec. III, the former shows different features from the lat-
ter. The ground state of the Breit-Rabi Hamiltonian of an
23Na atom has both real crossing at B=0 and avoided cross-
ing at B�0 as will be shown. As in Sec. III, it is convenient
to arrange the product basis ��mS ,mI	� in decreasing order of
the magnetic quantum number m of Jz as follows: �� 1

2 , 3
2 	�,

�� 1
2 , 1

2 	 , �− 1
2 , 3

2 	�, �� 1
2 ,− 1

2 	 , �− 1
2 , 1

2 	�, �� 1
2 ,− 3

2 	 , �− 1
2 ,− 1

2 	�, and
��− 1

2 ,− 3
2 	�. For example, �� 1

2 , 1
2 	 , �− 1

2 , 3
2 	� spans the subspace

of m=1. In this ordered basis set, the Hamiltonian �1� for the
sodium atom can be represented by a block-diagonal matrix

H =

⎝
⎜
⎜
⎜
⎛ f�1

2
,
3

2
� 0 0 0 0 0 0 0

0 f�1

2
,
1

2
� �3

2
A 0 0 0 0 0

0
�3

2
A f�− 1

2
,
3

2
� 0 0 0 0 0

0 0 0 f�1

2
,
− 1

2
� A

2
0 0 0

0 0 0
A

2
f�− 1

2
,
1

2
� 0 0 0

0 0 0 0 0 f�1

2
,
− 3

2
� �3

2
A 0

0 0 0 0 0
�3

2
A f�− 1

2
,
− 1

2
� 0

0 0 0 0 0 0 0 f�− 1

2
,
− 3

2
� ⎠
⎟
⎟
⎟
⎞

, �13�

where f�mS ,mI��AmSmI+mSaB+mIbB. Each block is at
most a 2�2 matrix and can be easily diagonalized. First,
consider the subspace of m= �2. The corresponding eigen-
values and eigenvectors can be written as

E�2 =
3

4
A �

1

2
�a + 3b�B , �14a�

�E�2	 = � �
1

2
, �

3

2
� . �14b�

Notice that Eqs. �14� are comparable to Eqs. �5�. Second, in
the subspace with m=1 spanned by �� 1

2 ,− 1
2 	 , �− 1

2 , 1
2 	�, one

obtains the eigenvalues and eigenvectors

E+1
� = −

A

4
+ bB �

1

2
��A + �a − b�B�2 + 3A2, �15a�

-0.2

0

0.2

B (T)0 π/4 π/2 3π/4 πθ

−π
0
πΓe

FIG. 3. �Color online� Marginal Berry phase �e of the electron
spin for the entangled eigenstate �E0

−	 of a hydrogen atom as a
function of B and the azimuthal angle �. Here we take f =1, a�
=19.767 T−1, and b�=−0.03 T−1.

ENTANGLEMENT, BERRY PHASES, AND LEVEL… PHYSICAL REVIEW A 78, 062106 �2008�

062106-5



�E+1
+ 	 = cos

	1
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� , �15b�
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− 	 = − sin
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2
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1

2
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	1

2
�−

1

2
,
3

2
� , �15c�

where tan 	1�
�3A

A+�a−b�B . Third, the Hamiltonian of m=−1 is
defined on the subspace spanned by �� 1

2 ,− 3
2 	 , �− 1

2 ,− 1
2 	�. Its

eigenvalues and eigenstates are given by

E−1
� = −

A

4
− bB �

1

2
��A − �a − b�B�2 + 3A2, �16a�

�E−1
+ 	 = cos

	2

2
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2
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1
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	2

2
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2
� , �16b�
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− 	 = − sin
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1

2
� + cos

	2

2
�1

2
,−

3

2
� , �16c�

where tan 	2�
�3A

A−�a−b�B . Note that Eqs. �16� can be obtained
from Eqs. �15� by replacing B with −B. Finally, the subspace
of m=0 is spanned by �� 1

2 ,− 1
2 	 , � 1

2 ,− 1
2 	�. The corresponding

eigenvalues and eigenvectors are given by

E0
� = −

A

4
�

1

2
��a − b�2B2 + 4A2, �17a�

�E0
+	 = cos

	0

2
�1

2
,−

1

2
� + sin

	0

2
�−

1

2
,
1

2
� , �17b�

�E0
−	 = − sin

	0

2
�1

2
,−

1

2
� + cos

	0

2
�−

1

2
,
1

2
� , �17c�

where tan 	0� A
�a−b�B . As expected, Eqs. �17� is very similar

to Eqs. �7� in the case of a hydrogen atom.

B. Entanglement

Let us examine the relation between entanglement and
level crossings or avoided crossings for a sodium atom. With
the values of the parameters A, a, and b of the 23Na atom in
Ref. �22�, the energy levels Em

� /A are plotted in Fig. 4�a�.
The von Neumann entropies of the electron �or nuclear� spin
for each eigenstates are shown in Fig. 4�b�. The ground state
is given by �E+1

− 	 for B�0 and �E−1
− 	 for B�0. Two levels

E+1
+ and E+1

− are avoided crossing and maximally entangled at
A− �a−b�B=�3A. Another two levels E−1

+ and E−1
− are

avoided crossing and maximally entangled at A+ �a−b�B
=�3A. Two levels with m=0, E0

� are avoided crossing and
maximally entangled at B=0. Two levels E�2 show real
crossing at B=0 and have zero von Neumann entropies.
Again one can see that the eigenstate is maximally entangled
at the avoided crossing point. This is analogous to the results
in Ref. �13�, where Shannon entropy is used as an indicator
of avoided crossings.

C. Berry phase

As in Sec. III C, let us consider an adiabatic cyclic evo-
lution of nuclear and electron spins of a sodium atom by

rotating the magnetic field Bn̂ slowly. For an adiabatic rota-
tion keeping the azimuthal angle � constant and varying the
polar angle � from 0 to 2
, the instantaneous eigenstates
accumulate the total Berry phases proportional to the mag-
netic quantum number m, �= �m�. In contrast to a hydro-
gen atom, the ground state is given either by �E+1

− 	 or by �E−1
− 	

with m= �1, so it acquires the total Berry phase �= ��.
Let us analyze how the marginal Berry phase of the en-

tangled state is related to the avoided crossings. We focus on
the eigenstate �E+1

− 	. It has two Schmidt coefficients p1

=sin2 	1

2 and p2=cos2 	1

2 . With Eq. �11�, one obtains the total
phase as a sum of the Berry phases acquired by nuclear and
electron spins with weights of the Schmidt coefficients:

� = sin2 	1

2
�−

�

2
−

�

2
� + cos2 	1

2
�+

�

2
−

3�

2
� = − � .

�18�

From Eq. �12�, one obtains the marginal Berry phases of an
electron spin �e and of nuclear spin �n:

�n = arg�sin2 	1

2
e−i�/2 + cos2 	1

2
e−i3�/2� , �19a�

�e = arctan�cos 	1 tan
�

2
� . �19b�

Figure 5 plots the marginal Berry phase of a nuclear spin �n
as a function of B and the azimuthal angle �. In the limit of
B�1—i.e., 	1→0—one has �E+1

− 	→ �− 1
2 , 3

2 	, �e=� /2, and
�n=−3� /2. It is clearly seen that the node of the marginal
Berry phase of a nuclear �or electron� spin corresponds to the
avoid crossing at A+ �a−b�B=�3A. Thus it could be ex-
pected that the marginal Berry phase of a subsystem for an
entangled state has a node at avoided crossings.
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S

B (T)
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FIG. 4. �Color online� �a� Energy levels Em /A and �b� the von
Neumann entropy S of the electron �or nuclear� spin for the eigen-
states of the sodium atom as a function of B. The two parameters of
a sodium atom, a�=32.091 T−1 and b�=−0.012709 T−1, are taken
from Ref. �22�.
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V. CONCLUSIONS

We have considered the Breit-Rabi Hamiltonians for hy-
drogen and sodium atoms, describing the hyperfine interac-
tion between a nuclear spin and an electron spin in the pres-
ence of a magnetic field. We have examined the relation

between level crossings, entanglement, and Berry phases. It
is shown that entanglement between nuclear and electron
spins is maximum at avoided crossing points. The Berry
phase and the von Neumann entropy change abruptly at level
crossings as the parameters of the Breit-Rabi Hamiltonian
for a hydrogen atom vary. An entangled state encircling the
avoided crossing acquires the marginal Berry phase of an
electron �or nuclear� spin like an eigenstate moving around
the real crossing accumulates a Berry phase. We have shown
that the nodal points of the marginal Berry phase of an en-
tangled state corresponds to the avoided crossing points.
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