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Structural approximations to positive, but not completely positive maps are approximate physical realiza-
tions of these nonphysical maps. They find applications in the design of direct entanglement-detection meth-
ods. We show that many of these approximations, in the relevant case of optimal positive maps, define an
entanglement breaking channel and, consequently, can be implemented via a measurement and state-
preparation protocol. We also show how our findings can be useful for the design of better and simpler direct
entanglement detection methods.
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I. INTRODUCTION

Entanglement is one of the most important, and presum-
ably necessary, ingredients of quantum information process-
ing �1�. For this reason there is a considerable interest both in
theory and experiments in designing feasible and efficient
ways of entanglement detection. Indeed, there has been a lot
of progress in this problem recently. The most frequently
used and investigated entanglement-detection methods in-
clude �i� tomography of the quantum state with local mea-
surements, useful for low-dimensional systems provided en-
tanglement criteria for the states in question are known
�2–4�, but impractical for higher-dimensional systems; �ii�
methods based on detecting only some elements of the den-
sity matrix for a continuous family of measuring devices
settings, such as the method of entanglement visibility �5�;
�iii� tests of generalized Bell inequalities �6�, although there
are states that despite being entangled do not violate any Bell
inequality �7,8� nor any known Bell inequality �9�; �iv� en-
tanglement witnesses �10,11�; �v� direct entanglement detec-
tion schemes, for pure �12� or mixed states �13� and, in par-
ticular, using structural approximations to positive maps
�14,15�; �vi� “nonlinear” entanglement witnesses �16�; and
�vii� methods employing measurements of variances �17� or
even higher order correlation functions �4,18�, or relying on
entropic uncertainty relations �19�. The methods �iv� and �v�
are the subject of the present paper and we discuss them in
more detail below. First we recall some basic definitions.

Entanglement witnesses. An observable E=E† is called an
entanglement witness if and only if, for all separable states
�, the average tr�E���0 and there exists an entangled state
� for which tr�E���0. As shown in Ref. �10�, the Hahn-
Banach theorem implies that for every entangled state �,
there exists a witness E that detects it, i.e., tr�E���0. Con-
versely, the state � is separable if and only if for all wit-
nesses it holds tr�E���0. As has been pointed out in Ref.

�20�, entanglement witnesses can be efficiently measured
with local measurements and, more importantly, one can op-
timize the complexity of this measurement with respect to,
for instance, the number of measuring device settings.
Nowadays, entanglement witnesses are routinely used in ex-
periments to detect entanglement in bipartite �21� and multi-
partite �3,22� systems.

Positive maps. A related concept is that of a positive map.
Let B�HA� and B�HB� denote the spaces of bounded opera-
tors on Hilbert spaces HA and HB, respectively. Then a linear
map �: B�HA�→B�HB� is called positive if �����0 for
every ��0. However, not every positive map can be re-
garded as physical, describing, e.g., a quantum channel or
the reduced dynamics of an open system: a stronger positiv-
ity condition is required �23�. Namely, a map � is physical
whenever it is completely positive, which means that the
extended map 1 � �: B�K � HA�→B�K � HB� is positive for
any extension K.

Again, as shown in Ref. �10� �see also Ref. �24��, a state
��B�HA � HB� is entangled if and only if there exists a
positive, not completely positive map �: B�HB�→B�HA�
that detects �, i.e., �1 � ����� is not positive definite. A para-
digm example of a positive but not completely positive map
is transposition T whose great significance for separability
was first realized in Ref. �25�. It turns out to detect all the
entangled states in B�C2 � C2� and B�C2 � C3� �10�. However,
as it is well known �26� �see also, e.g., Ref. �1�, and refer-
ences therein�, in higher dimensions there are entangled
states which possess the positive partial transpose �PPT�
property.

Entanglement witnesses and positive maps �27� are re-
lated through the Jamiołkowski isomorphism �28�. Let
E�B�HA � HB�. From this moment on we assume that the
considered Hilbert spaces are finite dimensional,
dim HA,B=dA,B�� �for an example of infinite dimensional
generalization of Jamiołkowski isomorphism see Ref. �29��.
We then define �E: B�HA�→B�HB� as follows:*jkorbicz@mif.pg.gda.pl
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�E��� = dAtrA�E��T
� 1�� . �1�

Conversely, introducing a maximally entangled vector in
HA � HA,

��+� =
1

�dA
�
i=1

dA

�ii�, P+ = ��+�	�+� �2�

we define for each map � B�HA�→B�HB� an operator

E� = 1 � ��P+� �3�

acting on B�HA � HB�. Then � is positive if and only if E� is
an entanglement witness, since E�E

=E �28�. Moreover, � is
completely positive if and only if E��0, i.e., E� is a �pos-
sibly unnormalized� state.

Structural physical approximation. Positive maps are
stronger detectors of entanglement than the corresponding
witnesses, despite the described Jamiołkowski isomorphism.
They detect the same states as the corresponding witnesses
plus those obtained through local invertible transformation
on one side. Unfortunately, generic positive maps are not
physical and their action cannot be directly implemented. It
is therefore challenging to try to find a physical way to ap-
proximate the action of a positive map. This is the goal of the
structural physical approximation �14,15�. The idea is to mix
a positive map � with some simple completely positive map

�CPM�, making the mixture �̃ completely positive. The re-
sulting map can then be realized in the laboratory and its
action characterizes entanglement of the states detected by
�. In the particular example studied in Refs. �14,15� this idea
has been applied to the map �=1 � T. Although experimen-
tally viable, this method is not easy to implement since, at
least in its original version, it requires highly nonlocal mea-

surements: subsequent applications of �̃ followed by optimal
spectrum estimation. A more detailed discussion on this en-
tanglement detection scheme is given in Sec. V.

In the case of finite-dimensional Hilbert spaces, we
can, without lost of generality, restrict our attention to

contractive structural approximations, i.e. tr��̃�����1, for
tr���=1. If the initial map is not contractive, we

can always define �̃����= �̃��� / tr��̃��*��, where tr��̃��*��
=max�:tr���=1tr��̃���� and the maximum is attained for some
�* due to the compactness of the set of all states. Contractive
CPM’s can be realized probabilistically as a partial result of
a generalized measurement �see Ref. �14��.

Entanglement breaking channels. A different use of maps
in the context of quantum theory concerns the description of
quantum channels, which are completely positive and trace-
preserving maps. A channel � for which 1 � � transforms
any state � into a separable state 1 � ���� is called entangle-
ment breaking �EB� �30�. Clearly, these channels are useless
for entanglement distribution. In Ref. �30�, the following
equivalence was obtained: �1� The channel � is EB, �2� The
corresponding state E� is separable, �3� The channel can be
represented in the Holevo form

���� = �
k

tr�Fk���k, �4�

with some positive operators Fk�0 defining a generalized
measurement �31�, �kFk=1, and states �k determined only
by �.

The last property above means that the action of an EB
channel can be substituted by a measurement and state-
preparation protocol. Moreover, from the separable decom-
position of the state E�

E� = �
k

pk�vk�	vk� � �wk�	wk� �5�

with �vk��HA and �wk��HB, one obtains the following ex-
plicit Holevo representation of � �30�:

���� = �
k

�wk�	wk�tr��dApk�vk�	vk���� , �6�

where the overbar denotes the complex conjugation. The
positive operators 
dApk�v̄k�	v̄k�� define a properly normalized
measurement due to the trace-preserving property of �.

Notice that these results can easily be extended to the case
of contracting maps. Then, a Holevo decomposition is still
possible for EB maps with the positive operators Fk defining
a partial measurement �kFk�1.

In this paper we address the question of implementation
of structural approximations to positive maps through
�generalized� measurements. In fact, Fiurášek �32� already
proved that the example analyzed in Ref. �15�, for the
case of two-qubit states, has such realization. Here we are
able to answer this question in a broader sense. In
particular, we study structural approximations to maps �:
B�HA�→B�HB� obtained through minimal admixing of
white noise

�̃�	� = ptr�	�
1

dB
+ �1 − p���	� . �7�

Minimal means here that we take the smallest noise probabil-

ity 0� p�1 for which �̃ becomes completely positive. Now

the key question is when such �̃ can be implemented
through generalized measurements, i.e., when they corre-
spond to EB maps according to Eq. �4�. As a consequence,
we are led to study the separability of witnesses of the form

Ẽ� = 1 � �̃�P+� =
p

dAdB
1 + �1 − p�E� �8�

for minimal p such that

Ẽ� � 0. �9�

Recall that this is equivalent to �̃ being completely positive.

In general, we will consider contractive maps �̃ and ask
whether they correspond to EB maps, not necessarily trace-

preserving. Note that if a CPM �̃ is contractive and EB, then
there exists an EB extension to a trace-preserving map

�̃���= �̃���+ 
tr���−tr��̃�����1 /d. In the language of wit-
nesses, trace preservation means trBE�̃=1A. The main subject
of the paper is the following conjecture.
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Conjecture. Structural physical approximations to optimal
positive maps correspond to entanglement-breaking maps.
Equivalently, structural physical approximations to optimal
entanglement witnesses E are given by �possibly unnormal-
ized� separable states.

We prove the above conjecture in several special cases
and discuss a large number of generic examples providing
evidence for its validity. This is done for both decomposable
entanglement witnesses, that detect only entangled states
with negative partial transposition �NPT�, and also for non-
decomposable witnesses which in addition detect PPT en-
tangled states. Once more, we expect the conjecture to be
valid in general, but in some cases we restrict our examples
to structural approximations which are trace preserving. Note
that such restriction makes the conjecture weaker, since ev-
ery contractive EB channel has a trace preserving EB exten-
sion, but not vice versa.

The importance of our result is twofold. �i� If the conjec-
ture is true, structural physical approximations to optimal
maps admit a particularly simple experimental realization—
they correspond to generalized measurements �33�. �ii� The
results shed light on the geometry of the set of entangled and
separable states �see Ref. �34��.

The paper is organized as follows. In Sec. II we recall the
notions of decomposable and nondecomposable entangle-
ment witnesses and their optimality, based on the Refs.
�35,36�. In Sec. III we concentrate on decomposable maps.
First we study dimensions 2 � 2 and 2 � 3, where the posi-
tivity of the partial transpose provides the separability crite-
rion. Here we show that in general, without the assumption
of optimality, the conjecture is not true, while it obviously
holds for optimal decomposable witnesses. Next, we discuss
general decomposable maps in 2 � 4 systems, which are non-
trivial due to the existence of PPT entangled states. Other
examples of maps in 3 � 3 systems satisfying the conjecture
are presented in Appendix B. We conclude this section prov-
ing the conjecture for the transposition and reduction map
�37� in arbitrary dimension. Section 4 is devoted to nonde-
composable positive maps. We start the discussion by ana-
lyzing the case of Choi’s map, one of the first examples of a
map in this class. Then, we study a positive map based on
unextendible product bases �UPB’s� �38�. Finally, we end
this section with an analysis of the Breuer-Hall map �39,40�,
which can be understood as the nondecomposable version of
the reduction criterion. Here symmetry methods turn out to
be indispensable. We introduce and study in some detail a
new family of states—unitary symplectic invariant states.
The most technical details of these states are mainly given in
Appendix C, where, as a by-product, we show that this fam-
ily includes also bound entangled states. Finally, we study
the physical approximation to partial transposition, as this
map is used in the direct entanglement detection method pro-
posed in Ref. �15�. In the latter case the analysis is again
made possible due to symmetry arguments, in particular the

unitary UŪVV symmetry �see Refs. �41,42��. The paper ends
with the conclusions in Sec. VI.

II. OPTIMALITY OF POSITIVE MAPS
AND ENTANGLEMENT WITNESSES

The notion of optimality of positive maps and entangle-
ment witnesses has been introduced in Refs. �35,36�. We

review it here without proofs, which can be found in the
original papers. There are two concepts of optimality: one
general, and one strictly related to nondecomposable positive
maps �or entanglement witnesses� and PPT entangled states.
We focus below on entanglement witnesses—the translation
to positive maps is straightforward using the Jamiołkowski’s
isomorphism �see Eqs. �1� and �3��.

A. General optimality

Let us introduce the notion of general optimality first.
Given an entanglement witness E we define the following.
DE= 
��0: tr�E���0� is the set of operators detected by E.
Finer witness: given two witnesses E1 and E2 we say that E2
is finer than E1, if DE1

�DE2
, i.e., if all the operators detected

by E1 are also detected by E2. Optimal witness: E is optimal
if there exists no other witness which is finer than E. PE
= 
u � v�HA � HB : 	u � v �Eu � v�=0�: the set of product
vectors on which E vanishes. As we will show, these vectors
are closely related to the optimality property.

Vectors in PE play an important role regarding entangle-
ment. A full characterization of optimal witnesses is provided
by the following theorem.

Theorem 1. A witness E is optimal if and only if for all
operators P�0 and numbers 
�0, E�=E−
P is not an en-
tanglement witness.

In this paper we will use the following important corol-
lary

Corollary 2. If the set PE spans the whole Hilbert space
HA � HB, then E is optimal.

B. Decomposable witnesses

There exists a class of entanglement witnesses which is
very simple to characterize—decomposable entanglement
witnesses �24�. Those are the witnesses which can be written
in the form

E = Q1 + Q2
�, �10�

where Q1,2�0 and � refers to partial transposition with re-
spect to the second subsystem

Q� = �1 � T�Q . �11�

As is well known, these witnesses cannot detect PPT en-
tangled states. We recall here some simple properties of op-
timal decomposable entanglement witnesses.

Theorem 2. Let E be a decomposable witness. If E is
optimal then it can be written as E=Q�, where Q�0 con-
tains no product vector in its range.

This result can be slightly generalized as follows.
Theorem 2�. Let E be a decomposable witness. If E is

optimal then it can be written as E=Q�, where Q�0 and
there is no operator P in the range of Q such that P��0.

C. Nondecomposable witnesses

Entanglement witnesses which are able to detect PPT en-
tangled states cannot be written in the form �10� �24�, and are
therefore called nondecomposable. The present section is de-
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voted to this kind of witness. The importance of nondecom-
posable witnesses for detecting PPT entanglement is re-
flected by the following.

Theorem 3. An entanglement witness is nondecomposable
if and only if it detects some PPT entangled state.

We now recall some definitions which are parallel to those
provided previously. Given a nondecomposable witness E,
we define the following. dE= 
��0:���0 and tr�E���0�:
the set of PPT operators detected by E. Finer nondecompos-
able witness: given two nondecomposable witnesses E1 and
E2 we say that E2 is nd-finer than E1 if dE1

�dE2
, i.e., if all

PPT operators detected by E1 are also detected by E2. Opti-
mal nondecomposable witness: E is optimal nondecompos-
able if there exists no other nondecomposable witness which
is nd-finer than E.

Again, vectors in PE play an important role regarding PPT
entangled states. The full characterization of optimal non-
decomposable witnesses is given by an analog of theorem 1.

Theorem 4. A nondecomposable entanglement witness E
is optimal if and only if for all decomposable operators D
and 
�0, E�=E−
D is not an entanglement witness.

Note that in principle nondecomposable optimality re-
quires the witness to be finer with regard to PPT entangled
states only, so that a nondecomposable optimal witness does
not have to be optimal in the sense of Sec. II A. However,
this is not the case since we have the following.

Theorem 5. E is an optimal nondecomposable entangle-
ment witness if and only if both E and E� are optimal wit-
nesses.

Corollary 6. E is an optimal nondecomposable witness if
and only if E� is an optimal nondecomposable witness.

In Ref. �35� optimality conditions have been derived and
investigated for the case of �2 � N�-dimensional Hilbert
spaces. These conditions are, however, very complex and for
the purpose of the present work we will use corollary 2 to
check optimality, even though it provides only a sufficient
condition.

III. DECOMPOSABLE MAPS

This section is devoted to the study of the conjecture for
decomposable maps. We start by proving the conjecture for
low-dimensional systems, namely, 2 � 2 and 2 � 3. Then, we
provide some rather general results for 2 � 4 systems. More-
over, Appendix B contains several relevant examples of de-
composable maps in 3 � 3 systems where the conjecture also
holds. Finally, we prove the conjecture in arbitrary dimen-
sion for two of the most important examples of decompos-
able maps, the transposition and reduction maps.

A. 2‹2 and 2‹3

We begin with general examples in the lowest nontrivial
dimensions. Take � to be a positive map from B�C2� to
B�C2� or to B�C3�. Recall �24� that every such map is decom-
posable, i.e., is of the form �=�1

CP+T ��2
CP and that its cor-

responding entanglement witness can be written as Eq. �10�.
We will first show that not every structural approximation to
� is entanglement breaking. In other words, the optimality of

the positive map is essential for the conjecture. For definite-
ness’ sake we analyze the �2 � 2�-dimensional case, but the
argument also holds in 2 � 3 systems.

Let us consider the entanglement witness E� correspond-
ing to � and, Q1 and Q2 in Eq. �10� to be rank-one operators
of the form

Q2 = �
a 0 0 a

0 0 0 0

0 0 0 0

a 0 0 a

, Q1 = �

0 0 0 0

0 b b 0

0 b b 0

0 0 0 0

 �12�

with real positive a and b. Then the witness

Q1 + Q2
� = �

a 0 0 0

0 b b + a 0

0 b + a b 0

0 0 0 a

 �13�

is not positive and therefore � is not completely positive.
From the general form �8� we obtain that

Ẽ� =
p

4
1 + �1 − p��Q1 + Q2

��

= �
a� + c 0 0 0

0 b� + c b� + a� 0

0 b� + a� b� + c 0

0 0 0 a� + c

 ,

a� = �1 − p�a, b� = �1 − p�b, c =
p

4
. �14�

This operator is positive for

p �
4a

4a + 1
, �15�

which is the condition for the structural approximation.
In order to study separability, it is enough to check the

PPT condition, as it is both a necessary and sufficient condi-
tion in the lowest dimensions �25�. Applying partial transpo-
sition we obtain that the state �14� is not PPT, and hence
entangled, for

p �
4b

4b + 1
. �16�

Taking b�a the condition �15� and �16� can be simulta-
neously satisfied, thus giving a structural approximation
which is not entanglement breaking.

Above we have considered a general positive map from
B�C2� to B�C2� or to B�C3�, i.e., �=�1

CP+T ��2
CP. Let us now

consider an optimal one

� = T � �CP, E� = Q�. �17�

It immediately follows that any structural approximation to
such � is entanglement breaking since
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E�
� =

p

4
1 + �1 − p�Q � 0, �18�

so that E� is separable. Thus, in the lowest dimensions any
structural approximation to an optimal map is entanglement
breaking.

More generally, for arbitrary dimension we immediately
obtain from Eq. �18� that any structural approximation to an
optimal decomposable map �17� �see Sec. II A� gives rise to
a PPT state. However, in principle not necessarily that state

is separable, i.e., not necessarily �̃ is entanglement breaking,
as PPT condition is no longer sufficient for separability in
higher dimensions.

B. 2‹4

We now study optimal decomposable maps in
�2 � 4�-dimensional systems. The main characterization of
such witnesses or maps is given by theorems 2 and 2� from
Sec. II B and we will use it extensively in what follows. In
some cases we will present general results, while in others
we consider what seem generic examples, giving evidence
supporting our conjecture. Other examples of witnesses in
3 � 3 systems fulfilling the conjecture are presented in Ap-
pendix B.

Let us then consider systems with dimension 2 � 4. There
are only three possibilities in this case, depending on the
rank r�Q� of the operator Q �see theorem 2, Sec. II B�:
r�Q�=1, 2, or 3. Higher ranks are not possible as then Q
would have a product vector in its range and hence the wit-
ness Q� would not be optimal �35�.

When r�Q�=1, then Q is effectively supported in a 2 � 2
subspace and the results of Sec. III A imply that its structural
approximation is entanglement breaking. When r�Q�=2
there are two further possibilities: Q is supported either in a
2 � 3 subspace or in the full 2 � 4 space. The first case is
again covered by Sec. III A. In the latter case, Q can be
written as a sum of projectors

Q = P
 + P�, �19�

where


 = �0��f1� + �1��f2� , �20�

� = �0��f3� + �1��f4� . �21�

Here �0�,�1� is the standard basis in C2 and f1 , . . . , f4 are
vectors in C4. In the most general case of contractive maps,
f1 and f2 are orthogonal to f3 and f4, and this consists of the
only condition required for the proof. Note that if the vectors
f i are mutually orthonormal, the map is trace preserving.
Projectors in Eq. �19� define a decomposition of C4 into a
direct sum C2 � C2 and, hence, Q has a block-diagonal form
resulting from a split 2 � �2 � 2�= �2 � 2� � �2 � 2�. Applying
the results of Sec. III A to each of the 2 � 2 blocks we obtain
the result.

We are left with the most interesting case: r�Q�=3. Take
P a projector on the kernel of Q. The state P has rank 5, is
PPT and possibly entangled. In this case we cannot prove
the conjecture in general, and we consider an example

where the range of P is spanned by the product vectors
�1,�� � �1,� ,�2 ,�3�, for all complex numbers �. This can
be always achieved applying a local invertible transforma-
tion on C4 side �see Ref. �43��. Since, by construction, Q is
supported on P’s kernel, it is supported on a span of the
vectors

�10� − �01� , �22�

�02� − �11� , �23�

�03� − �12� , �24�

where �ij� denotes the standard product basis of C2 � C4. As
evidence to support our conjecture, one can see that the
structural approximation to Q�, where Q is given by the sum
of projectors on the above vectors, is indeed entanglement
breaking. The details of the separability proof are given in
Appendix A. Note, that the EB map corresponding to Q� is
not trace preserving, but as we mentioned in the Introduction
it has an EB trace-preserving extension.

C. Transposition

We conclude the study of decomposable maps by proving
the conjecture in arbitrary dimension for two of the best
known positive maps, the transposition and reduction maps.
Let us first consider structural approximations to transposi-
tion T: B�H�→B�H�, H�Cd, which is an optimal decom-
posable map, for arbitrary dimension. The corresponding

witness ẼT, obtained from Eq. �8�, turns out to be a Werner
state on H � H:

ẼT =
p

d21 +
1 − p

d
F . �25�

Here F is the flip operator, such that F
 � �=� � 
. One

easily sees that ẼT is positive, and hence T̃ completely posi-
tive, when

p �
d

d + 1
, �26�

which is the condition for the structural approximation for T.

To check the separability of ẼT, we use the fact that the PPT
criterion is necessary and sufficient for Werner states. Since,
for all p, we have

ẼT
� =

p

d21 + �1 − p�P+ � 0, �27�

ẼT becomes separable at the point it becomes a state. This
implies that the structural approximation to transposition is
always entanglement breaking.

Employing the UU invariance of Werner states, we find

an explicit expression for T̃ in the Holevo form �4�. Recall
that each Werner state can be represented using the UU de-
polarizing map DUU as �7�
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�W = DUU��� =� dU�U � U���U†
� U†� , �28�

where dU corresponds to the Haar measure over the unitary
group. Since Werner states are spanned by the operators

1 ,F� �7�, normalized Werner states are completely defined
by the parameter 	F�=tr��WF�.

For the critical witness, i.e., ẼT with minimal p, we have
	F�=1. One can easily check that the state �= �00�	00� has
the same expectation value, hence

ẼT =� dU�vU�	vU� � �wU�	wU� �29�

with �vU�= �wU�=U�0�. Notice that this expression is a con-
tinuous version of Eq. �5�, where the discrete set of states

�vk� , �wk�� is replaced by a continuous set 
�vU� , �wU�� and
the probability pk is replaced by the probability distribution

dU. According to Eq. �6�, T̃ can be written as

T̃��� =� dU�w̄U�	w̄U�tr��d�vU�	vU���� , �30�

where we used the invariance of the integral under conjuga-
tion. This approximation has a clear intuitive explanation.
Given an unknown state, first one tries to estimate it in an
optimal way using the covariance measurement defined by
the infinite set of operators 
MU=d�vU�	vU��, distributed ac-
cording to the Haar measure. If the measurement outcome
corresponding to �vU� is obtained, the state �vU�	vU�T
= �w̄U�	w̄U� is prepared. Finally, it is important to mention
that the map defining the depolarization process DUU can
also be implemented by the finite set of unitary operators

pk ,Uk� of Ref. �44�, which in our case leads to a measure-
ment with a finite number of outcomes.

D. Reduction criterion

Finally, we consider the �normalized� reduction map �R
defined as follows:

�R�	� =
1

d − 1
�tr�	�1 − 	� , �31�

which is also an optimal decomposable map �37�. The con-

dition for the structural approximation �̃R to be completely
positive reads

1 � �̃R�P+� � ẼR =
d − p

d2�d − 1�
1 −

1 − p

d − 1
P+ � 0, �32�

which is immediately equivalent to

p �
d

d + 1
. �33�

In order to study the separability of ẼR, note that ẼR is an

isotropic state, i.e., ẼR is UŪ invariant. For such states the
PPT criterion is again both a necessary and sufficient condi-
tion for separability �37,41�. Denote by �� the projectors
onto the symmetric sym�H � H� and skew-symmetric H∧H

subspaces, respectively. With the help of the identities
P+= �1 /d�F� and F=�+−�− one obtains that

ẼR
� =

p

d2�+ +
2d − p�d + 1�

d2�d − 1�
�−, �34�

which is positive for all p. Hence, when ẼR becomes posi-
tive, it also becomes separable which implies that the struc-
tural approximation to �R is always entanglement breaking.

Again we use the invariance properties of ẼR to write �̃R
in the Holevo form �4�. These states belong to a space gen-
erated by 
1 , P+� and therefore can be completely described
through the parameter 	P+�=tr��P+�. For the critical witness,
the expected value is 	P+�=0 and a possible separable de-
composition of the state reads

ẼR =� dU�U � Ū����	���U � Ū�† �35�

with ���= �01�. According to Eq. �6�,

�̃R��� =� dU�wU�	wU�tr��d�vU�	vU���� , �36�

where �vU�=U�0� and �wU�=U�1�.

IV. NONDECOMPOSABLE MAPS

In this section, we move to nondecomposable maps. We
first consider the Choi map, which is one of the first ex-
amples of a nondecomposable positive map. After this, we
study those maps coming from unextendible product bases.
Finally, we analyze a recently introduced positive map, the
Breuer-Hall map. In all the cases, we are able to prove the
conjecture in arbitrary dimension.

A. Choi’s map

We now move to a nondecomposable map proposed by
Choi �45�. The normalized map �C: B�C3�→B�C3� can be
written as

�C�	� =
1

2
�− 	 + �

i=0

2

	ii�2�i�	i� + �i − 1�	i − 1��� , �37�

where �i� is a fixed basis of C3 and the summation is modulo

3. According to Eq. �8�, the witness ẼC associated with the

structural approximation �̃C reads

ẼC = p
1

9
+

1 − p

6
��

i=0

2

�2�ii�	ii� + �i,i − 1�	i,i − 1�� − 3P+� .

�38�

By checking the positivity of this state we find that the map

�̃C is completely positive for p�3 /5.

The entanglement witness ẼC is separable since, for criti-
cal p, it can be represented by the following convex combi-
nation of �unnormalized� product states:
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ẼC =
1

15
��01 + �12 + �02 + �d� . �39�

Here �d= �02�	02�+ �10�	10�+ �21�	21� is obviously separable
and the matrices �ij are defined on the subspace ij, i.e.,
spanned by 
�ii� , �ij� , �ji� , �j j��, and read

�ij = 1 − �ii�	j j� − �j j�	ii� . �40�

We can easily check that these density operators are PPT
and hence separable. Choi’s map is not proven to be
optimal, and there are even reasons to believe that it is not.
Namely, if one looks at product vectors at which the mean of
EC vanishes, they have the form (1,exp�i�1� , exp�i�2�)
� (1,exp�−i�1� , exp�−i�2�), and are orthogonal to the vector
(1, 0, 0, 0, 1, 0, 0, 0, 1), so that they do not span the whole
Hilbert space and do not fulfill the assumptions of the corol-
lary 2 from Sec. II. Still, as we have shown, the structural
physical approximation for the Choi’s map is entanglement
breaking. Thus, if this map is �is not� optimal, this supports
�does not contradict� our conjecture.

B. UPB map

Let us now focus on unextendible product basis �38�. Re-
call that an unextendible product basis in an arbitrary space
HA � HB�CdA � CdB consists of a set of n�dAdB orthogonal
product states 
vi=xi � yi�i=1

n , such that there is no product
state orthogonal to them. It is then impossible to extend this
set into a full product basis. Given an unextendible product
basis, one can associate a PPT bound entangled state

�
v� =
1

dAdB − n
�1AB − �

i=1

n

�vi�	vi�� . �41�

The state is trivially PPT and entangled as there is no product
state orthogonal to the UPB.

A �normalized� witness detecting such states can be taken
in the form �38�

E
v� =
1

n − 
dAdB
��

i=1

n

�vi�	vi� − 
1AB� , �42�

where 
�0. A map �
v� :B�HA�→B�HB� corresponding to
E
v� can be obtained through the Jamiołkowski’s isomor-
phism �see Eq. �1�� and is a nondecomposable map since the
state �
v� is PPT. Let us consider the structural approximation

�̃
v� to �
v�. The witness associated with �̃
v� reads

Ẽ
v� =
p

dAdB
1 + �1 − p�E
v�

=
1

n − 
dAdB
�np − 
dAdB

dAdB
1 + �1 − p��

i=1

n

�vi�	vi�� .

�43�

Since any �vi� is a product vector by definition, Ẽ
v�=1A

� �̃
v��P+� is separable once it becomes positive. Therefore,
structural approximations to positive maps �42� arising from
UPB’s are entanglement breaking. Although it is unknown

whether such a witness is optimal, this result at least does not
disproof our conjecture.

As for the implementation of the structural physical ap-

proximation for UPB maps, notice that Ẽ
v� is already in a
product state form and the Holevo representation comes di-
rectly from Eq. �6�, for each particular unextendible product
basis 
�vi��. As mentioned, this gives the explicit construction
of the measurement and state preparation protocol approxi-
mating the map.

C. Breuer-Hall map

In what remains, we study the Breuer-Hall map, recently
introduced in Refs. �39,40�. This positive map can be under-
stood as the generalization of the reduction criterion to the
nondecomposable case. As we show next, this map also sat-
isfies the conjecture for any dimension. When proving these
results, we are naturally led to the analysis of a new two-
parameter family of invariant states, that we call unitary
symplectic invariant states.

For even dimension d=2n�4, which from this moment
on we assume, the reduction map �31� can be yet improved,
leading to the �normalized� Breuer-Hall map �39,40�

�BH�	� =
1

d − 2
�tr�	�1 − 	 − U	TU†� . �44�

Here U is any skew-symmetric unitary operator, i.e.,
U†U=1 and UT=−U. The resulting map is no longer decom-
posable and is known to be optimal �39�. From the general
formula �8�, the entanglement witness associated with the

structural approximation �̃BH is given by

ẼBH =
1

d − 2
�d − 2p

d2 1 − �1 − p�P+

−
1 − p

d
�1 � U�F�1 � U†�� . �45�

Further analysis of ẼBH will be again based on symmetry
considerations. First of all, we note that since U is nonde-
generate ��det U�=1� and skew-symmetric, there exists a ba-
sis, known as Darboux basis, in which U takes the canonical
form

J = �
i=1

n � 0 1

− 1 0
� . �46�

For convenience, we choose U=J. Now, let S
�Sp�2n ,C��U�2n� be a unitary symplectic matrix, i.e., a
complex matrix satisfying

S†S = 1 �47�

and

SJST = J . �48�

Then,
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S � S̄ẼBHS†
� ST = �1 + �S � S̄P+S†

� ST

+ ��S � S̄J�F�S†
� J†ST�

= �1 + �P+ + ��1 � J��S � S�F�S†
� S†�

��1 � J†�

= �1 + �P+ + ��1 � J�F�1 � J†� = ẼBH,

�49�

where we introduced constants � ,� ,� for simplicity �see Eq.
�45��. In the second step above we used the property

S̄J = JS �50�

�it follows from Eqs. �47� and �48� and the fact that J̄=J�,
together with the UŪ invariance of P+ �37�. Then in the last
step we used the UU invariance of F �7�.

Thus, we have just proven that the witness ẼBH, associ-
ated with the Breuer-Hall map, is invariant under transfor-

mations of the form S � S̄, with S unitary symplectic. Equiva-

lently, its partial transpose ẼBH
� is invariant under

transformations of the form S � S. We will generally call
such operators unitary symplectic invariant, or more specifi-

cally SS̄ and SS invariant, respectively.
To our knowledge, these operators have not been studied

systematically as an independent family. They form a sub-
family of SU�2�-invariant states of Ref. �46� �see also Ref.
�39�, where a subfamily of SS-invariant states was intro-
duced and Appendix B�, but since the number of parameters
of the latter family increases with the dimensionality, it is
manageable only for low dimensions. Below we describe
unitary symplectic invariant states in any even dimension
�see, e.g., Ref. �41� for a general theory of states invariant
under the action of a group G�. The results are then applied
to the investigation of the entanglement breaking properties
of the structural approximations to the Breuer-Hall map.

1. Unitary symplectic invariant states

In the next lines, we characterize the family of unitary
symplectic invariant states. For the sake of clarity, here we
state the main results, the corresponding proofs are then pre-
sented in Appendix C.

First of all, one should identify the space of Hermitian
SS-invariant operators. As shown in Appendix C, the spaces

of SS-invariant and SS̄-invariant operators are �47�

SS-invariant � span
1,F,P+
J� , �51�

SS̄-invariant � span
1,P+,FJ� , �52�

where AJ��1 � J�A�1 � J†�.
For a later convenience we introduce two equivalent sets

of generators given by the following minimal projectors:

�0 = P+
J , �53�

�1 =
1

2
�1 − F� − P+

J , �54�

�2 =
1

2
�1 + F� , �55�

and

�̂0 = �0
J = P+, �56�

�̂1 = �1
J =

1

2
�1 − FJ� − P+, �57�

�̂2 = �2
J =

1

2
�1 + FJ� . �58�

Relations �C4� and �C5� imply that both sets define a projec-
tive resolution of the identity

���� = ����� and �
�

�� = 1 , �59�

and analogously for �̂�. Moreover ��� ,�̂��=0 �48�.
Projectors �� and �̂� form extreme points of the convex

set of positive unitary symplectic invariant operators. This

allows us to easily describe the convex sets � and �̂ of SS-

and SS̄-invariant states, respectively. The normalization im-
plies that each family of states is uniquely determined by two
parameters: tr��F� , tr��P+

J� for SS-invariant states and

tr��FJ� , tr��P+� for SS̄-invariant ones �compare with Refs.
�41,49�, where orthogonal invariant states were character-

ized�. The extreme points of � and �̂ are given by the nor-

malized projectors �� / tr�� and �̂� / tr�̂�, respectively. We
stress that both sets live in two different subspaces of the big
space of all Hermitian operators ��spanR
1 ,F , P+

J� and

�̂�spanR
1 , P+ ,FJ�. Partial transposition � brings one set
into the plane of the other and allows one to study PPT and
separability.

Figure 1 shows the plot of � together with �̂�—the set of

partial transposes of SS̄-invariant states. For definiteness’
sake we have chosen to study partial transposes of

SS̄-invariant states, but as we will see the situation is fully
symmetric. The plane of the plot is the space of all Hermitian

SS-invariant operators with unit trace. The set �̂� is given by

the convex hull of the normalized operators �̂�
� / tr�̂�:

�̂� = conv� �̂1
�

tr�̂1

,
�̂2

�

tr�̂2

,
�̂3

�

tr�̂3

� � spanR
1,F,P+
J� . �60�

The mentioned symmetry between the families manifests it-
self in the fact that by changing the axes labels 	F�→ 	FJ�
and 	P+

J�→ 	P+� one obtains the plot of �̂ and ��—it is given
by the identical figure in the corresponding plane. This stems

from the following observations: tr��̂�FJ�=tr���F�,
tr��̂�P+�=tr���P+

J�, tr�̂�=tr��=tr�̂�
�, and tr���

�FJ�
=tr��̂�

�F�, tr���
�P+�=tr��̂�

�P+
J�.

The intersection �̂��� describes those SS̄-invariant
states with positive partial transpose. As shown in Appendix
C, not all of them are separable, i.e., there are PPT entangled
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states in the family. The extreme points of the intersection
are given by

x0 = �0,0�,x1 = �0,
1

d
� ,

x2 = �1,0�,x3 = � d

d + 2
,

1

d + 2
� . �61�

To prove separability of a given point it is enough to show
that there exists a normalized product vector �u� � �v� with
the identical expectation values of F and P+

J , for the latter
values characterize the state uniquely. Using this fact, one
can see that the extreme points of the separability region are
x0, x1 and x2. The remaining part of the PPT region contains
entangled states.

2. Entanglement breaking property of �̃BH

We can now return to the study of the witness ẼBH asso-
ciated with the Breuer-Hall map �see Eq. �45� with U=J�. As

we have shown in Sec. IV C, ẼBH is a SS̄-invariant Her-
mitean operator. Before analyzing when it becomes positive,
note that

ẼBH
� =

1

d − 2
�d − 2p

d2 1 −
1 − p

d
F − �1 − p�P+

J�
= �1 � J�ẼBH�1 � J†� . �62�

Thus, ẼBH�0 if and only if ẼBH
� �0, i.e., the structural-

approximated witness is a PPT state.

From Eqs. �45� and �62� we obtain that when 0� p�1:

− 1 � tr�ẼBHFJ� = tr�ẼBH
� F� �

1

d
, �63�

−
1

d
� tr�ẼBHP+� = tr�ẼBH

� P+
J� �

1

d2 . �64�

The corresponding interval p� ẼBH
� �p� is depicted in Fig. 1

by the thick line with the arrow. We have plotted ẼBH
� �p�

rather than ẼBH�p�. One sees that the line enters the positive
region � at the point x0= �0,0�, that is when both averages
�63� and �64� vanish. Equating any of the expectation values
to zero gives the condition for the structural physical ap-
proximation

p �
d

d + 1
. �65�

Notice that it is the same bound as in Eq. �33� for the reduc-
tion map. Observing Fig. 1 it is clear that any structural
approximation to Breuer-Hall map is entanglement breaking

since the positivity region of ẼBH
� is inside the separability

region of SS-invariant states.
As a by-product, we also obtain the minimum eigenvalue

�min of the witness EBH, corresponding to the original posi-
tive map �44�. From Eq. �8� it follows that at the critical
probability p=d / �d+1� one must have p /d2+ �1− p��min=0.
This leads to �min=−1 /d, which corresponds to the eigenvec-
tor ��+�. Note that this eigenvector shares the symmetry of

EBH: S � S̄��+�= ��+�.
Again, we are able to provide a representation of the

structural approximation to Breuer-Hall map using the SS̄
invariance of the corresponding witness

ẼBH =� dS�S � S̄����	���S � S̄�†. �66�

These states are parametrized by 	P+� and 	FJ� and, for the

critical witness ẼBH we have 	P+�= 	FJ�=0. The same ex-
pected values are obtained by the separable state ���= ���
� �
�, where

��� =
1

2
��0� + �1� + �2� + �3�� , �67�

�
� =
1
�2

��0� − �2�� . �68�

Then, the Holevo form of �̃BH is

�̃BH��� =� dS�wS�	wS�tr�d�vS�	vS��� �69�

with �vS�=S��� and �wS�=S�
̄�.

FIG. 1. �Color online� The plot of the set � of SS-invariant

states together with �̂�—the set of partial transposes of SS̄-invariant
states. The thick line with the arrow represents the partially trans-

posed witness ẼBH
� �p�. The dashed line represents Werner states; its

prolongation to the vertex �d ,−1 /d���̂0
� gives NPT isotropic

states. The family 	��� from Ref. �39� is given by the edge, con-

necting vertices �−1,1���0 and �1,0���2. The plot of �̂, ��, and

ẼBH�p� is identical, with the axes labels changed to 	FJ� and 	P+�
respectively.
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V. ENTANGLEMENT DETECTION VIA STRUCTURAL
APPROXIMATIONS

Before concluding, we would like to discuss the applica-
tion of these ideas to the design of entanglement detection
methods. Indeed, one of the main motivations for the intro-
duction of structural approximations �15� was to obtain ap-
proximate physical realizations of positive maps, which can
then be used for experimental entanglement detection.

The original scheme proposed in Ref. �15� works as fol-
lows, see also Fig. 2. Given N copies of an unknown bipar-
tite state �AB, the goal is to determine, without resorting to
full tomography, whether the state is PPT. The idea is to
apply the structural approximation to partial transposition to
this initial state and estimate the spectrum �or more precisely,
the minimal eigenvalue� of the resulting state using the op-
timal measurement for spectrum estimation described in

�50�. Note that the structural approximation 1 � T˜ “simply”
adds white noise to the ideal operator ��. Thus, it is imme-

diate to relate the spectrum of �1 � T˜ ���AB� to the positivity
of the partial transposition of the initial state.

Inspired by the previous findings, we study in this section
whether the structural approximation to partial transposition
defines an entanglement breaking channel. This map is of
course not even positive �so it does not entirely fit with our
main considered scenario�, but obviously by adding suffi-
cient amount of noise it can be made not only positive but
also completely positive. As we show next, the structural
approximation to partial transposition does indeed define an
entanglement breaking channel whenever dA�dB, which in-
cludes the most relevant case of equal dimension dA=dB.

This implies that the entanglement detection scheme of
Fig. 2�a� can just be replaced by a sequence of single-copy
measurements, see Fig. 2�b�, being the measurement the one
associated to the Holevo form of the entanglement breaking
channel. This alternative scheme is much simpler from an
implementation point of view since it does not require any
collective measurement, though the measurements are not
projective. Moreover, it can never be worse than the previous
method, and most likely is better �see also Ref. �33��.

Structural approximations to 1‹T

Let us then consider the structural approximation to trans-
position extended to some arbitrary auxiliary space 1A � TB
�15�. Note that, unlike in the previous cases, the initial Hil-
bert space describing the system is now explicitly a product

H=HA � HB�CdA � CdB. Moreover, generally 1 � �̃ is not

the same as 1 � �̃, although 1 � �̃�P+�=1 � �̃�P+�, so this
problem does not reduce to the previous one. Calculating the

witness corresponding to 1A � TB̃ one obtains

Ẽ1�T = ��1A � 1B� � �1A� � TB�
˜���P+

AB,A�B��

=
p

�dAdB�21AA� � 1BB� +
1 − p

dB
P+

AA� � FBB�, �70�

where FBB� is the flip operator on HB � HB��CdB � CdB and

P+
AB,A�B�, P+

AA� are projectors onto maximally entangled vec-
tors in the corresponding spaces

P+
AB,A�B� =

1

dAdB
�

i,k=1

dA

�
j,l=1

dB

�ij�AB	kl� � �ij�A�B�	kl� . �71�

The condition for structural approximation, positivity of

Ẽ1�T, is most easily derived by using the identity FBB�

=�+
BB�−�−

BB�, where �+
BB� is the projector on the symmetric

subspace sym�HB � HB��, and introducing a projector Q+
AA�

=1AA�− P+
AA�. Then Ẽ1�T becomes

Ẽ1�T = � p

�dAdB�2 +
1 − p

dB
�P+

AA� � �+
BB� +

p

�dAdB�2 �Q+
AA�

� �+
BB� + Q+

AA� � �−
BB�� + � p

�dAdB�2 −
1 − p

dB
�P+

AA�

� �−
BB�. �72�

Since only the last term can be negative, one obtains the
following condition for structural approximation

p �
dA

2dB

dA
2dB + 1

. �73�

Comparison of the above threshold with the one given by Eq.
�26� with d=dB, shows that in order to make 1A � TB com-
pletely positive one has to add more noise than to make the
transposition T alone completely positive and hence imple-

mentable. In other words, 1A � T̃B is less noisy than 1A � TB
˜ .

We proceed to study the separability of Ẽ1�T. We begin by

finding the partial transposition of Ẽ1�T with respect to the
subsystem A�B� �51�:

Ẽ1�T
TA�B� =

p

�dAdB�21 +
1 − p

dA
FAA� � P+

BB�. �74�

Applying the same technique as above �see Eq. �72��, we

find that Ẽ1�T
� �0 if and only if

FIG. 2. The original scheme for direct entanglement detection
proposed in Ref. �15� is shown in �a�. Given N copies of an un-
known state �, it consists of, first, the structural approximation of
partial transposition acting on the initial state, followed by optimal
estimation of the minimal eigenvalue of the resulting state. In the
new scheme, all this structure is replaced by single-copy measure-
ments on the state. The minimal eigenvalue should then be directly
estimated from the obtained outcomes.
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p �
dAdB

2

dAdB
2 + 1

. �75�

Comparing this to the threshold for positivity �73�, we see
that for dA�dB, i.e., when the extension is by a space of
smaller dimension, there is a gap between positivity and
PPT. Hence, in this case, for

dA
2dB

dA
2dB + 1

� p �
dAdB

2

dAdB
2 + 1

�76�

the witness �72� is not separable and the map 1A � TB̃ is not
entanglement breaking in this region. Recall however that
this does not represent any counterexample to the conjecture
as the initial map is not even positive.

In the case dA�dB, we will use symmetry arguments to

prove the separability of Ẽ1�T. From Eq. �70� it follows that

this state is UŪVV invariant, where U�U�dA�, V�U�dB�
�see Refs. �41,42� where UUVV-invariant states were stud-
ied�. Since both groups U�dA� and U�dB� act independently it
is easy to convince oneself �41� that the space of

UŪVV-invariant operators is spanned by 
1 � 1 ,1 � F , P+
� 1 , P+ � F�. Following the same approach as in Sec. VI, we

prove the separability of Ẽ1�T in the AB :A�B� partition by
showing that the state can be written as convex sum of prod-
uct states, i.e., it has the following representation:

� dUdV�UAVBŪA�VB����UAVBŪA�VB��
† �77�

�we omit tensor product signs here for brevity� for some �
separable in the partition AB :A�B�. Given that states with
this invariance are completely described by parameters
	1 � F�, 	P+ � 1�, and 	P+ � F�, � must obey the conditions

tr��1 � F�=tr�Ẽ1�T1 � F�, tr��P+ � 1�=tr�Ẽ1�TP+ � 1� and

tr��P+ � F�=tr�Ẽ1�TP+ � F�. Such a state �����	�� can be
written as

��� � ���AB � �
�A�B� = ���00�00� + ��01�01� + ��11�11���00�

�78�

for

�00 =
dB

dAdB
2 + 1

�1 + dA� , �79�

�01 =
1

dAdB
2 + 1

�dB
2 + dA − dB�1 + dA�� , �80�

�11 = 1 −
1

dAdB
2 + 1

�dB
2 + dA� . �81�

Notice that, as expected, � is only well defined for dA�dB.

According to Eq. �6�, the map 1 � T̃��� can be written as

1 � T˜��� =� dUdV�wUV̄�	wUV̄�tr�dAdB�vUV�	vUV��� , �82�

where �vUV�=U � V��� and �wUV̄�=U � V̄�
̄�. Recall also that
the integrals over the unitary group defining each depolariza-

tion protocol can be replaced by the finite sums of, e.g., Ref.
�44�.

In the case dA=dB�d, we encounter the structural ap-
proximation to the transposition map analyzed in Ref. �15�.
As mentioned, by providing the representation �82� we are
able to replace the former entanglement detection scheme
�15� by a much less resource-demanding one. In the original

proposal, n copies of T̃��� are prepared, followed by optimal
estimation of its minimal eigenvalue by means of a collective
projective measurement on the n-copy state. Now, one
should just perform local measurements in the n copies of �
with operators defined in Eq. �82� and with that directly es-
timate the lowest eigenvalue of 1 � T.

VI. CONCLUSIONS

In this work, we have studied the implementation of struc-
tural approximations to positive maps via measurement and
state-preparation protocols. Our findings suggest an intrigu-
ing connection between these two concepts that we have
summarized by conjecturing that the structural physical ap-
proximation of an optimal positive map defines an entangle-
ment breaking channel. Of course, the main open question is
�dis�proving this conjecture. It would also be interesting to
obtain slightly weaker results in the same direction, such as
proving the conjecture for general optimal decomposable
maps �which seems more plausible due to the fact that the
conjecture holds for transposition�. We have also applied the
same ideas to the study of physical approximations to partial
transposition, which is not a positive map, and discuss the
implications of our results for entanglement detection.

We would like to conclude this work by giving a geo-
metrical representation of our findings �that should be inter-
preted in an approximate way�. It is well known that the set
of quantum states is convex and includes the set of separable
states, which is also convex, see also Fig. 3. These two sets
are contained in the set of Hermitian operators that are posi-
tive on product states, which is again convex. Entanglement
witnesses belong to this set. If the conjecture was true, it
would mean that the set of optimal witnesses would live in a
region which is “opposite” to the set of separable states, in
the sense that when mixed with the maximally mixed noise,
they enter the set of physical states via the separability re-
gion.

FIG. 3. The sets S, Q, and W of separable states, quantum states,
and operators positive on product states are such that S�Q�W. If
the conjecture was true, namely, all structural approximations to
optimal positive maps defined entanglement breaking channels, it
would mean that optimal positive maps �witnesses� enter the physi-
cal region, when adding white noise, via the separability region, as
shown in the figure.

STRUCTURAL APPROXIMATIONS TO POSITIVE MAPS … PHYSICAL REVIEW A 78, 062105 �2008�

062105-11



Finally, let us mention some further open questions. It
would be interesting to extend our studies and ask which
classes of positive maps have structural approximation that
corresponding to partially breaking channels �for definition
see Ref. �52��? Is our conjecture true for maps that are not
optimal, but atomic �53�, i.e., detect Schmidt number 2 en-
tanglement �for definition see Ref. �54��? What is the relation
between optimality, extremality �in the sense of convex sets�
and atomic property?
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APPENDIX A: PROOF OF THE CONJECTURE FOR A
RANK-THREE OPTIMAL WITNESS IN 2‹4 SYSTEMS

In this appendix, we show that the structural approxima-
tion to the optimal witness Q�, where Q is the projector onto
states �22�, is separable. Following our general procedure �cf.
Eq. �8��, the normalized witness associated to the structural
approximation reads

Ẽ� =
p

8
1 +

1 − p

6
Q� �

1 − p

6
�Q� + a1� =

1 − p

6 �
a 0 0 0 0 − 1 0 0

0 1 + a 0 0 0 0 − 1 0

0 0 1 + a 0 0 0 0 − 1

0 0 0 1 + a 0 0 0 0

0 0 0 0 1 + a 0 0 0

− 1 0 0 0 0 1 + a 0 0

0 − 1 0 0 0 0 1 + a 0

0 0 − 1 0 0 0 0 a


 , �A1�

where a= 6p
8�1−p� . The above operator becomes positive when

a�1 + a� = 1. �A2�

To show that at this point the matrix �A1� becomes separable, we first perform a local invertible transformation and pass from
Q�+a1 to 1 � A�Q�+a1�1 � A†, where

A = �
1 0 0 0

0 a 0 0

0 0 a 0

0 0 0 1

 . �A3�

With the help of the positivity condition �A2�, the resulting matrix can be written as

a2�
1 0 0 0 0 − 1 0 0

0 1 0 0 0 0 − 1 0

0 0 1 0 0 0 0 − 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

− 1 0 0 0 0 1 0 0

0 − 1 0 0 0 0 1 0

0 0 − 1 0 0 0 0 1


 + �a − a2��
1 0 0 0 0 − 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 − 1

0 0 0 � 0 0 0 0

0 0 0 0 � 0 0 0

− 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 − 1 0 0 0 0 1


 , �A4�
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where

� =
1

a − a2�1

a
− a2� � 1. �A5�

Note that since at the critical point �A2�, a−a2�0, it is
enough to show that both matrices in the above decomposi-
tion are separable. The first matrix, which we denote by �,
possesses the following continuous separable representation:

� = �
0

2� d�

2�
�
����	
���� , �A6�

where


��� = �ei�,− 1� � �1,ei�,e2i�,e3i�� . �A7�

The second matrix has a �2 � 2� � �2 � 2� structure with 2
� 2 blocks being identical and given by

�
1 0 0 − 1

0 1 0 0

0 0 � 0

− 1 0 0 1

 . �A8�

Since ��1 the above matrix is PPT and hence separable.
Thus, the whole matrix �A4� is separable, which finishes the
proof.

APPENDIX B: 3‹3 SYSTEMS

In this appendix, we provide several examples of positive
maps satisfying the conjecture. Again we consider decom-
posable optimal maps and study case-by-case various pos-
sible ranks of the Q operator �see theorem 2, Sec. II B�.

The case r�Q�=1, i.e., Q= �
�	
�, splits into two subcases.
When the Schmidt rank of �
� is 2, Q is supported in a
2 � 2 subspace and the structural approximation is entangle-

ment breaking by the previous results �see Sec. III A�. In the
case where �
� is Schmidt-rank 3, we restrict our attention to
the trace-preserving case, i.e., assume that �
� is maximally
entangled. Alternatively, before checking the conjecture we
apply local transformations and bring �
� to the form �2�, i.e.,
we assume that

�
� =
1
�3

��00� + �11� + �22�� = ��+� . �B1�

Then the corresponding witness Ẽ from Eq. �8� turns out to
be a Werner state �7� of dimension d=3. This witness was
already studied for arbitrary d in section, where we con-
cluded that such structural approximation is always entangle-
ment breaking.

We move to the case r�Q�=2. Then Q has to be supported
either in a 2 � 3 subspace or in the full 3 � 3 space, since in
2 � 2 there is always a product vector in every two-
dimensional subspace and Q would not be optimal by theo-
rem 2 of Sec. II B. The first case, when Q is supported in a
2 � 3 subspace, is covered by Sec. III A. In the other case,
we do not have a general theory, but in a generic case the
range of Q is spanned by two Schmidt-rank 2 vectors. We
can take them to be:

�01� − �10� �B2�

�12� − �21� . �B3�

Obviously, for such a Q it holds Qe � e=0⇒ 	e � ē �Q�e
� ē�=0 for any e�C3. Since vectors e � ē span the whole
C3 � C3, by corollary 2 of Sec. II A the witness Q� is optimal.

Again we do not have a general result here, but
only consider a generic example of Q given by the
projectors on the above vectors �B2� and �B3�. The normal-
ized witness corresponding to the structural approximation,

Ẽ�= 1−p
4 �Q�+a1� with a= 4p

9�1−p� is given, modulo the
�1− p� /4 prefactor, by the matrix

�
a 0 0 0 − 1 0 0 0 0

0 1 + a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 1 + a 0 0 0 0 0

− 1 0 0 0 a 0 0 0 − 1

0 0 0 0 0 1 + a 0 0 0

0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 0 1 + a 0

0 0 0 0 − 1 0 0 0 a


 . �B4�

It becomes positive at the point a�a2−2�=0, i.e., at

a = �2, �B5�

which gives the critical probability pc= 9�2
9�2+1

�0.93.
To check the separability at the above point �B5�, note that the matrix �B4� can be decomposed as follows:
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�
a 0 0 0 − 1 0 0 0 0

0 1 + a 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 + a 0 0 0 0 0

− 1 0 0 0
a

2
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


 + �
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
a

2
0 0 0 − 1

0 0 0 0 0 1 + a 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 + a 0

0 0 0 0 − 1 0 0 0 a


 + �
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


 .

�B6�

The first two matrices are supported in 2 � 2 subspaces. Their partial transposes become positive for �1+a�2=1, which is
satisfied at the point �B5�. The last matrix is obviously separable. This allows us to conclude that the structural approximation
�B4� is entanglement breaking.

Next, we consider the case r�Q�=3. Then Q must be supported in the whole 3 � 3 space �otherwise there would be a product
vector in the range of Q and Q would not be optimal by theorem 2, Sec. II B�. In lieu of a general theory, we consider a
seemingly generic example of

Q = �−, �B7�

where by �� we denote the projectors onto the symmetric sym�H � H� and skew-symmetric H∧H subspaces, respectively.
The corresponding normalized witness reads

3

1 − p
Ẽ� = Q� + a1 =

1

2
��1 + 2a�1 − 3P+� , �B8�

where a= 3p
9�1−p� and we used the identities F=�+−�−=1−2�− and F�=dP+. The condition for structural approximation

Ẽ��0 is equivalent to

a � 1. �B9�

Note that the structural-approximated witness �B8� is an isotropic state of dimension d=3 and that this was already studied for
arbitrary d in Sec. III D. There we concluded that such witnesses always correspond to entanglement-breaking channels.

We are left with the last case r�Q�=4. Note that generically if we consider P a projector on the kernel of Q, then r�P�
=5 and the range of P contains exactly �5 product vectors. In general, Q will contain some product vector in its kernel and
therefore is not optimal. For this reason, here we consider not a generic but a particular Q where optimality is guaranteed by
the corollary 2 of Sec. II A. We can treat C3 � C3 as a representation space of two spin-1 representations of SU�2�. We then
consider positive operators Q supported on a span of the skew-symmetric subspace C3∧C3 and the singlet �46�:

� =
1
�3

��02� + �20�− �11�� . �B10�

Denoting by J the total spin, Q is supported on the sum of J=0 and J=1 subspaces, while P is supported on the J=2 subspace.
The kernel of Q is then spanned by the vectors of the form �1,�2� ,�2� � �1,�2� ,�2� for a complex �. By corollary 2 of Sec.
II A, Q� is optimal, as vectors �1,�2� ,�2� � �1,�2�̄ , �̄2� span whole of the C3 � C3.

As a particular example we consider

Q = 2�− + 2P�. �B11�

The structural approximation gives
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8

1 − p
Ẽ� = Q� + a1 =

⎣
⎢
⎢
⎢
⎡ a 0 0 0 − 1 0 0 0 −

1

3

0 1 + a 0 0 0 −
2

3
0 0 0

0 0
5

3
+ a 0 0 0 0 0 0

0 0 0 1 + a 0 0 0 −
2

3
0

− 1 0 0 0
2

3
+ a 0 0 0 − 1

0 −
2

3
0 0 0 1 + a 0 0 0

0 0 0 0 0 0
5

3
+ a 0 0

0 0 0 −
2

3
0 0 0 1 + a 0

−
1

3
0 0 0 − 1 0 0 0 a ⎦

⎥
⎥
⎥
⎤

, �B12�

where

a =
8p

9�1 − p�
. �B13�

The matrix �B12� becomes positive at the point given by the
conditions �a+1�2− 4

9 =0 and �a+ 2
3 ��a− 1

3 �−2=0, which is
solved by

a =
4

3
. �B14�

We now prove that at this point the witness �B12� be-
comes separable. We consider the partially transposed wit-
ness:

8

1 − p
Ẽ�

� =
4

3
1 + 2�PJ=1 + PJ=0� , �B15�

where PJ projects on the subspace of total spin J. Using the
technique based on the state invariance described in Sec.
III C, we explicitly construct a separable decomposition for

Ẽ�
� . Analogously to the definition �28�, we introduce spin-1

� spin-1 depolarizing operator

D��� =� dD�1��U��D�1��U� � D�1��U����D�1��U�†
� D�1�

��U�†� =
1

5
tr��PJ=2�PJ=2 +

1

3
tr��PJ=1�PJ=2 �B16�

+ tr��PJ=0�PJ=0, �B17�

where D�1��U��SO�3� denotes spin-1 representation of U
�SU�2�. By direct calculation we check that

D��02�	02�� + D��01�	01�� �B18�

gives, up to a positive constant, the desired operator Ẽ�
� .

Since separability of Ẽ�
� is equivalent to separability of Ẽ�,

we have thus shown that the structural approximation to the
map defined by Eq. �B11� is entanglement breaking.

APPENDIX C: ANALYSIS OF UNITARY SYMPLECTIC
INVARIANT STATES

The scope of this appendix is to provide a characterization

of the properties of SS- and SS̄-invariant states. The first step
is to find the space of Hermitian SS-invariant operators. The

corresponding space of SS̄-invariant ones is related to the
latter by partial transposition �. Since unitary symplectic
transformations S are obviously unitary, all UU-invariant op-
erators are also SS invariant. As it is well known, the former
space is spanned by 1 and F �7�. As a rule, shrinking the
group enlarges the space of the invariant operators, so one
expects more than that. The form of the invariance
group G=Sp�2n ,C��U�2n� implies that 
G−inv�
= 
Sp�2n ,C�−inv�� 
U�2n�−inv� �in some sense we will not
specify here; see Ref. �41��. Thus, one has to find the
Sp�2n ,C�-invariant operators.

Let A be Hermitian and such that
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�
j,. . .,n

SijSklAjlmnS̄rmS̄sn = Aikrs, �C1�

for all S from Sp�2n ,C� �now S satisfies Eq. �48� only�. Since

S and its complex conjugation S̄ are independent for a gen-
eral S�Sp�2n ,C�, and the defining Eq. �48� does not involve
complex conjugation, the only possibility for Eq. �C1� to
hold is when A is rank 1, i.e., Ajlmn=
 jl�̄mn. Then Eq. �C1�
becomes

�S
ST�ik�S�ST�rs = 
ik�̄rs. �C2�

But the only quadratic form that S preserves is J, which
implies that one must have 
ik=c1Jik and �rs=c2Jrs for some
complex c1,2�0. We choose c1=c2=−1 /�d, d=2n, which
leads to

�
� = ��� = −
1
�d

�
i,k

Jik�ik�

=
1
�d

��10� − �01� + �32� − �23� + ¯ � = �1 � J���+� ,

�C3�

�cf. Eq. �2��. Hence, P+
J = �1 � J�P+�1 � J†� is the only

Sp�2n ,C�-invariant operator, up to a multiplicative constant
�55�. Using this fact we conclude that the space of
SS-invariant operators is spanned by 
1 ,F , P+

J�. Correspond-

ingly, the space of SS̄-invariant operators is spanned by

1 ,F , P+

J���
1 , P+ ,FJ�= �1 � J�
1 , P+
J ,FJ��1 � J†�. As a side

remark, we note that since J is real, J†=JT=−J �cf. definition
�46�� and hence �1 � J�A�1 � J†�=−�1 � J�A�1 � J� for any A.
We will use this fact frequently, but keep writing J†.

As a general rule, G-invariant operators form algebras
�42�. The constituent relations for the algebras of unitary
symplectic invariant operators are as follows:

FP+
J = − P+

J = P+
JF �C4�

and

P+FJ = − P+ = FJP+. �C5�

The above relations follow from the identity F�1 � J���+�
= �J � 1���+�=−�1 � J���+�, equivalent to FJ��+�=−��+�.

Let us now focus on the study of the PPT region, resulting

from the intersection �̂���. As we mentioned, when study-
ing separability, one should characterize the expectation
value of the generators of the group with product vectors.
For a vector �u� � �v� one obtains that

	F� = �	u�v��2 = �ū0v0 + ū1v1 + ū2v2 + ū3v3 + ¯ + ū2nv2n�2,

	P+
J� =

1

d
�uTJv�2 =

1

d
�u0v1 − u1v0 + ¯ + u2n−1v2n − u2nv2n−1�2.

�C6�

From these equations, one easily sees that the first extreme
point from Eq. �61� can be realized by, e.g., u
= �1 /2��−1,1 ,1 ,1 ,0 , . . . � and v= �1 /�2��1,0 ,0 ,1 ,0 , . . . �,
while points x2 ,x3 can be obtained from u=1 /�2��0�� �1��,
v=1 /�2��0�+ �1��, respectively. To show that only the set
conv
x0 ,x1 ,x2� is separable we will employ the Breuer-Hall
map �44� itself. Note that the corresponding separable set
conv
x0 ,x1 ,x2��� �̂��� is determined by the points with
the same coordinates as x0 ,x1 ,x2 but in the 	P+� , 	FJ� plane
�since, e.g., tr���P+

J�=1 /d⇔ tr��F�=1, etc.�.
For an arbitrary SS-invariant normalized state

�=�1+�F+�P+
J it holds trB�= �d�+F+ �1 /d���1=1 /d,

since tr�=d2�+d�+�=1 and trBP+
J =trBP+=1 /d as J is

unitary. Analogously, for an arbitrary SS̄-invariant state
�̂= �̂1+ �̂FJ+ �̂P+, trB�̂=1 /d, since trBFJ=trBF=1. Hence,
the no-detection condition 1 � �BH����0 takes the same
form for both families:

1

d
1 − � − �1 � J����1 � J†� � 0. �C7�

We multiply the above inequality by P+
J and P+,

respectively. Noting that P+
J , P+�0 and �1 � �BH��� , P+

J�
=0= �1 � �BH��̂� , P+�, we obtain that if a state is not detected
by the Breuer-Hall map then

tr��P+
J� �

1 − tr��F�
d

�C8�

or

tr��̂P+� �
1 − tr��̂FJ�

d
, �C9�

respectively. Equivalently, states breaking the above in-
equalities, i.e., states lying above the line 	P+

J�= �1− 	F�� /d,
or above the line 	P+�= �1− 	FJ�� /d in the case of

SS̄-invariant states, are detected by �BH and hence entangled.

The set of PPT entangled SS̄-invariant states is depicted in
Fig. 1. Note that when d→�, d even, the point x3→x2, see
Eq. �61�, and the set of PPT bound entangled states col-
lapses. Since we expect that away from region boundaries in

Fig. 1 the properties of SS̄-invariant states are shared by the
states in a small ball around them, the collapse of the “vol-
ume” of the PPT states is to be expected according to Ref.
�56�. From the previous arguments �cf. remarks after Eq.
�60�� and Eq. �C9�, the corresponding diagram for
SS-invariant states is identical, modulo the labels of the axes.
This finishes our analysis of unitary symplectic invariant
states.
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