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Variational ground state for relativistic ions in strong magnetic fields
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The lowest bound state of a one-electron ion in a constant magnetic field B is calculated from the pseu-
dorelativistic no-pair Brown-Ravenhall operator. The variational wave function is chosen as the product of a
Landau function (in the transverse direction) and a hydrogenic state (in the longitudinal direction). The depen-
dence of the ground-state energy on the nuclear charge Z as well as on the magnetic field strength is investi-
gated, and a scaling with B/Z? is observed. Relativistic effects are shown to be important both for large B and
large Z. When B— e, a decrease of the ground-state energy with VB is found in contrast to the In B behavior

of the Pauli operator.

DOI: 10.1103/PhysRevA.78.062103

I. INTRODUCTION

A relativistic atomic electron of mass m in a magnetic
field B=V X A resulting from a vector potential A is de-
scribed by the Dirac operator H,

H=DA+V, DA=a-(p—eA)+,Bm, (11)

where a, 3 are Dirac matrices and V=—f is the Coulomb
field generated by a point nucleus of charge Z fixed at the
origin. The coordinate and momentum of the electron are
denoted, respectively, by x and p (with x=|x|= Vx%+x§+x§),
and the field strength is y=Ze”. Relativistic units (i=c=1)
are used in the formulas, with e2=~1/137.04 being the fine
structure constant.

The unboundedness of H from below (which is due to the
presence of the positron states) is usually remedied by ap-
proximating H with semibounded pseudorelativistic opera-
tors if pair creation plays no role. A widely used pseudorela-
tivistic operator which nevertheless accounts for the spin
degrees of freedom is the Brown-Ravenhall operator A5R, It
can be obtained from a projection of H onto the positive
spectral subspace of the electron at V=0 [1] (see also [2] for
its mathematical analysis). Equivalently, hBR is the first-order
term (in ) of the Douglas-Kroll series which results from a
unitary transformation scheme [3] applied to H in order to
decouple the positive and negative spectral subspaces.

Our motivation to study the lowest bound state of the
single-particle Brown-Ravenhall operator is the fact that it
provides the bottom of the essential spectrum of the respec-
tive two-particle operator [4]. In the absence of magnetic
fields the ground-state energy of hBR was first calculated by
Hardekopf and Sucher [5] by solving numerically the corre-
sponding eigenvalue equation in momentum space. These
authors also showed that the difference from the exact Dirac
eigenvalue, Eé):m\e"l - yz, is of the order of y5 (which
amounts to an error of 4% for Z=80).

The convergence of the Douglas-Kroll series was investi-
gated numerically (up to the 14th order in y) by Hess and
co-workers [6,7] for the ground state of one-electron and
multielectron ions and atoms. They performed linearly com-
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bined atomic orbital (LCAO) calculations within a large
Gaussian basis set (in coordinate space), which they trans-
formed into a basis that diagonalizes the kinetic energy op-
erator entering into all potential terms [8]. A rigorous math-
ematical proof of the series convergence was given only
recently [9].

There is also an early study on the transformed Dirac
operator which allows for a magnetic field [10]. In that work
relativistic effects were estimated in perturbation theory by
making an expansion in 1/c¢ rather than invoking the
Douglas-Kroll series. Such an expansion is, however, ill-
defined [11], and it led to a serious overprediction of the
relativistic effects.

Indeed, investigations carried out for small nuclear
charges (Z=<20) on the Dirac operator itself showed that
relativistic effects on its ground-state energy are very small
in the considered range of magnetic field strengths [12,13].
In one method the wave function was expanded in terms of
Landau levels and the resulting coupled differential equa-
tions were solved in an approximate way [12]. Another
method used a trial function in a variational calculation
which consisted of a superposition of products of a Landau
function and a relativistic hydrogenic function [13].

In the general case where the trial function is not closely
related to the true ground state, a minimax principle must be
used to obtain the lowest bound state of the Dirac operator
[14]. If, however, an operator is bounded from below, the
much simpler minimum principle in a variational calculation
is sufficient. Then, on one hand, a large basis of trial
functions can be taken in order to obtain accurate results. On
the other hand, appropriately chosen simple variational func-
tions reduce the numerical effort considerably while retain-
ing the important features. Such an approach was used by
Rau and co-workers [15] to describe atoms and one-electron
ions in intense magnetic fields. Neglecting relativistic and
spin effects, they employed the Schrodinger operator
Hg= ﬁ(p—eA)2+ V. If spin is considered (in a nonrelativistic
way), the Schrodinger operator turns into the Pauli operator
Hp=Hg¢— ﬁea’-B. Its ground state differs from that of Hg by
simply a shift of —ﬁeB (see, e.g., [16,15]), so that spin
effects can easily be included.

The variational ground-state wave function in [15] for a
one-electron ion is taken as a product state consisting of a
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hydrogenlike 1s function (to an effective charge which
serves as variational parameter) and a ground-state Landau
function (for the transverse degrees of freedom). The so de-
termined ground-state energy has the correct behavior at
B=0 by construction. For B— %, W1th £ subtracted, it also
shows the correct (In B)? behavior. Note that it is rigorously
proven that the ground-state energy of the Pauli operator
decreases according to (In B)? as B— o, the error being of
the order of In B In(In B) [17].

It can be shown that for large magnetic fields where the
magnetic length % is much smaller than the scaled Bohr
radius ay/Z, the electron occupies the lowest Landau band
[18]. Then the ground-state function is no longer dominated
by a spherical hydrogenic state, but this state degenerates to
a one-dimensional function in the direction of B (while the
transverse degrees of freedom are confined by the magnetic
field). In fact, this longitudinal function becomes an eigen-
state to a S-type potential when B— oo [19].

In the present work we extend the Rau et al. method to
the pseudorelativistic operators. As a matter of fact, a mag-
netic field can easily be incorporated into the Douglas-Kroll
series [20,21]. The Brown-Ravenhall operator is well defined
in the form sense for y<<y, [the bound y,==, corresponding
to Z=87 and valid for A € L,,,.(R*) and B bounded or in
L,(R?) has recently [24] been increased to 2/(F+ 7T) for lo-
cally bounded A]. However, for the higher-order terms of the
Douglas-Kroll series, this bound on 7y decreases with the
magnetic field strength and goes to zero as B— [21].
Therefore, the higher-order terms are inferior to the first-
order term for very large magnetic fields (despite their better
approximation of Ei,) at B=0).

In our variational ansatz a one-dimensional hydrogenic
function (together with the Landau function) is used for the
ground state of the Brown-Ravenhall operator, valid if B is
sufficiently large. The model is described in Sec. II and the
asymptotic B-dependence is extracted in Sec. III. Section IV
provides variational results for the B=0 case, including a
comparison with the accurate ground-state energy. The B de-
pendence of the ground-state energy (for B/Z>*< 10" G) is
discussed in Sec. V with particular emphasis on a scaling
property, as well as on the onset of relativistic effects. The
conclusion is drawn in Sec. VI.

II. VARIATIONAL MODEL

The Brown-Ravenhall operator in a magnetic field is
given by [22,21]

WR=E,+V, +V,, (2.1)

og-pyl o-py
Vo==—vAp— ——— Ap

1
Vi=—yAg—Apg,
: Y Ex7E Ei+mxEs+m

where E,=|D,| is the kinetic energy operator,

E,+m
E,=\pi—ed-B+m?, Ap=y/——— (2.2)

and py=p-eA. o=(0},0,,03) is the vector of Pauli spin
matrices. In the following we take B=Be; to be a constant
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magnetic field along the e; axis, generated by

A(x) = g(— X2,%1,0) (2.3)
which obeys V-A=0. hBR acts in the Hilbert space
L,(R?*) ® C? and extends to a self-adjoint operator for y<7,.
Its form domain is H;,,(R?) ® C? where H,,, denotes a Sobo-
lev space.

Let us first switch off the scalar potentials V| and V,.
Then we can profit from the fact that E%=2mH »(V=0)+m>
so that E (and thus E,) is diagonalized by the eigenstates of
the Pauli operator.

The ground state is characterized by a spin-up state,
l//()T = ka((l)), resulting in —eo-B I/IOT = —€U3B l’//()T =—eB l’/j()T'
Taking the normalized lowest Landau function [16,15] and
allowing for a free electronic motion in the x5 direction, we

have
i [eB
‘11/0k(9,x3) = Noe_(’BQZ/4elkX3’ NO = 2_ )
T

Ef‘ l//OT = [(eB + kz) —eB + mz] Ir//()T = (k2 + mz) l/fQT,
(2.4)

and

[2,. 2

where 0=x7+xj; is the radial coordinate perpendicular to B.
Thus the corresponding eigenvalue of E, is given, indepen-
dently of B, by the energy Vk*>+m? of a free relativistic elec-
tron of momentum k.

The presence of the Coulomb field restricts the motion in
the x5 direction and we choose for our variational wave func-
tion a superposition of momentum states, i, = lﬂo(é), normal-
ized to unity, with

Yo(x) = Noe™eB* f dkf(k)e™s, (2.5)

Flk) = L' K(a\Z2+1), N, ( °B >1/2
/ + = e — N
22! a 0"\ 4mak,(2az")

where K is a modified Bessel function and

a=1/\eB (2.6)

the magnetic length. The function f is taken as the Fourier
transform of a one-dimensional hydrogenic ground-state
function to a parameter Z' =Zq/ ay [Where Zg is an effective
charge—our variational parameter—and a,=%%/(me?) the
Bohr radius] [[23] (3.914)],

f ARk = o7 NP5, 2.7)

The idea behind the choice (2.7) is the confinement of the
electronic motion in the (x;,x,) direction by the magnetic
length, valid if a<ay/Z or equivalently, B> Z*m?e* (in con-
ventional units, 1m?e3c/A3=2.35%X10° G). Its advantage

compared to the ansatz used in [15], where exp(—Z'x) is
taken instead of exp(—Z'+a +x3) is the exact diagonaliza-
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tion of the kinetic energy E, because the Fourier transform
(2.7) does not affect the transverse degrees of freedom. We
note in passing that in [15] the cyclotron radius r,=v2a is
taken as the magnetic scale. This leads to the condition
B>27’m?e3.

Let us now determine the expectation value of hBR—m
(where the electron’s rest energy mc? is subtracted) with re-
spect to the function ¢,. For the kinetic energy we obtain,
using Eq. (2.7) for the inverse Fourier transformation,

(wg’ (EA - m) ¢g)
= NOJ dkf(k)f dx J/g(x)(\kz + m2 - m)é'_eBQZ/4eikx3
e 13

207'% (7 1
= — | dk—5——=KHa\NZ'"*+k?)
7TK|(2aZ ) 0 VARE™S k

X (VI +m?—m). (2.8)

In order to evaluate the potential terms, also lzg must be
taken in its momentum representation (2.5) because in V;
and V,, E, enters on both sides of the Coulomb potential

—vy/x. As f and Ay are even functions of k we obtain

(e, Vith,) = — 49YN§ f dx;yFH(x3) 2 J odp
—00 0
1

27
V92+x3

% e—eB92/2

Flx;) = f i dkf(k)Ag cos kx;. (2.9)
0

We have [[23] (3.468)]

* 2 1
2f QdQe—eBQ /2
0 Vo +x3

_ 2_77eBx§2 _ < @):|
_\/eBe /[1 S\lul\5 )| @10

For the numerical evaluation of the probability function
¢ we use an integral representation (for 0<y=50)
and, respectively, the asymptotic expansion [[23] (8.254)]
(for y>50),

E(y) = 7" [1 = ¢()]

°°d e 1{1 1,315 +0(1)}
= 7'—=_ _——— —_— — - .
o Nr+yr oyl 2r 4yt 8ye ¥

(2.11)

Concerning the potential term V, we must evaluate
a-pAia'-pA on a spin-up eigenstate of type (2.4). With the
vector potential A from Eq. (2.3) and p=-iV, we obtain
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eB
?(lxl + )

(p—eA) = or (2.12)

eB .
j(lxz—xl)

k

so that, with y;(k)= (o),

1
(l/fm(k'),ﬂ"PA;O"PA'//oT(k))
1 ) 1
= ('ﬁoT(k')s<PA_PA +10 Py _pA)l//m(k))
X X

kk'
= (l)[,OT(k,)$TI)[,OT(k)>' (2.13)
Hence, the restriction of this operator to #,; is independent
of B. Therefore,

(Y, Vath) = — 4yN; J dx;G2(x3)27 f odo
—00 0
1
L

% e—eBQZ/2
VOr+x3

k sin kx;. (2.14)

G(x3) ZJ dkf(k)Ag
0 E,+m

Note that the integrands in Egs. (2.9) and (2.14) are even
functions of x3, simplifying the respective integration region
to [0,).

For the numerical evaluation of the integrals it is conve-
nient to shift variables from x; to y by means of y= \@)@ in
order to get rid of the B dependence in the function E from

Eq. (2.11). In turn, we measure the magnetic field in units of
77, i.e., B=NZ*[m?e3], A=2, and introduce the scaled vari-

ables
_ leB 1 / [eB \5
a=dad —:—, M:m —_— = N
2 \E \/XZez
B Z.p\2 B
~ (4 e\ (4
Z=7'1\|Z =22 k=2, (2.15)
2 VNZ 2

Then we obtain for the energy functional Ey[Z.s],

[

(wg’(hBR_m)wg)=C0J< dK~ 1

0 72+ i
XKH@NZ + k) (NP + p? = )

Ze*ey [
i f dYE(y)(I} + 1) =t Eq[Zegr].
0

(2.16)

where
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FIG. 1. Z:Zeff\sa/ (ZJ\) as a function of the magnetic field
strength B (in units 2.35 X 10° G) for Z=20 (- —-) and Z=80 (—).
Results are also shown for the nonrelativistic model of Rau and
co-workers [15]: Z=20 (---) and Z=80 (-----).

\/52522
Co=—"  _me",

7K, (2aZ)

o] 1 —
I, = f dk——=—=K,(a\Z* + K*)
0 VZ* + K2

[2, 2 12
VK + U+
x(—2> cos(ky),

VK +

K1(5v22+ K2)

I fwd a !
2= K —
0 NEHEEuZ 2

[2, 2
VK + ™+ uw
V/K2+/L2

12
) sin(ky). (2.17)

Finally we determine Z. from the variational principle

5E0[Zeff] = 0 (218)

Equivalently, the ground-state energy of the Brown-
Ravenhall operator is estimated from above by EER

=ming - Eo[Zes].

III. ASYMPTOTIC B-DEPENDENCE

In this section we will show that E?R decreases according
to VB for B— . This is done by considering the behavior of
the scaled variational parameter Z which solves Eq. (2.18).
Figure 1 shows Z as a function of B for Z=20 and 80.
Whereas Z decreases for Z=20 according to a power law
(~B™%3) even for the highest fields considered, there is a
distinct flattening of Z with increasing B in the relativistic
case Z=80. These numerical results suggest that for relativ-
istic ions the optimized scaled variational parameter tends to

a strictly positive constant as B— %, a conjecture which is
proven below.
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TABLE L. Z and the corresponding scaled ground-state energy
E(O,Z(O)):E?R/(Z\f)\) in atomic units at =0 (corresponding to
B=) for nuclear charges Z ranging from 20 to 80.

z Z(0) EPR/\B
20 0.0074 -0.0718
40 0.054 ~1.425
60 0.137 —4.777
80 0.239 -9.868

In order to derive the asymptotic B dependence of
the  ground-state  energy we  define  E(u,Z)
—(¢g,(hBR—m)¢ )/V’B according to Eq. (2.16). At B=o~ we
have =0 where the right-hand side (rhs) of Eq. (2.16) di-
vided by VB is independent of B and so is the variational
solution Z(0). Table 1 gives the numerical results for Z(0)
and E(0,Z(0)) for various nuclear charges Z. Thus a
finite Z(0)>0 guarantees not only that |E(0,Z(0))| <o (as
the respective integrals are convergent), but also that
E(0,Z(0))<0.

The existence of the limit lim, ., Z(,u):Z(O) implies the
existence of lim,,_o E(u,Z(u))=E(0,Z(0))=~¢ as discussed
near the end of this section. As a result,

E?R~—EB”2 as B — . (3.1)

In order to prove the above conjecture we start by show-
ing that there are constants ag,b, so that as B— % the opti-

mized Z obeys 0<ay= 7Z< by<cc. In other words we prove

by contradiction that (i) Z does not tend to zero and (ii)
Z< as B—oo,

(i) Let us assume first that Z—0 as B—, as in the non-
relativistic case. In the unscaled variables this corresponds to
aZ=aZ'—0. Since a— 0 like B~ we thus assume that Z’
increases more weakly than B'? as B—oc. This property
holds for all effective charges in a neighborhood of the so-
lution to the variational principle. Therefore, we will calcu-
late the kinetic and potential energy as a function of the
effective charge and only subsequently consider the varia-
tional principle.

From the behavior of the modified Bessel function near

Z€ro, Kl(z)~§ as z—0, we obtain for the kinetic energy
(2.8), '

7! - 1 |
(g Exth,) ~ Z 3J dkmvk2+m2, (3.2)

independent of a. With k=Z'{ and Z' — % with B—,

s V2 +m? f \'§2+(m/Z) _,
Z fodk(zrz kz)z di————55— + &) ~cZ,
(3.3)

where ¢>0, so that the kinetic energy becomes linear in Z'.
We note that the step from Egs. (2.8) to (3.2) implies an
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interchange of limits B— and k—oc. This relies on Eq.
(3.2) being a convergent majorant since K; is monotonically
decreasing.

For the potential energy we use Eq. (2.17) with the sub-

stitution k=Z7 [[23], (3.723)],

1 (¥ cos(Z T
i~ 4 cos(Zym) _

e (3.4)
azle T 17 oz

Further, from Eq. (2.11) with M =50,

o0 _ M _
f dyE(y)e™? = f dyE(y)e %
0

0

+ Jx dy{l + 0(%)}{22"
M y y
=c(Z) -Ei(-2ZM) — ¢-1n(Z) (Z—0),

(3.5)

since the first integral as well as the higher-order terms (in )l)
of the second integral lead to a finite result which is inde-
pendent of Z as Z—0. We have also used the near-zero ex-
pansion of the exponential integral Ei [[23] (3.352), (8.214)].
For the second contribution I, we have [[23], (3.723)],

1 (7 Z
il J 2y D) _

1 = ~ = -
— Lt ~~[e_z~" Ei(Zy) — ¢? Ei(- Zy)].
a 0

2az

12""

(3.6)

Dividing again the integration region of [dyE(y)I3 into the
intervals [0,M]U[M,) and using that |[5d7sin(Zyn)/
(1+77)|<7, the integral over [0,M] is finite irrespective of
Z [if the prefactor (@Z)™! is ignored]. The boundedness of the
integral in Eq. (3.6) also assures the convergence concerning
the higher-order terms (in }l) in the integral over [M,0). In
order to show that the remaining integral is bounded we
substitute Zy=¢ and obtain from Eq. (3.6),

[Farts-
MY

as Z—0. With e ¢Ei(0)-ef Ei(-0) ~
integral converges near zero.

For investigating {— we make a partial integration of
the left-hand side (Ihs) of Eq. (3.6). Then

f”dl,zw;de_é”(l_%rd
Myy2 @z)?Jo ¢\ LJo 7

Since |cos {7| <1, the 7-integral is finite for all £ so that the
{-integral converges for {— .
Collecting results,

ay J A0 - e Ei- OF

(3.7)

—-2¢{In{ as {—0 the

ncos {7\’
(1+7)

(3.8)

PHYSICAL REVIEW A 78, 062103 (2008)

= l ~
(Y (Vi + V) i) ~ mz; In(Z) ~-c,Z' InB

(3.9)

as B—o where ¢,>0 is some constant. The variational
functional becomes
(€—cyInB)Zylay (B— )

Eo[Z.g] ~ (3.10)

and it is obvious that SEy[Z.¢]=0 has no solution.

(ii) Let us now assume that aZ’ — o as B— . As a con-
sequence, Z' ~ B"?w(B) with w(B) — as B— . Using the
asymptotic behav1or of the modified Bessel function,
K\ (z)~ \/_e 2/\7 as z— o, we have from Eq. (2.8),

¢ o202/ ( Vis-1) .

(l//g’EA lzbg) \’ClZ dgm

(3.11)

We make further the substitution x=2aZ'(\1+>—1). This

leads to
¢ |z (” dx
JE ~ = —f ——e . 3.12
(Ve Eaty) 2 Val, (1+x/2aZ’)2€ ( )

The integral converges to a finite (nonzero) limit as
aZ' — o, In order to show this we use a sandwich estimate,

247" Jx i * ~
—e < —2 < dxe™.
0 o (1+x/2aZ'") 0

(3.13)
For aZ'— the lower bound tends to i, and the upper
bound is 1. Thus, the kinetic energy behaves like
VZ' a~ ~B"2\w(B). As a consequence, the potential energy
must decrease at least like B2\w(B) in order to produce a
bound state. It is rigorously established that such a bound
ground state of /PR exists for arbitrarily large B if y<2
[24,4,25].

On the other hand, the ground-state energy can decrease
at most like \B. This is due to the relative form boundedness
of V,+V, with respect to E,. Indeed, following [2,26]
we can write (4, (Vi + Vo) W)=, BUVU,'B)  for
e H »(R*)®C? and J:(g). Here, ,ézl—;'g projects onto the
upper components of a Dirac four-spinor and U, is the uni-
tary Foldy-Wouthuysen transformation which commutes
with E4. Then one gets from the diamagnetic inequality and
the Kato inequality [26]

(s, (Vi + Vo)) = | (o, Vi) | < y§(¢0,\E124+ea'-B¢o)

<7, (l/fEAllf)+7—V (3.14)

where we have introduced ="U, IE{L:UE 117/. This leads to

the inequality,
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= (1= 37 J o) B
(3.15)

For 7<72_7 the rhs of Eq. (3.15) is thus a lower bound for the
ground-state energy, allowing at most a decrease according
to B"2. This contradicts aZ' — c.

Finally we prove that Z as a function of the inverse mag-
netic field converges to its limiting value at B=o (allowing

for the choice ay=b,) and so does E(,LL,Z(/.L)). Since for
B— o we have Z# 0 at the energy minimum we can assume
B =B, sufficiently large so that Z can be restricted to a posi-
tive interval I. Then the integrands in Egs. (2.16) and (2.17)
are continuous in « and u in the interval [0,%) X [0, uo] with
uo=m/\eBy/2 except possibly in the point (x,u)=(0,0),
and they are also continuous and continuously differentiable
with respect to Z for Z e I. Since all integrals are convergent,
E is a continuous function of m and Z and so is the deriva-
tive JE /d~Z The existence of a numerical solution Z(,uo) sat-
isfying %(MU,Z(,%)):O together with the existence of a
ground state for any u<pu, guarantees that there is a con-
tinuous solution Z(w) to j—g(,u,,f(,u,))=0 for 0<u< uy,

whence also E(,U.,Z(,LL)) is continuous. This assures the con-
vergence of E(M,Z(M))HE(O,Z(O)) as w— 0. Thus our re-
sult (3.1) is established.

We note that in the nonrelativistic case, the operator
Vk*+m?*—m must be replaced by % in Eq. (3.2) so that the
kinetic energy behaves like Z'? instead of Z’ as B— . This
gives [15] EN[Zg] ~ & 22— E>Zese In B and hence

G
OE[Zei] =0 & Zoir = 2_3 In B,
Cq

(3.16)

which leads to £}~ —&(In B)? as B— =, where € is a generic
constant.

The nonrelativistic results according to [15], described in
Sec. V, are also included in Fig. 1. They show a power law

decrease of Z with B for both values of Z. Note the devia-
tions from the Brown-Ravenhall result even in the nonrela-
tivistic case (Z=20), which become larger when B increases.

Although not shown in the figure we have tested the con-

vergence of Z(u) for Z=80 up to N=10"3. Actually Z(u) is

not monotonically decreasing towards Z(0), but has a shal-
low minimum near A=10 (caused by the spin-dependent
potential V).

IV. FIELD-FREE CASE

In this section we compare the ground-state energy of the
Brown-Ravenhall operator for B=0, obtained from a varia-
tional model, with the accurate LCAO results from [7]. In
order to study the dependence of this ground-state energy on
the variational wave function we have used two types, a
spherical hydrogenic wave function,
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- Z/ 3/2 , - X
Yo(x) =—— e r= j dkfy(k)e™*,
N R

1 Z/5/2

folk) = eI 4.1)

and a relativistic function,

rei(X) = NoxTe 7' = f Ak (k)e™ X,
]R3

re+y) 1
27721( (Z!2+k2)1+7/2

= k
Sret(k) =Ny sin((Z + y)arctan ?) ,

(ZZ/)3/2+?

Ny=—=———, 7=V1-(Z'¢H)*-1, (4.2)
Va7['(3+279)

which is (apart from a constant) identical to the large com-

ponent of the Dirac ground-state wave function. Their Fou-

rier representations [[23] (3.944)] are required because e™** is

an eigenfunction to E,=E,(B=0) with eigenvalue Vk*+m?.
Using the nonrelativistic spin-up state, JOT= 120((1,), we ob-

tain for the expectation value of the kinetic energy,

13/2

(or-Epthor) = —= | difo(k)VK + mzf dxe ™ *e*x
N JR3 R3

2
0 (k2+Zr2)4'

(4.3)

327 f * VK? + m?

v

This integral can be evaluated analytically in terms of a hy-
pergeometric function ,F, [[23], (3.259)] so that

~ ~ 64 137 2
(¢0T’(Ep_m)¢0T) =m|:ET2F1(— 5,5,5,1 - (;) )_ 1:|.
(4.4)

Denoting E;=k>+m?* and A=[(E;+m)/E;]"* we obtain for
the first potential term,

(lZOT’Vl IZOT)
~ ) 1~ .
=X J dx f dk'dkfo(k")e ™ *A, —fo(k)e™*A,
2 Jg3 R6 X

3292 (7 dx

o0 1 2
JO kdkmAk sin kx) .
(4.5)

Concerning V, we note that due to the symmetry of the in-
tegration intervals the expectation value of a'~p}c0'p is just

}Ck’ -k (since E,, A;, and ]70 are even functions). We write the
angular integral of dk in the following way:
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f dQke™* = -V, f dQe™x
52 52

447 sin kx

=—;V
Hx kx

k
=4mix—j,(kx), (4.6)
X

where j, is a spherical Bessel function. Then

(o1, Vathyy) = - ng3 dxfﬁé dk' dkfo(k")

1 1
Ap—K' -k
Ekr+m X Ek+m

327Z'5f°°
=— xdx
= Jo

X e—ik' X

Acfolk)e™>

2
kil(kx)> .
(4.7)

We note that Eq. (4.7) is subordinate to Eq (4.5) by approxi-
mately a factor of (Eer)2 (2m)2 (legf; 04)2 if k<m, re-
spectively, Z' <m. However V, gains importance at relativ-
istic charges.
For the relativistic function (4.2) we proceed in a similar
way and obtain the result, setting ¢, = 1,//rel((l)),
Byt =t |

0 (Z/2+ k2)2+7

“ 1 1
X Bdk—————A
(JO (K> +Z'**E, +m

k
X sinz((Z + y)arctan ?)

X (VK> + m* = m),

Co() — 222‘}/273&2‘)/@ (48)
I'3+2%)
and
/y ]
(i, (Vi + Vo) ther) = = ;Coof xdx(Iy + ).
0
I rkdk : i ((2+~) ¢ k)A sin kx
= —————in arctan — ,
0= J Mz ey Y 7' % kx
(4.9)

* 1 1
Lo= | Kdk = A
20 fo (Z2+ )2 E +m "

k
><sin<(2 + y)arctan ?)jl(kx).

The decrease of these integrals with k is slightly weaker than
for those in Egs. (4.5) and (4.7). Again, the total energy is
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TABLE II. Ground-state energy at B=0 for Z=20, 40, 60, and
80. E? —m, Dirac energy. E?R, present results using the hydrogenic
wave function (4.1). E,, present results with the relativistic trial
function (4.2). E?W, LCAO results taken from Reiher and Wolf [7].
All energies in atomic units.

z E)—m EX Ep EQY
20 -201.1 -201.1 -201.3 -201.3
40 -817.8 -817.6 -822.4 -823.9
60 -1896 -1893 -1928 -1934
80 -3532 -3513 -3647 -3686

minimized with respect to the variational
Zeff:Z,ao.

Our results for the ground-state energy are given in
atomic units (ap=1). In order to convert relativistic units
(r.u. ) into atomic units (a.u.) we note that the energy unit is

Ey= ﬁz 5 =27.21 eV=1 a.u. and that the momentum unit is aO
[16]. We write k>+m?> m\/1+(—)2 mv1+(kagy)’e* and
further, m[ru.]=;la.u.]= 4[a u] as well as ofru]
=%[a.u.]=ﬁ[a.u.]. m occurs also in Z'/m=Ze? which is
dimensionless. In short, one must to replace Z' by Z, v by
Z, the prefactor m in the kinetic energy [and in Eq. (2.17)] by
1/¢* but elsewhere m by 1/¢>.

Table II gives the ground state (with the rest energy sub-
tracted) for one-electron ions with Z between 20 and 80. The
third and fourth columns contain, respectively, the results for
E?R and E,;. As a matter of fact, EgBR is quite close to the
exact Dirac energy, with a difference not exceeding 0.5%
even for Z=80. The relativistic trial function, on the other
hand, reproduces the LCAO results within 1%. It is evident
that the LCAO results for the Brown-Ravenhall operator fall
below the Dirac energy, the more so, the higher Z. Detailed
calculations [7] show that one must include (for Z~ 80) all
terms of the Douglas-Kroll series up to fifth order in the field
strength 7y to approach the Dirac energy within 0.01%. One
is led to explain the reasonable agreement between E?R and
E? —m by the fact that although hPR is exaggerating the rela-
tivistic effects, this is compensated for by forming the expec-
tation value with a nonrelativistic function. This gives us
confidence that also for B # 0 the Dirac results are well rep-
resented by our variational results obtained from nonrelativ-
istic functions.

parameter

V. NUMERICAL RESULTS FOR B #0

We have determined E?R from the energy functional
(2.16) for nuclear charges between 1 and 80 and for a large
variety of magnetic fields B. Figure 2 shows the dependence
of the ground-state energy on Z for fixed B. It is evident that
EBR decreases not only with B but also with Z. When ap-
pr0x1mated by —E§R~ZS (which is fairly accurate for
7Z=<80) we have s=2.1 when B=0, s=1.25 when
B=2.56X10* (in units of m?e®) which increases to s=1.55
for B=10".

The competition between the magnetic length and the
scaled Bohr radius suggests to consider B/Z> as the relevant
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EBR[ 104 ]
— 9l J
=&l . 4
- 107 A -
—6t 4
20 40 60 80

Z

FIG. 2. Ground-state energy EER as a function of the nuclear
charge for fixed magnetic field B. (---), B=0. (—), B=2.56 X 10* (in
units 2.35X10° G). (- - -), B=1.28 X 10°. (---), B=10°. (---), B
=10".

magnetic field parameter. In fact, when B/Z*=\m?e? is kept
fixed but Z is varied, the ratio E?R(Z ,B)/ E?R(Z ,0) [where
the latter is calculated with the spherical nonrelativistic trial
function (4.1)] is approximately constant. This suggests the
factorization

ESNZ.B) =~ E;NZ.0)f(BIZ%) (5.1)
with some function f only depending on \. As seen from Fig.
3, the scaling (5.1) is well satisfied for Z=<?20, but even for
Z=280 the deviations from a universal function f are rather
small. When Z=80, f may be approximated by a power law,
f~\* with s =0.35, for 20 =<\ < 10*. It follows from Table I
that the scaling does no longer hold at B=c. Indeed
(at Z=80), s increases for N=10" to its asymptotic value
5=0.5, valid for A\=10". The strong change in s near
A=10° may be related to the minimum in the variational

parameter Z.

EPR(z,B)/EPR(2,0)
102 ; ; ,

10

10 102 10° 5 104
FIG. 3. Ratio between EER(Z ,B) and the field-free ground-state

energy EER(Z ,0) as a function of the magnetic field parameter \.
Results for Z=1 (-----), Z=20 (---), and Z=80 (—).
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EER/Egnr
1.5 T T .

14+

1.3 +

1.2 +

1.1 F

0.9

FIG. 4. Ratio between the relativistic ground-state energy E?R
and the results for EZ’ from the nonrelativistic model of Rau and
co-workers [15] as a function of N\. Z=1 (-----), Z=20 (---), and
Z=80 (—).

We have also compared our B-dependent ground-state en-
ergies to the nonrelativistic results from Rau er al. [15] who
have derived an analytic formula for the energy functional of

the one-electron ion (with the spin shift % subtracted),
4
me*( _, u(1,1,9) >
ENZyl=—\Zop =222 p——— |,
O[ eff] 2 ( eff effl—(U(l,l,{)
272
(= T°“m2e3. (5.2)

In this equation U is the irregular degenerate hypergeometric
function, and the relation U(2,2,2)=¢""-U(1,1,{) was ap-
plied to the formula in [15]. For the numerical computation
we have used the integral representation [[23], (9.211)]

1
1+t

U(1,1,9) =f dte™® (5.3)
0

The nonrelativistic ground-state energy is obtained from
EZ’:mianff>0E8’[Zeff]. Figure 4 shows the ratio EgBR/ Ey asa
function of the magnetic field parameter N. The difference
between the two theories in the nonrelativistic case (Z=1) at
small \ is due to the choice of different variational wave
functions. A spherical hydrogenic function gives results
which deviate for A=2 from the accurate ground-state energy
(-1.022, calculated with the help of a large harmonic oscil-
lator basis [27]) by only 4% and hence is superior to the
one-dimensional function used in our model (which deviates
by 13.5%). However, for very large N\ the spherical wave
function becomes effectively a one-dimensional one and in-
deed, the Z=1 ratio decreases towards unity for A= 103,
Even more, the present result for Z=1 and A=5X 103
(E?R=—11.67) differs from an accurate relativistic calcula-
tion (—11.87 [13]) by only 1.7%. For Z=20, still considered
to be nonrelativistic at B=0, the plotted ratio behaves very
similar to the Z=1 case for A =100, but it continues to in-
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crease with \ for the higher magnetic fields. For Z=80, |EL"|
increases much faster with \ than |E”|, and the relativistic
effects are large beyond A=100. This feature may be ex-
plained by the fact that the larger B, the closer passes the
electron by the nucleus. If, in addition, Z is high, the purely
relativistic spin-dependent interaction term V, comes into
play.

We recall that in the low-Z studies of the Dirac ground
state [12,13] relativistic effects turned out to be negligibly
small even for the highest B values considered. In fact, for
Z=1 and \ < 10%, relativistic effects were found to be below
0.01%. For Z=20 and A=2 (where the accurate result,
—409.6 [13] differs from E}'=-393.2 again by only 4%),
relativistic effects amount to 0.2%.

VI. CONCLUSION

We have calculated the ground-state energy of the pseu-
dorelativistic Brown-Ravenhall operator for one-electron
ions in strong magnetic fields up to B=10*Z*[m?¢’], using a
simple variational wave function. For nonrelativistic systems
(Z=20) we have tested our results against the nonrelativistic
variational theory of Rau and co-workers, and we have found
that for moderate fields (B=~10-20Z> [m?e*], large enough
so that it is reasonable to use a one-dimensional hydrogenic
trial function) EE’R differs from [15] by less than 5%. The
influence of relativistic effects has been established for
Z =20 and large magnetic fields, leading to a decrease of the
ground-state energy relative to the nonrelativistic theory, the
more so, the higher Z.

PHYSICAL REVIEW A 78, 062103 (2008)

We have found that the ratio A between the (square of the)
scaled Bohr radius and the magnetic length should be con-
sidered as the relevant magnetic field parameter. In fact, the
ground-state energy depends to a good approximation only
on B/Z? rather than on B itself. This is in contrast to the
scaling according to B/Z*3 and B/Z> for moderate and large
B, respectively, derived from the Thomas-Fermi theory for
multielectron atoms [28,18].

When B is increased to infinity, it is shown that the varia-
tional ground-state energy decreases like —c;B'/?, which is an
upper bound to the true ground-state energy of the Brown-
Ravenhall operator. On the other hand, a lower bound was
derived earlier, h®BR=—¢,B"? (with c¢;,c, constants). This
leads to the conjecture that for the infimum of the spectrum
of hBR one has

inf o(hBR) ~ — B2 6.1)

as B — oo,

This differs from the logarithmic B-dependence of the
ground state of the one-electron Pauli operator. It is, how-
ever, consistent with a recent investigation of the Dirac op-
erator where a scaling of the ground-state energy with B
was derived in the asymptotic regime [29]. This confirms
that relativistic effects indeed play an important role.
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