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The lowest bound state of a one-electron ion in a constant magnetic field B is calculated from the pseu-
dorelativistic no-pair Brown-Ravenhall operator. The variational wave function is chosen as the product of a
Landau function �in the transverse direction� and a hydrogenic state �in the longitudinal direction�. The depen-
dence of the ground-state energy on the nuclear charge Z as well as on the magnetic field strength is investi-
gated, and a scaling with B /Z2 is observed. Relativistic effects are shown to be important both for large B and
large Z. When B→�, a decrease of the ground-state energy with �B is found in contrast to the ln B behavior
of the Pauli operator.
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I. INTRODUCTION

A relativistic atomic electron of mass m in a magnetic
field B=��A resulting from a vector potential A is de-
scribed by the Dirac operator H,

H = DA + V, DA = � · �p − eA� + �m , �1.1�

where � ,� are Dirac matrices and V=− �
x is the Coulomb

field generated by a point nucleus of charge Z fixed at the
origin. The coordinate and momentum of the electron are
denoted, respectively, by x and p �with x= �x�=�x1

2+x2
2+x3

2�,
and the field strength is �=Ze2. Relativistic units ��=c=1�
are used in the formulas, with e2�1 /137.04 being the fine
structure constant.

The unboundedness of H from below �which is due to the
presence of the positron states� is usually remedied by ap-
proximating H with semibounded pseudorelativistic opera-
tors if pair creation plays no role. A widely used pseudorela-
tivistic operator which nevertheless accounts for the spin
degrees of freedom is the Brown-Ravenhall operator hBR. It
can be obtained from a projection of H onto the positive
spectral subspace of the electron at V=0 �1� �see also �2� for
its mathematical analysis�. Equivalently, hBR is the first-order
term �in �� of the Douglas-Kroll series which results from a
unitary transformation scheme �3� applied to H in order to
decouple the positive and negative spectral subspaces.

Our motivation to study the lowest bound state of the
single-particle Brown-Ravenhall operator is the fact that it
provides the bottom of the essential spectrum of the respec-
tive two-particle operator �4�. In the absence of magnetic
fields the ground-state energy of hBR was first calculated by
Hardekopf and Sucher �5� by solving numerically the corre-
sponding eigenvalue equation in momentum space. These
authors also showed that the difference from the exact Dirac
eigenvalue, Eg

D=m�1−�2, is of the order of �5 �which
amounts to an error of 4% for Z=80�.

The convergence of the Douglas-Kroll series was investi-
gated numerically �up to the 14th order in �� by Hess and
co-workers �6,7� for the ground state of one-electron and
multielectron ions and atoms. They performed linearly com-

bined atomic orbital �LCAO� calculations within a large
Gaussian basis set �in coordinate space�, which they trans-
formed into a basis that diagonalizes the kinetic energy op-
erator entering into all potential terms �8�. A rigorous math-
ematical proof of the series convergence was given only
recently �9�.

There is also an early study on the transformed Dirac
operator which allows for a magnetic field �10�. In that work
relativistic effects were estimated in perturbation theory by
making an expansion in 1 /c rather than invoking the
Douglas-Kroll series. Such an expansion is, however, ill-
defined �11�, and it led to a serious overprediction of the
relativistic effects.

Indeed, investigations carried out for small nuclear
charges �Z�20� on the Dirac operator itself showed that
relativistic effects on its ground-state energy are very small
in the considered range of magnetic field strengths �12,13�.
In one method the wave function was expanded in terms of
Landau levels and the resulting coupled differential equa-
tions were solved in an approximate way �12�. Another
method used a trial function in a variational calculation
which consisted of a superposition of products of a Landau
function and a relativistic hydrogenic function �13�.

In the general case where the trial function is not closely
related to the true ground state, a minimax principle must be
used to obtain the lowest bound state of the Dirac operator
�14�. If, however, an operator is bounded from below, the
much simpler minimum principle in a variational calculation
is sufficient. Then, on one hand, a large basis of trial
functions can be taken in order to obtain accurate results. On
the other hand, appropriately chosen simple variational func-
tions reduce the numerical effort considerably while retain-
ing the important features. Such an approach was used by
Rau and co-workers �15� to describe atoms and one-electron
ions in intense magnetic fields. Neglecting relativistic and
spin effects, they employed the Schrödinger operator
HS= 1

2m �p−eA�2+V. If spin is considered �in a nonrelativistic
way�, the Schrödinger operator turns into the Pauli operator
HP=HS− 1

2me� ·B. Its ground state differs from that of HS by
simply a shift of − 1

2meB �see, e.g., �16,15��, so that spin
effects can easily be included.

The variational ground-state wave function in �15� for a
one-electron ion is taken as a product state consisting of a*dj@mathematik.uni-muenchen.de
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hydrogenlike 1s function �to an effective charge which
serves as variational parameter� and a ground-state Landau
function �for the transverse degrees of freedom�. The so de-
termined ground-state energy has the correct behavior at
B=0 by construction. For B→�, with eB

2m subtracted, it also
shows the correct �ln B�2 behavior. Note that it is rigorously
proven that the ground-state energy of the Pauli operator
decreases according to �ln B�2 as B→�, the error being of
the order of ln B ln�ln B� �17�.

It can be shown that for large magnetic fields where the
magnetic length 1

�eB
is much smaller than the scaled Bohr

radius a0 /Z, the electron occupies the lowest Landau band
�18�. Then the ground-state function is no longer dominated
by a spherical hydrogenic state, but this state degenerates to
a one-dimensional function in the direction of B �while the
transverse degrees of freedom are confined by the magnetic
field�. In fact, this longitudinal function becomes an eigen-
state to a �-type potential when B→� �19�.

In the present work we extend the Rau et al. method to
the pseudorelativistic operators. As a matter of fact, a mag-
netic field can easily be incorporated into the Douglas-Kroll
series �20,21�. The Brown-Ravenhall operator is well defined
in the form sense for ���c �the bound �c= 2

	 , corresponding
to Z=87 and valid for A�L2,loc�R3� and B bounded or in
L2�R3� has recently �24� been increased to 2 / � 	

2 + 2
	 � for lo-

cally bounded A�. However, for the higher-order terms of the
Douglas-Kroll series, this bound on � decreases with the
magnetic field strength and goes to zero as B→� �21�.
Therefore, the higher-order terms are inferior to the first-
order term for very large magnetic fields �despite their better
approximation of Eg

D at B=0�.
In our variational ansatz a one-dimensional hydrogenic

function �together with the Landau function� is used for the
ground state of the Brown-Ravenhall operator, valid if B is
sufficiently large. The model is described in Sec. II and the
asymptotic B-dependence is extracted in Sec. III. Section IV
provides variational results for the B=0 case, including a
comparison with the accurate ground-state energy. The B de-
pendence of the ground-state energy �for B /Z2
1013 G� is
discussed in Sec. V with particular emphasis on a scaling
property, as well as on the onset of relativistic effects. The
conclusion is drawn in Sec. VI.

II. VARIATIONAL MODEL

The Brown-Ravenhall operator in a magnetic field is
given by �22,21�

hBR = EA + V1 + V2, �2.1�

V1 = − �AE
1

x
AE, V2 = − �AE

� · pA

EA + m

1

x

� · pA

EA + m
AE,

where EA= �DA� is the kinetic energy operator,

EA = �pA
2 − e� · B + m2, AE =�EA + m

2EA
�2.2�

and pA=p−eA. �= ��1 ,�2 ,�3� is the vector of Pauli spin
matrices. In the following we take B=Be3 to be a constant

magnetic field along the e3 axis, generated by

A�x� =
B

2
�− x2,x1,0� �2.3�

which obeys � ·A=0. hBR acts in the Hilbert space
L2�R3� � C2 and extends to a self-adjoint operator for ���c.
Its form domain is H1/2�R3� � C2 where H1/2 denotes a Sobo-
lev space.

Let us first switch off the scalar potentials V1 and V2.
Then we can profit from the fact that EA

2 =2mHP�V=0�+m2

so that EA
2 �and thus EA� is diagonalized by the eigenstates of

the Pauli operator.
The ground state is characterized by a spin-up state,

�0↑=�0k�
1
0 �, resulting in −e� ·B�0↑=−e�3B�0↑=−eB�0↑.

Taking the normalized lowest Landau function �16,15� and
allowing for a free electronic motion in the x3 direction, we
have

�0k��,x3� = N0e−eB�2/4eikx3, N0 =� eB

2	
,

and

EA
2�0↑ = ��eB + k2� − eB + m2��0↑ = �k2 + m2��0↑,

�2.4�

where �=�x1
2+x2

2 is the radial coordinate perpendicular to B.
Thus the corresponding eigenvalue of EA is given, indepen-
dently of B, by the energy �k2+m2 of a free relativistic elec-
tron of momentum k.

The presence of the Coulomb field restricts the motion in
the x3 direction and we choose for our variational wave func-
tion a superposition of momentum states, �g=�0� 1

0 �, normal-
ized to unity, with

�0�x� = Ñ0e−eB�2/4�
−�

�

dkf̃�k�eikx3, �2.5�

f̃�k� =
aZ�

	�Z�2 + k2
K1�a�Z�2 + k2�, Ñ0 = 	 eB

4	aK1�2aZ��

1/2

,

where K1 is a modified Bessel function and

a = 1/�eB �2.6�

the magnetic length. The function f̃ is taken as the Fourier
transform of a one-dimensional hydrogenic ground-state
function to a parameter Z�=Zeff /a0 �where Zeff is an effective
charge—our variational parameter—and a0=�2 / �me2� the
Bohr radius� ��23� �3.914��,

�
−�

�

dkf̃�k�eikx3 = e−Z��a2+x3
2
. �2.7�

The idea behind the choice �2.7� is the confinement of the
electronic motion in the �x1 ,x2� direction by the magnetic
length, valid if a
a0 /Z or equivalently, B�Z2m2e3 �in con-
ventional units, 1m2e3c /�3=2.35�109 G�. Its advantage
compared to the ansatz used in �15�, where exp�−Z�x� is
taken instead of exp�−Z��a2+x3

2�, is the exact diagonaliza-
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tion of the kinetic energy EA because the Fourier transform
�2.7� does not affect the transverse degrees of freedom. We
note in passing that in �15� the cyclotron radius rc=�2a is
taken as the magnetic scale. This leads to the condition
B�2Z2m2e3.

Let us now determine the expectation value of hBR−m
�where the electron’s rest energy mc2 is subtracted� with re-
spect to the function �g. For the kinetic energy we obtain,
using Eq. �2.7� for the inverse Fourier transformation,

„�g,�EA − m��g…

= Ñ0�
−�

�

dkf̃�k��
R3

dx�̄g�x���k2 + m2 − m�e−eB�2/4eikx3

=
2aZ�2

	K1�2aZ���0

�

dk
1

Z�2 + k2K1
2�a�Z�2 + k2�

���k2 + m2 − m� . �2.8�

In order to evaluate the potential terms, also �̄g must be
taken in its momentum representation �2.5� because in V1
and V2, EA enters on both sides of the Coulomb potential

−� /x. As f̃ and AE are even functions of k we obtain

��g,V1�g� = − 4�Ñ0
2�

−�

�

dx3F2�x3�2	�
0

�

�d�

�e−eB�2/2 1

��2 + x3
2

,

F�x3� = �
0

�

dkf̃�k�AE cos kx3. �2.9�

We have ��23� �3.468��

2�
0

�

�d�e−eB�2/2 1

��2 + x3
2

=�2	

eB
eeBx3

2/2�1 − �	�x3��eB

2

� . �2.10�

For the numerical evaluation of the probability function
� we use an integral representation �for 0�y
50�
and, respectively, the asymptotic expansion ��23� �8.254��
�for y�50�,

E�y� ª �	ey2
�1 − ��y��

= �
0

�

d�
e−�

�� + y2
=

1

y
�1 −

1

2y2 +
3

4y4 −
15

8y6 + O	 1

y8
� .

�2.11�

Concerning the potential term V2 we must evaluate
� ·pA

1
x � ·pA on a spin-up eigenstate of type �2.4�. With the

vector potential A from Eq. �2.3� and p=−i�, we obtain

�p − eA��0k =

eB

2
�ix1 + x2�

eB

2
�ix2 − x1�

k
��0k �2.12�

so that, with �0↑�k�=�0k�
1
0 �,

��0↑�k��,� · pA
1

x
� · pA�0↑�k��

= ��0↑�k��,	pA
1

x
pA + i� · pA ·

1

x
pA
�0↑�k��

= 	�0↑�k��,
kk�

x
�0↑�k�
 . �2.13�

Hence, the restriction of this operator to �0↑ is independent
of B. Therefore,

��g,V2�g� = − 4�Ñ0
2�

−�

�

dx3G2�x3�2	�
0

�

�d�

�e−eB�2/2 1

��2 + x3
2

,

G�x3� = �
0

�

dkf̃�k�AE
1

EA + m
k sin kx3. �2.14�

Note that the integrands in Eqs. �2.9� and �2.14� are even
functions of x3, simplifying the respective integration region
to �0,��.

For the numerical evaluation of the integrals it is conve-
nient to shift variables from x3 to y by means of y=�eB

2 x3 in
order to get rid of the B dependence in the function E from
Eq. �2.11�. In turn, we measure the magnetic field in units of
Z2, i.e., B=�Z2�m2e3�, ��2, and introduce the scaled vari-
ables

ã = a�eB

2
=

1
�2

, � = m/�eB

2
=

�2
��Ze2

,

Z̃ = Z�/�eB

2
=

Zeff
�2

��Z
, � = k/�eB

2
. �2.15�

Then we obtain for the energy functional E0�Zeff�,

„�g,�hBR − m��g… = c0�
0

�

d�
1

Z̃2 + �2

�K1
2�ã�Z̃2 + �2����2 + �2 − ��

−
Ze2c0

	
�

0

�

dyE�y��I1
2 + I2

2� ¬ E0�Zeff� ,

�2.16�

where
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c0 =
�2�ZãZ̃2

	K1�2ãZ̃�
me2,

I1 = �
0

�

d�
1

�Z̃2 + �2
K1�ã�Z̃2 + �2�

�	��2 + �2 + �

��2 + �2 
1/2

cos��y� ,

I2 = �
0

�

d�
�

��2 + �2 + �

1

�Z̃2 + �2
K1�ã�Z̃2 + �2�

�	��2 + �2 + �

��2 + �2 
1/2

sin��y� . �2.17�

Finally we determine Zeff from the variational principle

�E0�Zeff� = 0. �2.18�

Equivalently, the ground-state energy of the Brown-
Ravenhall operator is estimated from above by Eg

BR

=minZeff�0 E0�Zeff�.

III. ASYMPTOTIC B-DEPENDENCE

In this section we will show that Eg
BR decreases according

to �B for B→�. This is done by considering the behavior of

the scaled variational parameter Z̃ which solves Eq. �2.18�.
Figure 1 shows Z̃ as a function of B for Z=20 and 80.

Whereas Z̃ decreases for Z=20 according to a power law
��B−0.3� even for the highest fields considered, there is a

distinct flattening of Z̃ with increasing B in the relativistic
case Z=80. These numerical results suggest that for relativ-
istic ions the optimized scaled variational parameter tends to
a strictly positive constant as B→�, a conjecture which is
proven below.

In order to derive the asymptotic B dependence of

the ground-state energy we define Ẽ�� , Z̃�
= (�g , �hBR−m��g) /�B according to Eq. �2.16�. At B=� we
have �=0 where the right-hand side �rhs� of Eq. �2.16� di-
vided by �B is independent of B and so is the variational

solution Z̃�0�. Table I gives the numerical results for Z̃�0�
and Ẽ(0, Z̃�0�) for various nuclear charges Z. Thus a

finite Z̃�0��0 guarantees not only that �Ẽ(0, Z̃�0�) � �� �as
the respective integrals are convergent�, but also that

Ẽ(0, Z̃�0�)�0.

The existence of the limit lim�→0 Z̃���= Z̃�0� implies the

existence of lim�→0 Ẽ(� , Z̃���)= Ẽ(0, Z̃�0�)=−c̃ as discussed
near the end of this section. As a result,

Eg
BR � − c̃B1/2 as B → � . �3.1�

In order to prove the above conjecture we start by show-
ing that there are constants a0 ,b0 so that as B→� the opti-

mized Z̃ obeys 0�a0� Z̃�b0��. In other words we prove

by contradiction that �i� Z̃ does not tend to zero and �ii�
Z̃�� as B→�.

�i� Let us assume first that Z̃→0 as B→�, as in the non-
relativistic case. In the unscaled variables this corresponds to

ãZ̃=aZ�→0. Since a→0 like B−1/2 we thus assume that Z�
increases more weakly than B1/2 as B→�. This property
holds for all effective charges in a neighborhood of the so-
lution to the variational principle. Therefore, we will calcu-
late the kinetic and potential energy as a function of the
effective charge and only subsequently consider the varia-
tional principle.

From the behavior of the modified Bessel function near
zero, K1�z�� 1

z as z→0, we obtain for the kinetic energy
�2.8�,

��g,EA�g� � c̃Z�3�
0

�

dk
1

�Z�2 + k2�2
�k2 + m2, �3.2�

independent of a. With k=Z�� and Z�→� with B→�,

Z�3�
0

�

dk
�k2 + m2

�Z�2 + k2�2 = Z��
0

�

d�
��2 + �m/Z��2

�1 + �2�2 � c̃Z�,

�3.3�

where c̃�0, so that the kinetic energy becomes linear in Z�.
We note that the step from Eqs. �2.8� to �3.2� implies an

TABLE I. Z̃ and the corresponding scaled ground-state energy

Ẽ(0, Z̃�0�)=Eg
BR / �Z��� in atomic units at �=0 �corresponding to

B=�� for nuclear charges Z ranging from 20 to 80.

Z Z̃�0� Eg
BR /�B

20 0.0074 −0.0718

40 0.054 −1.425

60 0.137 −4.777

80 0.239 −9.868

FIG. 1. Z̃=Zeff
�2 / �Z��� as a function of the magnetic field

strength B �in units 2.35�109 G� for Z=20 �– – –� and Z=80 �—�.
Results are also shown for the nonrelativistic model of Rau and
co-workers �15�: Z=20 �---� and Z=80 �-·-·-�.
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interchange of limits B→� and k→�. This relies on Eq.
�3.2� being a convergent majorant since K1 is monotonically
decreasing.

For the potential energy we use Eq. �2.17� with the sub-

stitution �= Z̃� ��23�, �3.723��,

I1 �
1

ãZ̃
�

0

�

d�
cos�Z̃y��

1 + �2 =
	

2ãZ̃
e−Z̃y . �3.4�

Further, from Eq. �2.11� with M =50,

�
0

�

dyE�y�e−2Z̃y = �
0

M

dyE�y�e−2Z̃y

+ �
M

�

dy�1

y
+ O	 1

y3
�e−2Z̃y

= c�Z̃� − Ei�− 2Z̃M� → c̃ − ln�Z̃� �Z̃ → 0� ,

�3.5�

since the first integral as well as the higher-order terms �in 1
y �

of the second integral lead to a finite result which is inde-

pendent of Z̃ as Z̃→0. We have also used the near-zero ex-
pansion of the exponential integral Ei ��23� �3.352�, �8.214��.

For the second contribution I2 we have ��23�, �3.723��,

I2 �
1

ãZ̃
�

0

�

d�
sin�Z̃y��

1 + �2 =
1

2ãZ̃
�e−Z̃y Ei�Z̃y� − eZ̃y Ei�− Z̃y�� .

�3.6�

Dividing again the integration region of �0
�dyE�y�I2

2 into the

intervals �0,M�� �M ,�� and using that ��0
�d� sin�Z̃y�� /

�1+�2��� 	
2 , the integral over �0,M� is finite irrespective of

Z̃ �if the prefactor �ãZ̃�−1 is ignored�. The boundedness of the
integral in Eq. �3.6� also assures the convergence concerning
the higher-order terms �in 1

y � in the integral over �M ,��. In
order to show that the remaining integral is bounded we

substitute Z̃y=� and obtain from Eq. �3.6�,

�
M

�

dy
1

y
I2

2 �
1

�2ãZ̃�2
�

0

� d�

�
�e−� Ei��� − e� Ei�− ���2

�3.7�

as Z̃→0. With e−� Ei���−e� Ei�−���−2� ln � as �→0 the
integral converges near zero.

For investigating �→� we make a partial integration of
the left-hand side �lhs� of Eq. �3.6�. Then

�
M

�

dy
1

y
I2

2 �
1

�ãZ̃�2
�

0

� d�

�
	1

�
−

2

�
�

0

�

d�
� cos ��

�1 + �2�2
2

.

�3.8�

Since �cos �� � �1, the �-integral is finite for all � so that the
�-integral converges for �→�.

Collecting results,

„�g,�V1 + V2��g… � c̃��Z̃3 1

Z̃2
ln�Z̃� � − c2Z� ln B

�3.9�

as B→� where c2�0 is some constant. The variational
functional becomes

E0�Zeff� � �c̃ − c2 ln B�Zeff/a0 �B → �� �3.10�

and it is obvious that �E0�Zeff�=0 has no solution.
�ii� Let us now assume that aZ�→� as B→�. As a con-

sequence, Z��B1/2w�B� with w�B�→� as B→�. Using the
asymptotic behavior of the modified Bessel function,
K1�z���	

2 e−z /�z as z→�, we have from Eq. �2.8�,

��g,EA�g� � c̃Z��aZ��
0

�

d�
�

�1 + �2�3/2e−2aZ���1+�2−1�.

�3.11�

We make further the substitution x=2aZ���1+�2−1�. This
leads to

��g,EA�g� �
c̃

2
�Z�

a
�

0

� dx

�1 + x/2aZ��2e−x. �3.12�

The integral converges to a finite �nonzero� limit as
aZ�→�. In order to show this we use a sandwich estimate,

�
0

2aZ� dx

4
e−x � �

0

� dx

�1 + x/2aZ��2e−x � �
0

�

dxe−x.

�3.13�

For aZ�→� the lower bound tends to 1
4 , and the upper

bound is 1. Thus, the kinetic energy behaves like
�Z� /a�B1/2�w�B�. As a consequence, the potential energy
must decrease at least like B1/2�w�B� in order to produce a
bound state. It is rigorously established that such a bound
ground state of hBR exists for arbitrarily large B if ��

2
	

�24,4,25�.
On the other hand, the ground-state energy can decrease

at most like �B. This is due to the relative form boundedness
of V1+V2 with respect to EA. Indeed, following �2,26�
we can write (� , �V1+V2��)= ��̃ , �̃U0VU0

−1�̃�̃� for

��H1/2�R3� � C2 and �̃= � �
0 �. Here, �̃= 1+�

2 projects onto the
upper components of a Dirac four-spinor and U0 is the uni-
tary Foldy-Wouthuysen transformation which commutes
with EA. Then one gets from the diamagnetic inequality and
the Kato inequality �26�

�„�,�V1 + V2��…� = ���0,V�0�� � �
	

2
��0,�EA

2 + e� · B�0�

� �
	

2
��,EA�� + �

	

2
�eB���2, �3.14�

where we have introduced �0=U0
−1�̃�̃=U0

−1�̃. This leads to
the inequality,
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��,hBR�� � 	1 − �
	

2

��,EA�� − �

	

2
�eB���2.

�3.15�

For ��
2
	 the rhs of Eq. �3.15� is thus a lower bound for the

ground-state energy, allowing at most a decrease according
to B1/2. This contradicts aZ�→�.

Finally we prove that Z̃ as a function of the inverse mag-
netic field converges to its limiting value at B=� �allowing

for the choice a0=b0� and so does Ẽ(� , Z̃���). Since for

B→� we have Z̃�0 at the energy minimum we can assume

B�B0 sufficiently large so that Z̃ can be restricted to a posi-

tive interval Ĩ. Then the integrands in Eqs. �2.16� and �2.17�
are continuous in � and � in the interval �0,��� �0,�0� with
�0=m /�eB0 /2 except possibly in the point �� ,��= �0,0�,
and they are also continuous and continuously differentiable

with respect to Z̃ for Z̃� Ĩ. Since all integrals are convergent,

Ẽ is a continuous function of � and Z̃, and so is the deriva-

tive �Ẽ /dZ̃. The existence of a numerical solution Z̃��0� sat-

isfying �Ẽ

�Z̃
(�0 , Z̃��0�)=0 together with the existence of a

ground state for any ���0 guarantees that there is a con-

tinuous solution Z̃��� to �Ẽ

�Z̃
(� , Z̃���)=0 for 0����0,

whence also Ẽ(� , Z̃���) is continuous. This assures the con-

vergence of Ẽ(� , Z̃���)→ Ẽ(0, Z̃�0�) as �→0. Thus our re-
sult �3.1� is established.

We note that in the nonrelativistic case, the operator
�k2+m2−m must be replaced by k2

2m in Eq. �3.2� so that the
kinetic energy behaves like Z�2 instead of Z� as B→�. This
gives �15� E0

nr�Zeff�� c̃1Zeff
2 − c̃2Zeff ln B and hence

�E0
nr�Zeff� = 0 ⇔ Zeff =

c̃2

2c̃1

ln B , �3.16�

which leads to Eg
nr�−c̃�ln B�2 as B→�, where c̃ is a generic

constant.
The nonrelativistic results according to �15�, described in

Sec. V, are also included in Fig. 1. They show a power law

decrease of Z̃ with B for both values of Z. Note the devia-
tions from the Brown-Ravenhall result even in the nonrela-
tivistic case �Z=20�, which become larger when B increases.

Although not shown in the figure we have tested the con-

vergence of Z̃��� for Z=80 up to �=1013. Actually Z̃��� is

not monotonically decreasing towards Z̃�0�, but has a shal-
low minimum near �=105 �caused by the spin-dependent
potential V2�.

IV. FIELD-FREE CASE

In this section we compare the ground-state energy of the
Brown-Ravenhall operator for B=0, obtained from a varia-
tional model, with the accurate LCAO results from �7�. In
order to study the dependence of this ground-state energy on
the variational wave function we have used two types, a
spherical hydrogenic wave function,

�̃0�x� =
Z�3/2

�	
e−Z�x = �

R3
dk f̃0�k�eik·x,

f̃0�k� =
1

	5/2
Z�5/2

�k2 + Z�2�2 , �4.1�

and a relativistic function,

�rel�x� = N0x�̃e−Z�x = �
R3

dk f̃ rel�k�eik·x,

f̃ rel�k� = N0
��2 + �̃�

2	2k

1

�Z�2 + k2�1+�̃/2 sin	�2 + �̃�arctan
k

Z�

 ,

N0 =
�2Z��3/2+�̃

�4	��3 + 2�̃�
, �̃ = �1 − �Z�e2�2 − 1, �4.2�

which is �apart from a constant� identical to the large com-
ponent of the Dirac ground-state wave function. Their Fou-
rier representations ��23� �3.944�� are required because eikx is
an eigenfunction to Ep=EA�B=0� with eigenvalue �k2+m2.

Using the nonrelativistic spin-up state, �̃0↑= �̃0� 1
0 �, we ob-

tain for the expectation value of the kinetic energy,

��̃0↑,Ep�̃0↑� =
Z�3/2

�	
�

R3
dk f̃0�k��k2 + m2�

R3
dxe−Z�xeik·x

=
32Z�5

	
�

0

�

k2dk
�k2 + m2

�k2 + Z�2�4 . �4.3�

This integral can be evaluated analytically in terms of a hy-
pergeometric function 2F1 ��23�, �3.259�� so that

„�̃0↑,�Ep − m��̃0↑… = m� 64

15	 2F1�−
1

2
,
3

2
,
7

2
,1 − 	Z�

m

2� − 1� .

�4.4�

Denoting Ek=�k2+m2 and Ak= ��Ek+m� /Ek�1/2 we obtain for
the first potential term,

��̃0↑,V1�̃0↑�

= −
�

2
�

R3
dx�

R6
dk�dk f̃0�k��e−ik�·xAk�

1

x
f̃0�k�eik·xAk

= −
32�Z�5

	2 �
0

� dx

x 	�0

�

kdk
1

�k2 + Z�2�2Ak sin kx
2

.

�4.5�

Concerning V2 we note that due to the symmetry of the in-
tegration intervals the expectation value of � ·p 1

x �p is just
1
x k� ·k �since Ek, Ak, and f̃0 are even functions�. We write the
angular integral of dk in the following way:
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�
S2

d�kkeik·x = − i�x�
S2

d�ke
ik·x

= − i�x
4	 sin kx

kx

= 4	ix
k

x
j1�kx� , �4.6�

where j1 is a spherical Bessel function. Then

��̃0↑,V2�̃0↑� = −
�

2
�

R3
dx�

R6
dk�dk f̃0�k��

�e−ik�·x 1

Ek� + m
Ak�

1

x
k� · k

1

Ek + m
Akf̃0�k�eik·x

= −
32�Z�5

	2 �
0

�

xdx

�	�
0

�

k3dk
1

�k2 + Z�2�2

1

Ek + m
Akj1�kx�
2

.

�4.7�

We note that Eq. �4.7� is subordinate to Eq. �4.5� by approxi-
mately a factor of � k

Ek+m �2�� Z�
2m �2= �

Zeff

2�137.04�2 if k
m, re-
spectively, Z�
m. However, V2 gains importance at relativ-
istic charges.

For the relativistic function �4.2� we proceed in a similar
way and obtain the result, setting �rel↑=�rel�

1
0 �,

„�rel↑,�Ep − m��rel↑… = c00�
0

�

dk
1

�Z�2 + k2�2+�̃

�sin2	�2 + �̃�arctan
k

Z�



���k2 + m2 − m� ,

c00 =
16

	
22�̃Z�3+2�̃ �2�2 + �̃�

��3 + 2�̃�
�4.8�

and

„�rel↑,�V1 + V2��rel↑… = −
�

	
c00�

0

�

xdx�I10
2 + I20

2 � ,

I10 = �
0

�

kdk
1

�Z�2 + k2�1+�̃/2 sin	�2 + �̃�arctan
k

Z�

Ak

sin kx

kx
,

�4.9�

I20 = �
0

�

k2dk
1

�Z�2 + k2�1+�̃/2
1

Ek + m
Ak

�sin	�2 + �̃�arctan
k

Z�

 j1�kx� .

The decrease of these integrals with k is slightly weaker than
for those in Eqs. �4.5� and �4.7�. Again, the total energy is

minimized with respect to the variational parameter
Zeff=Z�a0.

Our results for the ground-state energy are given in
atomic units �a0=1�. In order to convert relativistic units
�r.u.� into atomic units �a.u.� we note that the energy unit is
E0= me4

�2 =27.21 eV=1 a.u. and that the momentum unit is a0
−1

�16�. We write �k2+m2=m�1+ �
ka0

ma0
�2=m�1+ �ka0�2e4 and

further, m�r.u.�= m
E0

�a.u.�= 1
e4 �a.u.� as well as ��r.u.�

= �
E0

�a.u.�= Z
me2 �a.u.�. m occurs also in Z� /m=Zeffe

2 which is
dimensionless. In short, one must to replace Z� by Zeff, � by
Z, the prefactor m in the kinetic energy �and in Eq. �2.17�� by
1 /e4 but elsewhere m by 1 /e2.

Table II gives the ground state �with the rest energy sub-
tracted� for one-electron ions with Z between 20 and 80. The
third and fourth columns contain, respectively, the results for
Eg

BR and Erel. As a matter of fact, Eg
BR is quite close to the

exact Dirac energy, with a difference not exceeding 0.5%
even for Z=80. The relativistic trial function, on the other
hand, reproduces the LCAO results within 1%. It is evident
that the LCAO results for the Brown-Ravenhall operator fall
below the Dirac energy, the more so, the higher Z. Detailed
calculations �7� show that one must include �for Z�80� all
terms of the Douglas-Kroll series up to fifth order in the field
strength � to approach the Dirac energy within 0.01%. One
is led to explain the reasonable agreement between Eg

BR and
Eg

D−m by the fact that although hBR is exaggerating the rela-
tivistic effects, this is compensated for by forming the expec-
tation value with a nonrelativistic function. This gives us
confidence that also for B�0 the Dirac results are well rep-
resented by our variational results obtained from nonrelativ-
istic functions.

V. NUMERICAL RESULTS FOR BÅ0

We have determined Eg
BR from the energy functional

�2.16� for nuclear charges between 1 and 80 and for a large
variety of magnetic fields B. Figure 2 shows the dependence
of the ground-state energy on Z for fixed B. It is evident that
Eg

BR decreases not only with B but also with Z. When ap-
proximated by −Eg

BR�Zs �which is fairly accurate for
Z
80� we have s�2.1 when B=0, s�1.25 when
B=2.56�104 �in units of m2e3� which increases to s�1.55
for B=107.

The competition between the magnetic length and the
scaled Bohr radius suggests to consider B /Z2 as the relevant

TABLE II. Ground-state energy at B=0 for Z=20, 40, 60, and
80. Eg

D−m, Dirac energy. Eg
BR, present results using the hydrogenic

wave function �4.1�. Erel, present results with the relativistic trial
function �4.2�. Eg

RW, LCAO results taken from Reiher and Wolf �7�.
All energies in atomic units.

Z Eg
D−m Eg

BR Erel Eg
RW

20 −201.1 −201.1 −201.3 −201.3

40 −817.8 −817.6 −822.4 −823.9

60 −1896 −1893 −1928 −1934

80 −3532 −3513 −3647 −3686
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magnetic field parameter. In fact, when B /Z2=�m2e3 is kept
fixed but Z is varied, the ratio Eg

BR�Z ,B� /Eg
BR�Z ,0� �where

the latter is calculated with the spherical nonrelativistic trial
function �4.1�� is approximately constant. This suggests the
factorization

Eg
BR�Z,B� � Eg

BR�Z,0�f�B/Z2� �5.1�

with some function f only depending on �. As seen from Fig.
3, the scaling �5.1� is well satisfied for Z
20, but even for
Z=80 the deviations from a universal function f are rather
small. When Z=80, f may be approximated by a power law,
f ��s with s�0.35, for 20
�
104. It follows from Table I
that the scaling does no longer hold at B=�. Indeed
�at Z=80�, s increases for ��104 to its asymptotic value
s=0.5, valid for ��107. The strong change in s near
�=105 may be related to the minimum in the variational

parameter Z̃.

We have also compared our B-dependent ground-state en-
ergies to the nonrelativistic results from Rau et al. �15� who
have derived an analytic formula for the energy functional of
the one-electron ion �with the spin shift eB

2m subtracted�,

E0
nr�Zeff� =

me4

2
	Zeff

2 − 2ZZeff
U�1,1,��

1 − �U�1,1,��
 ,

� =
2Zeff

2

B
m2e3. �5.2�

In this equation U is the irregular degenerate hypergeometric
function, and the relation U�2,2 ,��=�−1−U�1,1 ,�� was ap-
plied to the formula in �15�. For the numerical computation
we have used the integral representation ��23�, �9.211��

U�1,1,�� = �
0

�

dte−�t 1

1 + t
. �5.3�

The nonrelativistic ground-state energy is obtained from
Eg

nr=minZeff�0E0
nr�Zeff�. Figure 4 shows the ratio Eg

BR /Eg
nr as a

function of the magnetic field parameter �. The difference
between the two theories in the nonrelativistic case �Z=1� at
small � is due to the choice of different variational wave
functions. A spherical hydrogenic function gives results
which deviate for �=2 from the accurate ground-state energy
�−1.022, calculated with the help of a large harmonic oscil-
lator basis �27�� by only 4% and hence is superior to the
one-dimensional function used in our model �which deviates
by 13.5%�. However, for very large � the spherical wave
function becomes effectively a one-dimensional one and in-
deed, the Z=1 ratio decreases towards unity for ��103.
Even more, the present result for Z=1 and �=5�103

�Eg
BR=−11.67� differs from an accurate relativistic calcula-

tion �−11.87 �13�� by only 1.7%. For Z=20, still considered
to be nonrelativistic at B=0, the plotted ratio behaves very
similar to the Z=1 case for �
100, but it continues to in-

FIG. 2. Ground-state energy Eg
BR as a function of the nuclear

charge for fixed magnetic field B. �¯�, B=0. �—�, B=2.56�104 �in
units 2.35�109 G�. �– – –�, B=1.28�105. �---�, B=106. �-·-·-�, B
=107.

FIG. 3. Ratio between Eg
BR�Z ,B� and the field-free ground-state

energy Eg
BR�Z ,0� as a function of the magnetic field parameter �.

Results for Z=1 �-·-·-�, Z=20 �---�, and Z=80 �—�.

FIG. 4. Ratio between the relativistic ground-state energy Eg
BR

and the results for Eg
nr from the nonrelativistic model of Rau and

co-workers �15� as a function of �. Z=1 �-·-·-�, Z=20 �---�, and
Z=80 �—�.
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crease with � for the higher magnetic fields. For Z=80, �Eg
BR�

increases much faster with � than �Eg
nr�, and the relativistic

effects are large beyond �=100. This feature may be ex-
plained by the fact that the larger B, the closer passes the
electron by the nucleus. If, in addition, Z is high, the purely
relativistic spin-dependent interaction term V2 comes into
play.

We recall that in the low-Z studies of the Dirac ground
state �12,13� relativistic effects turned out to be negligibly
small even for the highest B values considered. In fact, for
Z=1 and ��104, relativistic effects were found to be below
0.01%. For Z=20 and �=2 �where the accurate result,
−409.6 �13� differs from Eg

nr=−393.2 again by only 4%�,
relativistic effects amount to 0.2%.

VI. CONCLUSION

We have calculated the ground-state energy of the pseu-
dorelativistic Brown-Ravenhall operator for one-electron
ions in strong magnetic fields up to B=104Z2�m2e3�, using a
simple variational wave function. For nonrelativistic systems
�Z
20� we have tested our results against the nonrelativistic
variational theory of Rau and co-workers, and we have found
that for moderate fields �B�10–20Z2 �m2e3�, large enough
so that it is reasonable to use a one-dimensional hydrogenic
trial function� Eg

BR differs from �15� by less than 5%. The
influence of relativistic effects has been established for
Z�20 and large magnetic fields, leading to a decrease of the
ground-state energy relative to the nonrelativistic theory, the
more so, the higher Z.

We have found that the ratio � between the �square of the�
scaled Bohr radius and the magnetic length should be con-
sidered as the relevant magnetic field parameter. In fact, the
ground-state energy depends to a good approximation only
on B /Z2 rather than on B itself. This is in contrast to the
scaling according to B /Z4/3 and B /Z3 for moderate and large
B, respectively, derived from the Thomas-Fermi theory for
multielectron atoms �28,18�.

When B is increased to infinity, it is shown that the varia-
tional ground-state energy decreases like −c1B1/2, which is an
upper bound to the true ground-state energy of the Brown-
Ravenhall operator. On the other hand, a lower bound was
derived earlier, hBR�−c2B1/2 �with c1 ,c2 constants�. This
leads to the conjecture that for the infimum of the spectrum
of hBR one has

inf ��hBR� � − c̃B1/2 as B → � . �6.1�

This differs from the logarithmic B-dependence of the
ground state of the one-electron Pauli operator. It is, how-
ever, consistent with a recent investigation of the Dirac op-
erator where a scaling of the ground-state energy with �B
was derived in the asymptotic regime �29�. This confirms
that relativistic effects indeed play an important role.
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