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One of the most important and still unresolved problems in the field of dispersion forces, is that of deter-
mining the influence of temperature on the Casimir force between two metallic plates. While alternative
theoretical approaches lead to contradictory predictions for the magnitude of the effect, no experiment has yet
detected the thermal correction to the Casimir force. In this paper we show that a superconducting cavity
provides a new opportunity to investigate the problem of the thermal dependence of the Casimir force in real
materials, by looking at the change of the Casimir force determined by a small change of temperature. The
actual feasibility of the proposed scheme is briefly discussed.
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I. INTRODUCTION

Dispersion forces have been the subject of intense theo-
retical and experimental investigations for a long time. This
is not surprising, because these weak intermolecular forces
have a truly pervasive impact, from biology to chemistry,
from physics to engineering �1�. It may therefore come as a
surprise to know that there still exist, in this well established
field, unresolved problems of a fundamental character. This
is indeed the case with respect to the problem of determining
the van der Waals–Casimir interaction between two metallic
bodies at finite temperature �2–4�. As of now, people simply
do not know how to compute it, and the numerous recent
literature on this subject provides contradictory recipes,
which give widely different predictions for its magnitude
�2–4�. Apart from its intrinsic interest as a problem in the
theory of dispersion forces, addressing this problem is im-
portant because many experiments on non-Newtonian forces
at the submicron scale use metallic surfaces at room tem-
perature �5�. We remark that, while the Casimir pressure has
now been measured accurately in a number of experiments
�5,6�, there is at present only one experiment that detected
the influence of temperature on the Casimir-Polder interac-
tion of a Bose-Einstein condensate with a dielectric substrate
�7�. There are, however, no experiments so far that detected
the temperature correction to the Casimir force between two
metallic bodies, and indeed there are at present several on-
going and planned experiments to measure it �8�. Since the
theoretical solution of this difficult problem is still far, it is of
the greatest importance to do experiments to probe the effect.
A recent accurate experiment using a micromechanical oscil-
lator �5� seems to favor one of the theoretical approaches that
have been proposed, but this claim is disputed by other re-
searchers �3�.

In this paper, we propose an experiment using supercon-
ducting Casimir devices, that could help to find an answer to
the question. Superconducting cavities are valuable tools to

explore important aspects of Casimir physics. Some time ago
we proposed to use rigid superconducting cavities to obtain
the first direct measurement of the change of Casimir energy
that accompanies the superconducting transition �9�. Here,
we argue that it might be possible to shed some light on the
controversial problem of the thermal Casimir effect in metal-
lic systems, by measuring how the magnitude of the Casimir
force changes as an effect of a change of temperature of the
superconducting apparatus. Indeed we show that certain ex-
trapolations to the superconducting state of existing alterna-
tive approaches to the thermal Casimir effect for normal met-
als, that have appeared in the recent literature, lead to
strikingly different predictions for the magnitude of the ef-
fect. A distinctive feature of the proposed scheme is that,
being a difference force measurement, it might achieve a
better sensitivity than absolute measurements of the Casimir
force. The idea of exploiting difference force measurements
to probe the features of the thermal Casimir effect is not new
indeed. Already in Ref. �10� the possibility of observing the
difference in the thermal Casimir force in a normal �i.e.,
nonsuperconducting� metallic system, at two different tem-
peratures, was considered, opening up an opportunity for the
investigation of the thermal Casimir effect in the submicron
separation range.

The plan of the paper is a follows. In Sec. II we briefly
review the thermal Casimir effect, and explain in some detail
the theoretical problems that arise in the case of metallic
cavities. In Sec. III we describe our superconducting Casimir
devices and explain the general ideas on which our proposed
experiment is based. In Sec. IV we discuss the important
issue of the possible prescriptions for the reflection coeffi-
cient of quasistatic magnetic fields by a superconducting
plate, and in Sec. V we apply these prescriptions to the com-
putation of the predicted change in the Casimir force, in a
plane-parallel system, as the temperature of the supercon-
ductor is varied. In Sec. VI we discuss the experimentally
important plate-sphere geometry, and finally in Sec. VII, we
present our conclusions and briefly discuss the prospects of
the proposed scheme of being experimentally feasible.*Bimonte@na.infn.it

PHYSICAL REVIEW A 78, 062101 �2008�

1050-2947/2008/78�6�/062101�9� ©2008 The American Physical Society062101-1

http://dx.doi.org/10.1103/PhysRevA.78.062101


II. THE THERMAL CASIMIR EFFECT
IN METALLIC CAVITIES

All current approaches to the thermal Casimir effect are
based on the theory of the Casimir effect developed long ago
by Lifshitz �11�, on the basis of Rytov’s general theory of
e.m. fluctuations �12�. According to this theory, the Casimir
pressure P between two plane-parallel �possibly stratified�
slabs at temperature T, separated by an empty gap of width
a, is

P�a,T� =
kBT

2�2 �
l�0

�� d2k�ql �
�=TE,TM

� e2aql

r�
�1�r�

�2� − 1�−1

, �1�

where the plus sign corresponds to an attraction between the
plates. In this equation, the prime over the l sum means that
the l=0 term has to taken with a weight one half, T is the
temperature, k� denotes the projection of the wave vector
onto the plane of the plates and ql=	k�

2 +�l
2 /c2, where �l

=2�kBTl /� are the Matsubara frequencies. The quantities
r�

�j�
r�
�j��i�l ,k��, with j=1,2, denote the reflection coeffi-

cients for the two slabs, for � polarization �for simplicity, we
do not consider the possibility of a nondiagonal reflection
matrix�, evaluated at imaginary frequencies i�l. It is of the
outmost importance at this point to make a remark on the
range of validity of Eq. �1�: Lifshitz original derivation as-
sumed that spatial dispersion is absent, so that the slabs can
be modeled by permittivities ��j���� and 	�j���� depending
only on the frequency �, and the reflection coefficients
r�

�j��i�l ,k�� have the familiar Fresnel expression. Nowadays
it is well known �13� that Eq. �1� is actually also valid for
spatially dispersive media �separated by an empty gap�, such
as metals at low temperature and obviously superconductors,
provided only that the appropriate reflection coefficients are
used.

We now come to the main topic of the present paper, i.e.,
the application of Lifshitz formula to nonmagnetic metals
�we set 	=1 from now on�, which is the experimentally
important case. We suppose for simplicity that the plates are
made of the same metal. For our purposes, it is convenient
first to write Eq. �1� as a sum of three terms P0

�TE�, P0
�TM�, and

P1, which include, respectively, the TE zero mode, the TM
zero mode and all nonvanishing Matsubara modes

P�a,T� = P0
�TE��a,T� + P0

�TM��a,T� + P1�a,T� . �2�

We consider first P1�a ,T�. This term poses no particular
problems. At room temperature �300 K�, the frequency �1 of
the first nonvanishing Matsubara mode that enters in Eq. �1�
is around �1=0.159 eV /�, and belongs to the IR region of
the spectrum. On the other hand, the presence of the expo-
nential factor exp�2aql� cuts off the Matsubara modes with
frequencies greater than a few times the characteristic cavity
�angular� frequency �c=c / �2a�. For the relevant experimen-
tal separations in the range from 100 nm to one or two mi-
crons, the frequency �c falls somewhere in the range from
the near UV to the IR. In the frequency range extending from
�1 to a few times �c, spatial dispersion is negligible and one
can use the Fresnel formula for the reflection coefficients, in
terms of the permittivity ��i�n�. The values of ��i�n� can be
obtained, using dispersion theory, from optical data of the

plates �see, however, the footnote before Eq. �10� below� or,
alternatively, can be computed using analytical models, such
as, for example, the plasma model of IR optics

�P��� = 1 − 
P
2 /�2, �3�

where 
P is the plasma frequency. If needed, one can possi-
bly augment the above simple model by oscillator contribu-
tions accounting for interband transitions that may become
sizable at higher frequencies �5�. If desired, one can also take
account of dissipation, via the inclusion of a suitable set of
relaxation frequencies in the various terms. For the experi-
mentally relevant separations a, the inclusion of all these
corrections changes a bit the magnitude of P1�a ,T�, and
poses no problems at all.

We consider now the two terms in Eq. �2� that have l=0,
namely, P0

�TE��a ,T� and P0
�TM��a ,T� �we shall refer to these

terms as zero modes�. Obviously, a vanishing complex
imaginary frequency is the same as a real vanishing fre-
quency, and therefore the zero modes involve the reflection
coefficients of the slabs for static e.m. fields. Let us examine
first P0

�TM��a ,T�. A zero-frequency TM mode represents a
static electric field. Since a metal expels an electrostatic field,
we clearly have rTM�0,k��=1. Inserting this value of rTM
into the l=0 term of Eq. �1� we see that in metals P0

�TM��T�
attains its maximum possible value

P0
�TM��a,T� =

kBT

8�a3��3� , �4�

where ��3��1.20 is the Riemann zeta function.
Consider now the TE zero mode P0

�TE��a ,T�. Surprisingly,
this single term has become the object of controversy in the
last ten years, and no consensus has been reached yet about
its correct value. The whole crisis of the thermal Casimir
effect for metallic bodies in fact stems from this very term,
and it is therefore useful to review briefly what the problem
is. A zero-frequency TE mode represents a static magnetic
field. Since nonmagnetic metals are transparent to magnetic
fields, it seems natural to suppose that we should take

rTE��0,k���Dr = 0. �5�

When this value is inserted in Eq. �1� one finds easily that the
TE zero mode gives a vanishing contribution to the Casimir
pressure

�P0
�TE��Dr = 0. �6�

This result is dubbed in the Casimir community as the
Drude-model prediction �14�, because rTE�0,k��=0 is the
value that is obtained by inserting into the Fresnel formula
for the TE reflection coefficient the familiar Drude extrapo-
lation of the permittivity of a metal to low frequencies:

�D��� = 1 − 
P
2 /���� + i��� . �7�

In this formula, � is the relaxation frequency accounting for
Ohmic conductivity. Despite its physical plausibility, this
Drude approach has been much criticized in the recent litera-
ture. The first problem that was encountered is theoretical, as
it was shown that, in the case of perfect lattices, the Drude
model value of the TE zero mode is apparently inconsistent
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with Nernst theory �15�. The problem is subtle though, and
the actual existence of this inconsistency is still disputed. For
a thorough discussion of different points of view on this
issue we refer the reader to the recent review �3� �see also
Ref. �16��. In addition, and perhaps more importantly, it has
been claimed that the Drude model is also inconsistent with
recent experiments �5�. The solution that has been proposed
�5� to cure both difficulties is very puzzling: in evaluating the
low-frequency contributions of Eq. �1�, and in particular the
TE zero mode, instead of the physically plausible Drude
model, one should use the plasma model of IR optics, Eq.
�3�, extrapolated without modifications all the way to zero
frequency. For the TE zero mode, this prescription leads to
the following expression for the reflection coefficient:

rTE��0,k���pl =
	
P

2 /c2 + k�
2 − k�

	
P
2 /c2 + k�

2 + k�

, �8�

and we shall refer to this as the plasma model prescription.
For the relevant values of k��1 / �2a�, and for typical values
of 
P�9 eV /� �corresponding to gold�, it is easy to verify
that rTE��0,k���pl is close to 1. For example, for a=200 nm,
we obtain rTE��0,1 / �2a���pl=0.90. Since rTE��0,k���pl�0,
P0

�TE��a ,T� does not vanish anymore, and we let
P0

�TE���a ,T ;
P��pl its magnitude, as determined by the plasma
prescription. For �c /
P1, P0

�TE���a ,T ;
P��pl has the fol-
lowing expansion:

P0
�TE���a,T;
P��pl �

kBT

8�a3��3��1 − 6
�

a
+ 24

�2

a2� , �9�

where �=c /
P. We see that, for sufficiently large separa-
tions a, the magnitude of P0

�TE���a ,T ;
P��pl is comparable to
P0

�TM��a ,T�. Recalling that the Drude prescription predicts
instead �P0

�TE��Dr=0, we see that the predicted Casimir pres-
sures for the two prescriptions differ by a quantity

�P̃�a ,T�
�P�a ,T��Dr− �P�a ,T��pl �22�:

�P˜�a,T� = − P0
�TE���a,T;
P��pl. �10�

The minus sign an the right-hand side means that the Drude
model predicts a smaller Casimir pressure than the plasma
model.

The disagreement between the two prescriptions is most
evident at large separations. Indeed, for kBTa / ��c��1,
P1�a ,T� becomes negligible and the entire Casimir pressure
is given by the zero modes contribution only �2,3�. Since in
this limit P0

�TE���a ,T ;
P��pl� P0
�TM��T�, we see at once that

the pressure predicted by the Drude prescription is one-half
that predicted by the plasma model prescription Obviously
then the straightforward way to clarify the problem would be
to measure the Casimir pressure at large separations, say
around 5 	m, for room temperature. Unfortunately, at such
large separations the Casimir pressure is very small, and as a
result all attempts made so far to measure it have been un-
successful.

At the time of this writing, the most significant experi-
ments are the ones reported in Ref. �5�, in which the Casimir
pressure was measured for separations in the range from
160 to 750 nm. For such small separations, the quantity

�P̃�a ,T� is only a small fraction of the absolute Casimir
pressure �for gold plates at room temperature, about 2–3% at
separations of around 200–300 nm, where the experiment in
the second of Ref. �5� was most sensitive�. Observing such a
small correction via an absolute Casimir measurement is
very difficult because one needs to measure with high preci-
sion the plates separation and control a number of systematic
errors, similar to residual electrostatic attractions �17�,
roughness of the plates, etc. After an accurate analysis of
these possible sources of systematic errors, the authors of
Ref. �5� conclude that the Drude approach is inconsistent
with the experiment at high confidence level. However, this
statement has been disputed by other researchers �see Ref.
�2��. In this regard, it has been remarked recently �18� that
obtaining an accurate theoretical prediction, at the percent
level, for the magnitude of Casimir force is barely possible,
unless one has accurate optical data, extending over a wide
range of frequencies around �c, taken on the actual surfaces
used in the experiment.

III. A SUPERCONDUCTING CASIMIR EXPERIMENT

In light of the above considerations, we wondered if one
can conceive a type of experiment specifically devised to
probe the magnitude of the contribution from the TE zero
mode. As we see below, a superconducting Casimir appara-
tus is, in principle, a good tool to do that.

Consider then two metallic plates made of a supercon-
ducting metal, and imagine cooling them at a temperature
T1�Tc, where Tc is the critical temperature. We suppose that
the equilibrium temperature of the system is rapidly changed
from the temperature T1 to a higher temperature T2�Tc. It is
our aim to estimate the difference �P between the Casimir
pressures at the two temperatures

�P�a�T2,s;T1,s� 
 P�a�T2,s� − P�a�T1,s� . �11�

Let us explain the meaning of the new notation used in the
above equation. The notation is used to remind the reader of
the twofold dependence of the Casimir pressure on the tem-
perature T. Indeed, by looking at Eq. �1� we see that, on one
side, P has an explicit temperature dependence, determined
by the overall T factor, in front of the sum symbol, and by
the T dependence of the Matsubara frequencies �l
=2�kBTl /�. More importantly for our purposes, there is also
an implicit dependence of P on T, through the reflection
coefficients, which may themselves depend on the tempera-
ture. The notation in Eq. �11� stresses this fact by making
explicit reference to the dependence of P on the state of the
plates, which can either be normal �n� or superconducting
�s�. We remark that probing the explicit T dependence of the
Casimir pressure, by letting pretty large changes of tempera-
ture �around 50 K�, was the goal of the room-temperature
experiment proposed in Ref. �10�. In that experiment, the
temperature dependence of the reflection coefficients was
completely negligible. In our case the situation is much the
opposite: the main expected cause of variation of P�a ,T� is
now the temperature dependence �in a certain frequency
range� of the reflection coefficients of the plates in the super-
conducting state.
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After these remarks, we can go now to the main point:
why should the proposed experiment be capable of telling us
anything about the thermal Casimir problem in metallic sys-
tems? This is so because the superconducting transition af-
fects the optical properties of a metal only at frequencies �
smaller than a few times kBTc /� �20�. As a result, the mag-
nitude of �P turns out to be almost completely determined
by the TE zero mode, and therefore it is very sensitive to the
prescription adopted for it. We shall indeed show below that
the two prescriptions considered in the previous section, lead
to sharply different magnitudes for �P.

Before we embark in the computation of �P, a key prob-
lem to address is to decide what prescription are we going to
use for the reflection coefficient of the TE zero mode in the
superconducting state. This is the subject of the next section.

IV. THE TE ZERO MODE IN A SUPERCONDUCTOR

According to the Lifshitz formula, which we recall is also
valid for superconductors, in order to estimate the contribu-
tion of the TE zero mode to the Casimir pressure for a su-
perconducting cavity, we need to determine what expression
for the reflection coefficient rTE

�s� �0,k�� should be used in Eq.
�1�, when a plate is superconducting. Addressing this prob-
lem is the purpose of this section.

We have seen in Sec. II that there is a theoretical uncer-
tainty in the value of the reflection coefficient rTE

�n��0,k�� of a
metallic plate, in the normal state, depending on whether we
include or not, in the permittivity of the metal, the effect of
Ohmic dissipation. If dissipation is included, we end up with
the Drude prescription, �5�, if dissipation is ignored we in-
stead obtain the plasma prediction, �8�. What about a super-
conductor? For sure, static currents flow in a superconductor
without any measurable dissipation, and so there should re-
ally be no room for ambiguity now: as far as we know, in the
dc limit, superconductors are strictly dissipationless. This is
reflected in the plasmalike form of the permittivity function
�s��� that can be used to describe the response of supercon-
ductors to quasistatic electromagnetic fields, in the local
London limit

�s��� = − �c/��L���2. �12�

In this equation, �L represents the penetration depth, that can
be expressed in terms of the plasma frequency 
P as �L
= �n /ns�1/2c /
P, where ns /n represents the fractional density
of superconducting electrons. The temperature dependence
of ns /n is rather well described by the phenomenological law
ns /n=1− �T /Tc�4 �19�. If we insert �s��� into the Fresnel
formula for the TE reflection coefficient at zero frequency
we obtain

rTE
�s� �0,k��T� =

	1/�L
2 + k�

2 − k�

	1/�L
2 + k�

2 + k�

, for T � Tc, �13�

where we stressed that rTE
�s� is temperature dependent, because

�L is. The above form of rTE
�s� �0,k�� is physically plausible,

and it correctly describes the Meissner effect. It should be
noted that rTE

�s� �0,k�� has the same form as the plasma-model
prescription rTE

�n���0,k���pl for the normal state, apart from the

replacement of 
P
2 /c2 by 1 /�L

2. In fact, taking account of the
temperature dependence of �L, rTE

�s� �0,k� �T� provides a
smooth interpolation between rTE

�n���0,k���pl and
rTE

�n���0,k���Dr, as the temperature is increased from zero to-
wards Tc:

rTE
�s� �0,k��T� → �rTE

�n��0,k���pl for T/Tc → 0, �14�

rTE
�s� �0,k��T� → �rTE

�n��0,k���Dr = 0 for T/Tc → 1. �15�

Now we are faced with the following question: depending on
what prescription we choose in the normal state, what do we
do in the superconducting state? We cannot offer a certain
answer to this question, but the following choices appear to
us as reasonable. Consider first the Drude prescription. Since
the superconducting phase transition is of second order, the
reflection coefficients must be smooth across Tc. Now, the
Drude prescription asserts that rTE

�n��0,k�� is zero, and there-
fore we should fix the prescription in the superconducting
phase in such a way that rTE

�s� �0,k� �T� approaches zero for
T→Tc. Of course, we could achieve this by taking
rTE

�s� �0,k� �T� identically zero for T�Tc. However, such an
ansatz looks to us physically wrong, because it is in conflict
with the Meissner effect. The prescription that we choose
then is to use Eq. �13�, with �L temperature dependent, as our
Drude recipe in the superconducting phase

rTE
�s� ��0,k��T��Dr = rTE

�s� �0,k��T� for T � Tc. �16�

This choice ensures smoothness of the reflection coefficient
at the phase transition, while describing correctly the Meiss-
ner effect. Importantly, within this prescription, the reflection
coefficient is temperature dependent in the superconducting
phase.

Consider now the plasma prescription. Again, the reflec-
tion coefficient must be smooth through the transition. If we
further make the plausible assumptions that the reflection
coefficient cannot decrease as we reduce the temperature,
and that the plasma frequency sets up an upper limit on the
quantity c /�L, we are led to conclude that, within the plasma
prescription, the reflection coefficient rTE

�s� �0,k� �T� has to be
temperature independent and equal to its normal-state value

rTE
�s� ��0,k��T��pl = rTE

�n���0,k���pl for T � Tc. �17�

It should be noted that, with this prescription, the reflection
coefficient does not change at all across the transition, and it
is temperature independent in the superconducting phase.
This feature marks a crucial difference between the plasma
prescription and our Drude prescription in Eq. �16�. Having
defined our prescriptions for the TE reflection coefficient in
the superconducting state, we are ready now to proceed with
the computation of �P according to the two approaches.

V. Computing �P

In this section, we undertake the computation of �P. We
shall consider two possible geometries: The plane-parallel
configuration and the sphere-plate configuration, which is the
one usually adopted in current experiments. For either geom-
etry, it is useful to consider two different setups for the sys-
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tem: the first one consists of two superconducting plates,
while the second setup has just one superconducting plate,
the other plate being made of a normal metal. To be definite,
we shall consider Nb as our superconducting material, and
Au as the normal metal. The choice of Nb is due to the fact
that, among the classic metallic superconductors, it is the one
with the highest critical temperature Tc=9.2 K, a feature that
will be seen to ensure the largest difference between the
Drude and the plasma predictions for �P. It is assumed that
the Nb plates have a thickness much larger than the penetra-
tion depth �L of magnetic fields. In this section we shall only
consider the plane-parallel case. The sphere-plate case will
be treated in Sec. VI below.

It is convenient to split Eq. �11� in a way analogous to Eq.
�2�:

�P = �P0
�TE� + �P0

�TM� + �P1, �18�

where the meaning of the symbols is obvious. Leaving aside
for the moment �P0

�TE�, we consider first �P0
�TM� and �P1.

Since rTM�0,k�� is one for metals, no matter whether normal
of superconducting, we surely have

�P0
�TM��a�T2,s;T1,s� = �P0

�TM��a�T2,n;T1,n� . �19�

Consider now �P1. Recall that �P1 includes only the con-
tributions from non vanishing Matsubara modes. The key
experimental fact to consider now is that the optical proper-
ties of superconductors are appreciably different from those
of the normal state �right above Tc� only for frequencies less
than a few times kBTc /� �20�. Since �1�T2���1�T1�
��1�Tc�=2�kBTc /�, we see that already the first nonvanish-
ing Matsubara mode is over six times larger than kBTc /�.
Therefore, in the range of frequencies that is relevant for
�P1, the superconductor can be described, at all tempera-
tures below Tc, by the same set of reflection coefficients of
the normal state, at temperatures slightly above Tc �this con-
sideration applies even more to Au, of course�. This implies
at once that

�P1�a�T2,s;T1,s� = �P1�a�T2,n;T1,n� . �20�

At this point, it is convenient to add and subtract from Eq.
�18� the quantity �P0

�TE��a �T2 ,n ;T1 ,n�. In this way, we get

�P�a�T2,s;T1,s�

= ��P0
�TE��a�T2,s;T1,s� − �P0

�TE��a�T2,n;T1,n��

+ ��P0
�TE��a�T2,n;T1,n� + �P0

�TM��a�T2,n;T1,n�

+ �P1�a�T2,n;T1,n�� . �21�

Now we note that the sum of three terms on the second line
of the above equation is nothing but the quantity
�P�a �T2 ,n ;T1 ,n� that represents the change of Casimir
pressure when the temperature is changed from T1 to T2, in a
normal metal system, with temperature-independent reflec-
tion coefficients. This quantity has been computed already in
Ref. �10�, both for the Drude and the plasma prescriptions,
and we shall later use the formulas derived in that paper to
estimate it. Substituting �P�a �T2 ,n ;T1 ,n�, we may then re-
write Eq. �21� as

�P�a�T2,s;T1,s�

= ��P0
�TE��a�T2,s;T1,s� − �P0

�TE��a�T2,n;T1,n��

+ �P�a�T2,n;T1,n� . �22�

The above equation represents the first key result of this
paper, because it shows, as announced earlier, that supercon-
ductivity has an effect on the Casimir pressure only via the
TE zero mode. At this point we consider separately the
plasma and the Drude prescriptions.

A. The plasma prescription

According to our plasma prescription for the supercon-
ducting state �17�, the reflection coefficient for the TE zero
mode in the superconducting state has precisely the same
expression as in the normal state. This being so, we obvi-
ously have

�P0
�TE���a�T2,s;T1,s��pl − �P0

�TE���a�T2,n;T1,n��pl = 0,

�23�

both for the Nb-Nb and the Nb-Au setups. When this for-
mula is used in Eq. �22�, we see that, in either setup, super-
conductivity has no effect on �P:

�P��a�T2,s;T1,s��pl = �P��a�T2,n;T1,n��pl. �24�

The quantity �P��a �T2 ,n ;T1 ,n��pl has been computed in
Ref. �10�, for the case of two plates made of the same metal.
This case is good enough for us, also in the case of the
Nb-Au setting, because of the small difference between the
plasma frequencies of Nb �8.7 eV /�� and Au �9 eV /��. In
our computations, from now on, we shall than take for both
metals the common value 
P=9 eV /�. Then, our
�P��a �T2 ,n ;T1 ,n��pl coincides with minus the quantity �Fpp
of Ref. �10� �the minus sign is due to the fact that we con-
sider positive forces to correspond to an attraction, while
Ref. �10� uses the opposite convention�. Therefore, we can
rewrite Eq. �24� as

�P��a�T2,s;T1,s��pl = − �Fpp. �25�

We can obtain an estimate of the effect by using the follow-
ing perturbative expression for �Fpp of Ref. �10�, that holds
for low temperatures kBTa / ��c�1, and for not too small
separations �c /
p1:

�Fpp�a,T1,T2� = − ��1�Fpp�T1,T2���2�Fpp�a,T1,T2� ,

�26�

where

��1�Fpp�T1,T2� =
�2kB

4�T2
4 − T1

4�
45�3c3 �27�

and

��2�Fpp�a,T1,T2� = 1 +
90��3�

�3

�

a

Teff

T1 + T2
�1 +

T1T2

T1
2 + T2

2� ,

�28�

where kBTeff=�c / �2a� and �=c /
p. The above formulas
show that �P��Nb-Nb��pl and �P��Nb-Au��pl are both ex-

CASIMIR EFFECT IN A SUPERCONDUCTING CAVITY… PHYSICAL REVIEW A 78, 062101 �2008�

062101-5



tremely small. For example, upon taking T1=5 K, T2�Tc,
and a=100 nm, we obtain

��P�pl  1.4 � 10−9 Pa. �29�

The conclusion that we draw is that, with the plasma pre-
scription, the change with temperature of the Casimir pres-
sure is unmeasurably small, both in the Nb-Nb and in the
Nb-Au setups.

B. The Drude prescription

We now consider the Drude prescription. First, we ana-
lyze the Nb-Au setup. Since Au is always a normal metal, its
Drude reflection coefficient for the TE zero mode is zero, at
both temperatures. Therefore, since Lifshitz formula implies
only products of reflection coefficients for the two plates, it
follows that the TE zero mode gives no contribution, in the
Nb-Au setup

�P0
�TE���a�T2,s;T1,s��Dr

Nb-Au = �P0
�TE���a�T2,n;T1,n��Dr

Nb-Au = 0.

�30�

Upon substituting these formulas into Eq. �22� we obtain

�P��a�T2,s;T1,s��Dr
Nb-Au = �P��a�T2,n;T1,n��Dr

Nb-Au. �31�

Again, we find that superconductivity has no effect on the
change of Casimir pressure. The Drude value of the quantity
�P��a �T2 ,n ;T1 ,n��Dr

Nb-Au can also be found in Ref. �10�, from
which we obtain the estimate

�P��a�T2,s;T1,s��Dr
Nb-Au

= − �Fpp −
��3�kB�T2 − T1�

8�a3 �1 − 6
�

a
+ 24

�2

a2� . �32�

The expression on the right-hand side of the above equation,
differs from the analogous expression obtained within the
plasma prescription �25� by the presence of the extra term on
the second line. At our cryogenic temperatures, the absolute
value of the latter term is larger than ��Fpp� by several orders
of magnitude, for changes of temperature of a few degrees.
We therefore see that heating the system, the Casimir pres-
sure decreases by an amount proportional to the temperature
change. We remark once again that this change of Casimir
pressure is not an effect of superconductivity, and it only
arises from the explicit T dependence of the Lifshitz formula.
Indeed, an analogous phenomenon was found to occur in the
room temperature setting of Ref. �10�.

We finally consider the Nb-Nb setup, the most interesting
case indeed. Using the reflection coefficient in Eq. �16�, we
easily find

�P0
�TE���a�T2,s;T1,s��Dr

Nb-Nb

= P0
�TE��a,T2;c/�L� − P0

�TE��a,T1;c/�L� , �33�

�P0
�TE���a�T2,n;T1,n��Dr

Nb-Nb = 0, �34�

where in the first of the two above equations,
P0

�TE��a ,T ;c /�L� denotes the magnitude of the TE zero mode,
that results after we plug into the l=0 term of Lifshitz for-
mula the expression the Drude ansatz for the TE reflection
coefficient for the superconductor �16�. As for the quantity
�P��a �T2 ,n ;T1 ,n��Dr, its magnitude is given by the same ex-
pression on the right-hand side of Eq. �32�. Collecting every-
thing together, Eq. �22� gives

�P��a�T2,s;T1,s��Dr
Nb-Nb

= �P0
�TE��a,T2;c/�L� − P0

�TE��a,T1;c/�L��

− �Fpp −
��3�kB�T2 − T1�

8�a3 �1 − 6
�

a
+ 24

�2

a2� .

�35�

In Fig. 1 we show plots of �P��a �T2 ,s ;T1 ,s��Dr
Nb-Nb �solid

line� and �P��a �T2 ,s ;T1 ,s��Dr
Nb-Au �dashed line�, both ex-

pressed in mPa, for a=150 nm, as a function of the tempera-
ture T1 �in K�, for T2�Tc. In Fig. 2 we show the plots of the
same quantities, this time as functions of plates separation a
�in microns�, for T1=5 K and T2�Tc. Note that, contrary to
what we found with the plasma prescription, our Drude pre-
scription predicts negative changes of pressure, i.e., the Ca-
simir pressure decreases as one goes from the superconduct-
ing state towards the normal state. Moreover, it should also
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FIG. 1. Plots of �P��Nb-Nb��Dr �solid line� and �P��Nb-Au��Dr

�dashed line� �in mPa� for two parallel plates at fixed separation a
=150 nm, versus temperature T1 �in K�, for fixed T2�Tc.
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FIG. 2. Plots of �P��Nb-Nb��Dr �solid line� and �P��Nb-Au��Dr

�dashed line� �in mPa� for two parallel plates versus separation a �in
microns�, for T1=5 K and T2�Tc.
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be noted that the change of pressure is larger in the Nb-Nb
setup, than in the Nb-Au setup. However, the really striking
finding is that, for both setups, the Drude approach predicts
changes of Casimir pressure, whose magnitudes are around
five or six orders of magnitude larger than the corresponding
changes predicted by the plasma approach

VI. THE SPHERE-PLATE CASE

Now we consider the configuration of a sphere placed
above a plate, which is the one used in most of the current
experiments. We let R the radius of the sphere and a the
minimum sphere-plate separation. As is well known, for
small separations, i.e., for a /R1, the Casimir force Fsp
between a sphere and a plate can be obtained by means of the
so-called proximity force approximation �PFA� �2�. The rela-
tive error introduced by this approximation is of order a /R
�2�, and therefore it is only a fraction of a percent in typical
experimental situations. The PFA expression for Fps is

Fps = −
kBTR

2�
�
l�0

�� d2k� �
�=TE,TM

ln�1 − r�
�1�r�

�2�e−2aql� ,

�36�

where a plus sign for the force again corresponds to attrac-
tion. Analogously to what we did in the plane-parallel case,
we consider two distinct setups: in the first one, both the
plate and the sphere are made of Nb, while in the second
setup the sphere is made of Nb and the plate of Au �or vice
versa�. For either setup, we consider then the change in the
sphere-plate force

�Fps�a�T2,s;T1,s� 
 Fps�a�T2,s� − Fps�a�T1,s� , �37�

that occurs when the equilibrium temperature of the system
is increased from T1 to T2 �the notation adopted here is
analogous to that used in the plane parallel case�. By repeat-
ing the reasonings that led us to write Eq. �22�, we can obtain
the following expression for �Fps�a �T2 ,s ;T1 ,s�:

�Fps�a�T2,s;T1,s�

= ��F�ps�0
�TE� �a�T2,s;T1,s� − �F�ps�0

�TE� �a�T2,n;T1,n��

+ �Fps�a�T2,n;T1,n� , �38�

where again the meaning of the symbols is obvious. By simi-
lar steps that led us to write Eq. �24�, one can show that, both
for the Nb-Nb and the Nb-Au setups, the plasma prediction
for the change of force in the sphere-plate geometry is

�Fps��a�T2,s;T1,s��pl = �Fps��a�T2,n;T1,n��pl. �39�

Once the small difference between the plasma frequencies of
Nb and Au is neglected, we can use the explicit expressions
provided in Ref. �10� to evaluate �Fps��a �T2 ,n ;T1 ,n��pl �re-
call that our sign convention for the Casimir force is opposite
to that of Ref. �10��:

�Fps��a�T2,n;T1,n��pl = R��1�Fps�T1,T2���2�Fps�a,T1,T2� ,

�40�

where

��1�Fps�T1,T2� =
��3�kB

3

�2c2 �T2 − T1��T1
2 + T2

2� �41�

and

��2�Fps�a,T1,T2� = �1 +
T1T2

T1
2 + T2

2��1 + 2
�

a
�

−
�3

45��3�
T1 + T2

Teff
�1 + 4

�

a
� . �42�

Analogously to what we found in the plane-parallel case, the
effect predicted by the plasma prescription is unmeasurably
small. For example, for a sphere of radius R=200 	m, at a
distance a=150 nm from a plane, for T1=5 K and T2�Tc
the above formulas give a change of Casimir force of about
5.3�10−19 N.

We consider now the Drude prescription. Repeating the
steps that led to Eq. �31�, we obtain for the Nb-Au setup the
equation

�Fps��a�T2,s;T1,s��Dr
Nb-Au = �Fps��a�T2,n;T1,n��Dr

Nb-Au.

�43�

An explicit formula for �Fps��a �T2 ,n ;T1 ,n��Dr
Nb-Au is given in

Eq. �10� of Ref. �10�:

�Fps��a�T2,n;T1,n��Dr
Nb-Au

= R��1�Fps�
�2�Fps −

RkB��3�
8a2 �T2 − T1��1 − 4

�

a
+ 12

�2

a2� .

�44�

The first term on the right-hand side of the above equation is
completely negligible with respect to the second term. We
therefore see that the Drude model predicts a decrease of
Casimir force proportional to T2−T1. We repeat that this ef-
fect has nothing to do with superconductivity, and it is again
analogous to what was found in Ref. �10� �see comments
following Eq. �32��.

It remains to discuss the Nb-Nb setup. By proceeding in
the same way as we did to derive Eq. �35�, one can prove the
following equation:

�Fps��a�T2,s;T1,s��Dr
Nb-Nb

= �F�ps�0
�TE� �a,T2;c/�L� − F�ps�0

�TE� �a,T1;c/�L��

+ R��1�Fps�
�2�Fps

−
RkB��3�

8a2 �T2 − T1��1 − 4
�

a
+ 12

�2

a2� , �45�

where F�ps�0
�TE� �a ,T ;c /�L� denotes the TE zero mode contribu-

tion to the sphere-plate force �the l=0 term for TE polariza-
tion in Eq. �36��, as it results after we use our Drude pre-
scription for the reflection coefficient of the superconductor
�16�. In Fig. 3, we plot �Fps��Nb-Nb��Dr /R �solid line�, and
�Fps��Nb-Au��Dr /R �dashed line�, in units of 10−10 N /m, as a
function of T1 �in K�, for T2�Tc and for a plate-sphere sepa-
ration a=150 nm. In Fig. 4 the same quantities are plotted
versus plate-sphere separation a �in microns�, for fixed tem-
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peratures T1=5 K and T2�Tc. Note that the changes of force
are always negative, indicating that the Casimir force de-
creases as the temperature of the superconducting system is
increased from T1 to Tc. As we see from Fig. 3, for a sphere-
plate separation of 150 nm and for a sphere of radius R
=200 	m, the Drude model predicts for the Nb-Nb setup a
change in the force around −0.8�10−13 N, which is over five
orders of magnitude larger than the plasma model prediction.

VII. CONCLUSIONS AND DISCUSSION

One of the most important unresolved theoretical prob-
lems in the theory of dispersion forces is that of determining
the thermal correction to the Casimir force between two con-
ductors. The source of the difficulties stems from the ambi-
guity in the correct value for the TE zero-mode contribution
to the force, corresponding to quasistatic magnetic fields. In
this paper, we have proposed a Casimir experiment with su-
perconducting cavities, specifically devised to probe the TE
zero mode. The proposal involves measuring the change of
Casimir force that occurs in a cavity with one or two super-
conducting plates, as the temperature of the device is in-
creased towards the normal state. The interest of performing
difference force measurements to probe the features of the
thermal correction to the Casimir force has already been
stressed in Ref. �10�, which considered measuring the differ-
ence in the Casimir force at two different temperatures in
cavities made of ordinary metals at room temperature. Our
proposal is very much in the same spirit as Ref. �10�, with
the significant difference that the change in the Casimir force
determined by a small change of temperature is much en-
hanced �in the Drude case� by superconductivity of the
plates. The need of smaller temperature changes, than those
required in Ref. �10�, might make it easier to achieve them in
an experiment.

It is perhaps the case to comment further on the possible
advantages and drawbacks that are implicit in the proposed
scheme. A potential advantage is that, being a difference
force measurement, it might be possible to achieve a better
sensitivity than in an absolute force measurement. This, of
course, holds true only provided that systematic errors do not

change too much when the temperature of the apparatus is
varied. Importantly enough, this is the case with regards to
the theoretical uncertainty arising from insufficient knowl-
edge of the optical data of the plates, that was estimated in
Ref. �18� to be easily as large as 5% in absolute force mea-
surements. This uncertainty is completely irrelevant in our
scheme, because as we showed in Sec. III, the magnitude of
the effect is determined solely by the TE zero mode. More
delicate is the case of the systematic errors arising from re-
sidual electrostatic attractions between the plates �17�, which
constitute a concern in all Casimir experiments. If their mag-
nitude is temperature dependent in the superconducting state,
it might be necessary to perform electrostatic calibrations of
the apparatus at the considered temperatures.

One of the main experimental issues to address is to find
a good mean of varying the temperature of the plates. Per-
haps, a convenient way to do this is by illuminating the
plates with short laser pulses, as suggested in Ref. �10�. Very
likely, this method of heating the plates will reduce to a
minimum unwanted thermal expansions or contractions of
parts of the apparatus that would inevitably result, were we
to warm up the whole system instead. Such expansions
would clearly easily alter the separations of the plates by a
few nanometers, thus rendering much more difficult a com-
parison of the Casimir force between the two temperatures.

Finally, we would like to comment on the prospects of the
experiment described in this paper of being actually capable
of discriminating between the contradictory theoretical ap-
proaches to the description of the thermal Casimir force be-
tween real materials. According to our computations, the two
approaches predict strikingly different magnitudes for the
changes of Casimir force in the superconducting state, the
plasma approach predictions being always five or six orders
of magnitude smaller than those of the Drude approach.
While the changes of force resulting from the plasma ap-
proach are unmeasurably small, the effect predicted by the
Drude approach is, in fact, large enough for an experimental
detection to be hopeful. For example, in the sphere-plate
geometry, which is the most widely used geometry in current
experiments, if both the sphere and the plate are made of Nb,
for a sphere radius of 200 	m, and a sphere-plate separation
of 150 nm the Drude approach predicts a drop in the Casimir
force of 0.8�10−13 N, as the system is heated by 2°–3°.
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FIG. 4. Plot of �Fsp��Nb-Nb��Dr /R �solid line� and
�Fsp��Nb-Au��Dr /R �dashed line�, in units of 10−10 N /m, versus
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Force oscillations slightly larger than this one have been
demonstrated to be measurable by means of an atomic force
microscope, with an error about 20% at 95% confidence
level, in a recent measurement of the so-called lateral Ca-
simir force �21�. If the same accuracy can be achieved at
cryogenic temperatures, there are good chances that the ex-
periment proposed here might actually be able to discrimi-
nate the alternative approaches to the description of the ther-
mal Casimir force between real metals.
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