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We demonstrate weak and strong regimes of optical spatial turbulence by considering the nonlinear inter-
action of three partially coherent spatial beams. The geometry represents a multiple bump-on-tail instability,
allowing an interpretation of nonlinear statistical light as a photonic plasma. For weak nonlinearity, we observe
instability competition and sequential flattening of the bumps in momentum space, with no observable varia-
tions in position-space intensity. For strong nonlinearity, intensity modulations appear and the triple-hump
spectrum merges into a single-peaked profile with an algebraic k−2 inertial range. This spectrum, with its
associated modulations, is a definitive observation of soliton, or Langmuir, turbulence.
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The coupling of instabilities raises fundamental issues in
nonlinear dynamics, such as synchronization, competition,
parametric pumping, and cascades of energy and momentum
transfer �1�. Examples range from predator-prey models in
biology to laser synchronization to fluid turbulence. Here, we
consider the common dynamics all-optically by studying the
interaction of two photonic bump-on-tail instabilities �2�,
formed by the nonlinear coupling of three spatially incoher-
ent light beams. By monitoring the spectral mode content in
momentum space, we experimentally observe instability
competition for weak nonlinearity and distribution merging
for strong nonlinearity. These measurements highlight the
difficulty of synchronized wave mixing inherent in noisy
nonlinear systems and demonstrate a pathway toward all-
optical studies of turbulence.

Previously thought to exist only in plasma, the bump-on-
tail �BOT� instability is a gradient-driven effect in which a
nonequilibrium bump on the tail of a thermal distribution
acts as a source of free energy �3�. As such, it requires an
inverted population of statistical modes and is often consid-
ered a type of classical lasing �4�. In plasma, the effect oc-
curs when a gas of charged particles interacts through elec-
trostatic, or Langmuir, waves. Recently, we showed that the
same phenomenon could occur in the nonlinear propagation
of statistical light, in which an ensemble of speckles interacts
through large-scale modulation waves �2�. To see this, it is
useful to consider a radiation-transfer approach to nonlinear
light propagation. In the paraxial approximation, the statisti-
cal distribution of light evolves according to �5–8�
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+�d���*�r+� /2,z� ·��r−� /2,z��eik·� is
the phase-space �Wigner� distribution of the light, � is the
slowly varying amplitude, �=� /2�n0 is the diffraction co-
efficient, n0 is the base index of refraction, and �n is the
nonlinear index change induced by the local light intensity
I= I�x ,y ,z�=�f�k�dk. Normally, there is a second equation
which describes the coupled evolution of �n; here, we have
jumped immediately to a time-averaged material response.
The photorefractive crystal used for the experiments is such

an inertial medium, in which ��n�=�n��I��� and fast phase
fluctuations do not play a role.

Equation �1� contains the full nonlinear dynamics in �x ,k	
phase space and resists general solution. Even qualitatively,
the dynamics depends sensitively on the number of dimen-
sions and the strength of the nonlinear coupling �9,10�. Here,
we will concentrate on one dimension, consistent with the
experiments described below, and begin by considering weak
perturbations around an initial background distribution:
f�x ,kx ,z�= f0�kx�+ f1 exp�i��x−gz��, where g=gR+ igI is the
propagation constant for a perturbation mode with wave
number �. Choosing a medium with an inertial Kerr re-
sponse �n=	�I�� �the case for the photorefractive nonlinear-
ity, used in the experiments, is similar� gives the dispersion
relation
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This is a Vlasov-like dispersion equation for the perturbation
modes �7�, showing that growth or decay depends on the
local gradient of the background distribution. In particular,
spectral regions with �kf0
0, such as a “nonequilibrium”
bump on the tail of a Gaussian distribution, will trigger in-
stability. In this Rapid Communication, we consider the evo-
lution and competition of multiple instabilities by superim-
posing a set of Gaussian profiles. The simplest example is a
central Gaussian distribution with M additional Gaussian
beams, each with the same statistics �correlation length lc�,
but positioned at different spatial frequencies �angular sepa-
rations� �k01, �k12, �k23, . . . ,�kM−1 M:
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−�kx − �kj−1j�
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�3�

Here, �k=2� / lc is the full width at half maximum �FWHM�
of each beam and I0 , . . . , IM are individual amplitudes.

To study multiple bumps-on-tail instabilities, we plug �3�
into �2� and use the weak growth condition �gI�� �gR� to ob-
tain
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where gP=�	�Itot is an effective plasma frequency that de-
pends on the total nonlinear coupling 	Itot=	 j=0

M Ij and �D

=� 1
	� � �k2
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+ j=1

M �kj−1j
2

Ij
� is an effective Debye length that de-

pends on the coupling and distribution of the beamlets.
Equation �4�, valid for long wavelengths ��g / ��kx�, is a
Bohm-Gross dispersion relation �3� for nonlinear statistical
light. It shows that a distribution f0 of optical speckles can
interact via Langmuir-type waves, with a restoration force
that depends on the strength of the nonlinearity and a statis-
tical screening that depends on the overall coherence of the
distribution �2�. For an “equilibrium” background f0, such as
a quasithermal distribution of diffused light �11�, perturba-
tion modes will decay due to the optical equivalent of
Landau damping �7,12–14�. For a “nonequilibrium”
distribution—e.g., one with regions of positive spectral slope
��f0 /�kx
0�—modes will grow from noise with a rate that
depends on the driving gradient, the statistics of the beam,
and the strength of the wave coupling �2�.

The dynamics within this photonic plasma depends on the
spectral density of perturbation modes within a Debye
sphere. For the weak-coupling regime considered above, de-
fined by ��D1 �12,13�, the BOT instability is mostly a
momentum-space effect �2�. Above this threshold, intensity
modulations appear �12–14�, wave-wave coupling �versus
wave-speckle coupling� becomes dominant �2,10,15� and the
perturbation method ceases to apply. Adopting plasma lan-
guage, we define these two limits as regimes of weak and
strong optical Langmuir turbulence.

As a first step, we consider two interacting bumps-on-tail
in the weak-coupling regime. Figure 1 shows a numerical
simulation of the dynamics and the corresponding gain

curves calculated from Eq. �4�. As expected, modes grow in
the regions of positive spectral slope until there is no more
driving gradient. We find that the system is described effec-
tively as a pair of coupled BOT instabilities: one on the left
and one on the right, with negligible coupling between the
leftmost and rightmost Gaussians due to their separation dis-
tance. In this case, competition between the gain curves im-
plies that plateau formation happens sequentially, even
though the initial slopes and nonlinearity in the two regions
are identical. If the middle hump is closer to the left �main�
distribution, then the left region goes unstable first, and vice
versa with a right bias �Figs. 1�c� and 1�d��. The balanced
situation, with the central hump equidistant from either side,
has gain curves of the same peak value and is unstable. In
simulations, this initial condition always degenerated into
one of the two asymmetric scenarios, a result supported by
analytic perturbations of �k01 in Eq. �4�.

Experimentally, we observe this competition by consider-
ing the nonlinear interaction of three partially coherent spa-
tial beams. The experimental setup is shown in Fig. 2. A
statistical, quasithermal light input is created by focusing
light from a 532-nm cw laser onto a ground-glass diffuser
�11� and then imaging it into a photorefractive SBN:60
�Sr0.6Ba0.4Nb2O6� crystal. To create a multiple bump-on-tail
distribution �Fig. 2, inset�, the spatially incoherent beam is
split using two Mach-Zehnder interferometers, attenuated ap-
propriately, and then recombined on the input face of the
crystal. These bumps, and the light polarization itself, are
aligned along the crystalline c axis, so that the dynamics are
effectively one dimensional �1D�. Within the crystal, the
nonlinear index change �n=�Eapp�I� / �1+ �I��, where Eapp is
an electric field applied across the crystalline c axis and �
=n0r33�1+ �I0�� is a constant depending on the base index of
refraction n0, the electro-optic coefficient r33, and the spa-
tially homogeneous incident light intensity �I0� �16,17�. In
the experiments, the beams have relative angles of �0.3°
and �0.6°, the sequential intensity ratios are fixed at ap-
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FIG. 1. Numerical simulation of multiple bump-on-tail instabil-
ity. �a�,�b� Input profiles, with corresponding gain curves �shaded
graphs at the base line�, with the middle hump shifted �a� to the left
of the equal gain value and �b� to the right. �c�,�d� Output pictures
after 1 cm of propagation.
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FIG. 2. �Color online� Experimental setup. Light from a 532-nm
laser is made partially spatially incoherent by a ground-glass dif-
fuser and separated into a superposition of three beams �inset�. A,
attenuator; L, lens; BS, beam splitter; POL, linear polarizer;
SBN:60, nonlinear photorefractive crystal; FP, focal Fourier plane
of the lens L3; CCD, digital detector.
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proximately 3:2 to create equal slopes in the unstable re-
gions, and the strength of the nonlinearity �wave coupling� is
controlled by varying the applied voltage �similar results oc-
cur at other relative angles and intensities�. To observe the
interaction, light exiting the crystal is directly imaged in both
position �x� space and momentum �k� space, the latter by
performing an optical Fourier transform.

Experimental results for the weak-coupling case are
shown in Figs. 3�a� and 3�b�. The output intensity remained
uniform, up to unavoidable striations in the crystal, while the
energy spectrum underwent significant redistribution due to
mode coupling. As the nonlinear interaction strength �applied
voltage� was increased, the spectral bumps were observed to
flatten. In all cases, the profile flattening was sequential, with
lower momenta reaching a plateau first. This observation
supports the general conclusion that the final state of the
system depends on the temporal sequence of wave diffusion
�18�. To our knowledge, this is the first demonstration of a
multiple bump-on-tail instability and its associated competi-
tion of growth rates. Similar behavior should occur in any
wave-kinetic system obeying Eq. �1�, such as material
plasma and cold atoms at finite temperature.

More complex behavior occurs for higher nonlinearity
�Fig. 3�b��. In the strong-coupling regime �2,12,13�—i.e.,
��D�1—modulations start to appear in intensity and mo-
mentum transfer continues beyond the plateau �zero-
gradient� limit �though the inertial approximation �n
=�n��I��� is still valid �2,14��. In this case, the perturbed
modes grow so quickly that wave-wave coupling is the
dominant process of energy-momentum exchange �10,15�. A
closer examination of this spectrum, shown in Fig. 4, reveals
a self-similar profile with a k−2 falloff. This algebraic spec-
trum holds for the entire wave-number range between the
first and last peaks, despite the fact that the central hump
provided an initial region of stability ��f0 /�k0�.

The intensity waves present in the strong-coupling regime
�Fig. 3�c�� are suggestive of solitons and, indeed, an en-
semble of solitons can give the observed power spectrum
�19�. For N solitons occupying a space of length L in 1D,
having random phases and positions and maintaining
total energy ES, the Wigner spectrum �fk�
�

1
L�Nmin

NmaxdNN��N��cosh�kN /ES��−2, where ��N� is the prob-
ability for the system to be in the N-soliton state and Nmin
�N�Nmax due to soliton merging and turbulent redistribu-
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FIG. 3. �Color online� Experi-
mental output pictures. Top row:
intensity. Bottom row: power
spectrum, as a function of nonlin-
ear wave coupling �applied volt-
age across the crystal�. �a�,�b�
Weak-coupling regime. �c�,�d�
Strong-coupling regime. Note that
the slight modulations in intensity
in �a� due to striations in the crys-
tal do not affect the spontaneous
modulations that appear in �c�
above threshold.
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FIG. 4. �Color online� Asymptotic spectral profile of turbulent state. �a� Comparison of input �solid line� and output �dashed line� profiles.
�b� Comparison in log-log space, showing the algebraic spectrum in the interaction region.

MULTIPLE-STREAM INSTABILITIES AND SOLITON … PHYSICAL REVIEW A 78, 061804�R� �2008�

RAPID COMMUNICATIONS

061804-3



tion. Choosing Nmax�ES /k �using the condition of close
packing� and replacing the cosh−2 term by a step function
yields �fk��

1
L�Nmin

ES/k dNN��N�. For the case when all states are
occupied uniformly ���N�=const�, �fk��k−2.

Interestingly, this particular equipartition spectrum is ro-
bust and appears in several different contexts of strong wave
coupling. For example, dynamics with phase-dependent
coupling—e.g., four-wave mixing—can give an effective
wave collision term that leads asymptotically to a k−2 spec-
trum �20–22�. For the phase-independent coupling here, the
intensity-induced interactions are enough to drive the dy-
namics. Indeed, similar conservation arguments on the pho-
tonic “plasmons” �speckles�, rather than the number of soli-
tons, also lead to a Rayleigh-Jeans distribution �20–22� fk
=T / �k2−��, where the effective temperature T� lc

−2 and the
effective chemical potential is given by the average propaga-
tion constant �energy eigenvalue� of the waves. Note, how-
ever, that there must be a sufficient density of modes to
achieve the equipartition. For few modes, relaxation can oc-
cur �23�, but a self-similar spectral profile is not reached.

Likewise, the presence of �incoherent� solitons—e.g., from
modulation instability—is not enough to guarantee equipar-
tition. There must be enough interaction and propagation dis-
tance �evolution time� to go beyond soliton clustering �24�
and cascade the interactions �25,26�. Here, we encourage the
wave-mixing cascade by seeding a “thermal” background
distribution with additional “nonequilibrium” humps. The re-
sult is the first definitive proof, as measured by the power
spectrum, of spatial optical turbulence.

In summary, we have demonstrated multiple bump-on-tail
instabilities by considering the nonlinear propagation of spa-
tially incoherent light as a photonic plasma. For weak non-
linearity, quasilinear flattening of the bumps in momentum
space was observed to be sequential. For strong nonlinearity,
merging of the spectral bumps into an algebraic k−2 power
spectrum was observed. This profile, and the associated in-
tensity modulations, is the hallmark signature of optical
Langmuir turbulence.
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