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Both analytical and numerical investigation of the structural features of ultrashort-laser-pulse self-focusing is
presented. The analysis is performed under sufficiently general assumptions concerning the medium dispersion.
It is demonstrated that the wave-field self-focusing proceeds with overtaking the steepening of the pulse
longitudinal profile and shock-wave formation. As a result, a more complex singularity is formed where an
unlimited field increase is followed by wave breaking with a broad power-law pulse spectrum.
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The propagation of high-power laser pulses in a nonlinear
medium is accompanied by the well-studied effect of laser
beam self-focusing �1–3�. It is evident that as the pulse du-
ration becomes shorter, the amplitude dependence of the
group velocity of the wave packet �nonlinear dispersion� be-
comes more important for the self-action dynamics along
with the cubic nonlinearity. It leads to a steepening of the
longitudinal profile and formation of a shock wave �wave
breaking� �2� even for media without dispersion. For the case
of quasimonochromatic radiation, the evaluation of the rela-
tive value of the nonlinearity of these two types—i.e., of the
corresponding nonlinear members in the equation SND /SK
�� /L, where SK and SND are the terms responsible for the
self-action and steepening of the field, respectively, � is the
wavelength, and L is the pulse duration—shows that the cu-
bic nonlinearity wins in this competition. However, in the
process of pulse self-focusing, an increase in the field ampli-
tude leads to a significant decrease in the breaking length
and, therefore, to an increase of the influence of the nonlinear
dispersion �4–6�. To analyze the problem of the competition
of these nonlinearities correctly, we will study the dynamics
of the self-action of an ultrashort three-dimensional pulse
based on the wave equation, but within the reflection-free
approximation and for relatively general assumptions about
the media dispersion. It turned out that for this case, one can
generalize the methods of studying qualitatively the solutions
used in hydrodynamics and in the theory of non-one-
dimensional nonlinear Schrödinger equation and make a con-
clusion about the principal role of nonlinear dispersion in the
self-focusing dynamics. The results of analytical study of the
formation of shock waves in the self-focusing process are
confirmed by numerical simulation.

The wave equation describing the propagation of a packet
of electromagnetic waves along the z axis has the form

c2�z
2E + c2��E − �t

2E = 4��t
2P , �1�

where ��=� /�� for any �, ��=�x
2+�y

2, and P is the medium
polarization response.

To determine the material equation P�E� for the case of
intense radiation, we will generalize Lorentz dispersion
theory, in which the medium is represented as a set of oscil-

lators. In a simple way it can be done by means of introduc-
ing cubic nonlinearity to the oscillator equation. As a result,
in the case of the circularly polarized field E= �x0+ iy0�E, we
obtain �2�

��
2P + �0

2P + ��P�2P = ��0
2E �2�

for the nonlinear response of a medium in the weak-
absorption region. Here, �0 is the oscillator frequency, � is
the nonlinearity parameter, and � is the static linear suscep-
tibility of the medium.

For a wave packet with central frequency � and spectrum
width ��, which is much less than the carrier frequency �0
���	�
�0�, one can obtain the following expression for
the polarization response of the medium using the perturba-
tion method:

�t
2P = ��t

2E − ��0
−2�t

4E − ��3�0
−2�t

2��E�2E� . �3�

The linear part of this equation turns out to be insufficient to
describe the frequency dependence of the dielectric permit-
tivity in a rather wide frequency range �4,7�. The required
generalization can be achieved by using the Kramers-Kronig
relation. Following �8� one can obtain �for more details see

�9�� �r���� �̃0+ b̃�2− ã /�2, where ã and b̃ are some coeffi-
cients determined by the imaginary part of the dielectric per-

mittivity �9�. In the framework of Eq. �2� the coefficient b̃

can be found as b̃=� /�0
2. In essence, it means that one has to

supplement Eq. �3� with the term ãE, which determines the
low-frequency dispersion of the medium.

The final equation describing the dynamics of the self-
action of the wideband radiation in a medium with focusing
nonlinearity ���	0� has the following form �7,10�:

�z�
2 u + ��

2��u�2u� − b��
4u = ��u − au . �4�

Here, the following new variables have been introduced
z→z2�c�1+4�� / ã, r→rc /�ã, b=4���4 / ��0

2ã�,
�=��t−2z�1+4���� / ã�, and E=u��0

2ã / �4���3�2�. The
parameters a and b determine the low-frequency and high-
frequency linear dispersion of the medium. By choosing the
parameters a�0, b�0, one can achieve good agreement
with the experimental data: e.g., for quartz glass, this agree-
ment is realized for the frequency changes by an order of
magnitude �7�.

In the considered case of Eq. �4�, the corresponding linear
law of dispersion for the wave u�exp�i��− ikzz� has the*sksa@ufp.appl.sci-nnov.ru
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form kz=−a /�+b�3. Note that one can control the disper-
sion influence in the wave packet dynamics by changing its
central frequency �. Specifically, for a pulse with frequency
�bnd= �a /3b�1/4, the parameter of the group-velocity disper-
sion DGV=�2kz /��2 becomes to zero. Correspondingly, for
the wave fields with frequency �
�bnd, the field spectrum is
concentrated mainly in the region with the normal group-
velocity dispersion DGV�0, and for �
�bnd, the anomalous
dispersion �DGV	0� is dominant.

In the case of a quasimonochromatic wave packet with
the form u=��z ,r ,��ei��, one can obtain from �4� the gener-
alized nonlinear Schrödinger equation �GNLSE� which con-
tains the usual nonlinear term ���2� and an additional term
i���2�� /�� responsible for the dependence of the wave
packet group velocity on the field amplitude �nonlinear dis-
persion� and for the high-order dispersion.

To study qualitatively the peculiarities of the wave-field
self-action, which are described by Eq. �4�, we will use the
methods similar to those used when analyzing the NSE �3�.
The localized solutions of Eq. �4� retain the quantum number

I =	 	 ����2d� dr� �5�

and the Hamiltonian

H =	 	 ������2 − b�����2 − ����4/2 + a���2�d� dr�. �6�

Here u=��. Due to the Hamiltonian nature, one can obtain
the relation

I
d2
��

2 �
dz2 = 8H + 8	 	 �b�����2 − a���2�d� dr�, �7�

which describes the change in the effective transverse size of
the wave field I
��

2 �=��r�
2 ����2d� dr�. It is seen that for the

dispersion-free medium �a=b=0�, the right-hand side of Eq.
�7� is proportional to the Hamiltonian of the system �6�.
Therefore, the distributions of the wave field with the nega-
tive Hamiltonian collapse in the transverse direction along a
finite propagation path. This conclusion stays valid for field
distributions with the spectrum localized mainly in the re-
gion of the anomalous dispersion of the group velocity �b
→0�. In other cases �b�0�, Eq. �7� shows the possibility of
an initial narrowing of the transverse field distribution �a
more detailed analysis is presented in �4��.

To study the spatiotemporal dynamics of the wave packet
in the pulse, it is convenient to use the transformation

u = E��,�,��/��z� , �8�

which transposes the point of singularity formation to infin-
ity, for the case of pulses with arbitrary duration. Here �

=� dz
�2�z� , �= r

��z� , �=�−
�z

4�r2, and the function ��z� describes
the change in the transverse size of the field. This represen-
tation of the solution of Eq. �4� takes into account two pro-
cesses running in the system: the self-focusing of the packet
and the formation of a characteristic U-shaped structure of
the field distribution, which is determined by the variable �.
Note that this representation is valid not only for collimated

beams ��z�z=0�=0�, but also for initially focused beams
��z�z=0��0�.

Using the transformation �8�, we obtain the equation

���
2 E + ��

2��E�2E� − �zz�
3�2��

2E/4 + �2�a − b��
4�E = ��E .

�9�

The conversion into the “collapsing” reference system allows
one to “segregate” the process of self-focusing in the system
and reduce the problem to studying the quasi-unidimensional
longitudinal evolution of the pulse. The characteristic trans-
verse scale of the quasiwaveguide structure in new variables
is of the order of unity. It is seen that the self-collapse rate
��z� determines the level of attenuation of dispersion effects
during the collapse ���z�→0�. Thus, at least in a dispersion-
free medium, as well as in a medium with anomalous disper-
sion of the group velocity, the steepening of the longitudinal
profile of the pulse along with the beam self-focusing be-
comes the key process in the temporal region �. The case of
normal dispersion �a=0� requires an additional consider-
ation.

Now, we will find the relationship between the length z0
of the collapse ���z0�=0� and the length zB of the wave
breaking. The value of z0 can be estimated from the momen-
tum theorem, Eq. �7�. Specifically, near z0, for the collimated
wave field ���z=0�=�0 ,�z�z=0�=0�, we have

��z� � �
��
2 �z�� � 2��4 �0

2�H�/I���z0 − z� , �10�

where the coordinate of the focal point can be also deter-
mined via the integrals of the problem z0=�0

�I / �4�H��. As
follows from Eq. �9�, the evolution of the field in the near-
axis region ���0� can be described by the following equa-
tion:

��E + ����E�2E� � 0. �11�

The solutions of Eq. �11� have been studied in detail, e.g., in
hydrodynamics �11�. The inequality of the velocities of the
points in the longitudinal profile leads to a steepening of the
rear front of the pulse and the formation of a shock wave in
the process of wave breaking along the length of �B. One can
easily estimate the wave-breaking length �B��0 / �3�E�max

2 �,
where �E�max is the maximum value of the field in the pulse at
z=0 �at the entrance to the medium�, for the pulses having
duration �0 from Eq. �11�. This corresponds to the distance

zB = z0
1 − exp�− 4�0�0
��H�/I/�3�E�max

2 ��� , �12�

which is somewhat shorter than the self-focusing length z0.
When finding Eq. �12�, we used the relationship between z
and � in Eq. �8� in the following form: �=�0

zdz /�2�z�
=−�I / �16�0

2 �H � �ln�1−z /z0�. Note that as �H� decreases and
the self-focusing length increases as z0��I /H�1/2, the wave-
breaking region retreats from the point of collapse of the
transverse field distribution toward the boundary of the non-
linear medium obeying the exponential law. This result �zB
	z0� is in good accordance with the automodel solution of
Eq. �4� at a=b=0 �u�=�
�−r2 / �4�z0−z��−3�2 / �z0−z�� / �z0
−z), where � is an arbitrary function. Thus, in dispersion-
free media �a=b=0� and in media with the anomalous group
velocity dispersion law �b=0�, a new type of singularity is
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formed, in which the development of wave breaking near the
rear front of the pulse leaves the collapse of the wave field
somewhat behind �zB	z0�. The formation of discontinuities
�shock waves� is accompanied by the inevitable dissipation
of the energy on the front and a consequent attenuation of the
wave. In the case of a weak shock wave, the intensity behind
the wave-breaking point ����B� decreases, obeying the law
�E�2�1 /�� �11�. However, despite the dissipation in the sys-
tem, the behavior of the beam width �11� in the region of the
nonlinear focus �z�z0� stays the same and is determined by
formula �10� �10�.

To conclude this part, we will estimate the length of self-
focusing of the wave field z0 using Eq. �7� in a dispersion-
free medium �a�b�0�. For the distribution of the
potential of the field having the form �
=Acosh−1�� /�p�exp�−r�

2 / �2�0
2�+ i���, the calculations yield

H=2�A2�p�1− I / Icr�, where Icr=140��p
3�1+3�2� / �35�4

+14�2+3� is the critical energy for the self-focusing of the
beam, I=2�A2�0

2�1+3�2� / �3�p�, and �=��p. Thus, for a
collimated beam, z0 has the following form:

z0 = �0
2/�2�3�p��1 + 3�2�I/Icr − 1�−1/2. �13�

From here, for the quasimonochromatic pulse �
1 one can
find the formula for the length of the singularity formation
within the reflection-free approximation, which is well
known in the self-focusing theory: z0

m=�0
2� / �2�P / Pcr−1�,

where P=�����2dr�=�A2�2�0
2 is the beam power and Pcr is

the critical power of the self-focusing. Figure 1 shows the
length z0 of the singularity formation as a function of the
pulse duration �p for the following fixed parameters of the
wave field: �0, A, and �. The value of z0 is normalized to z0

m.
As seen from Fig. 1, the length z0 decreases as the duration
of the electromagnetic radiation decreases. For example, as
seen from Fig. 1, for the pulse duration �p=0.5 ��=1�, the
length of the singularity formation is z0�0.5z0

m, i.e., the
wave-breaking length is half of the collapse length estimated
by quasimonochromatic formulas. Summing up, one can say
that the peculiar feature of the dynamics of the self-action of
wideband radiation in a medium with cubic nonlinearity, as

follows from Eq. �13�, is connected with the decrease of the
length of the self-focusing of the radiation z0 as the pulse
duration �p becomes shorter compared with the length of the
collapse of the quasimonochromatic wave beam z0

m for the
fixed parameters of the pulse: namely, �0, A, and �. The
reason for this decrease is associated with an additional lon-
gitudinal energy flow toward the singularity, which is caused
by the inequality of the velocity of the points in the longitu-
dinal profile, as well as with the transverse energy flow from
the beam periphery toward its center.

To illustrate the peculiarities in the dynamics of the self-
action of ultrashort pulses, we will use computer simulations
of Eq. �4�. They confirm that the self-focusing of the radia-
tion and the steepening of the pulse front occur simulta-
neously �4�. This means that the self-compression of the
wave field must be accompanied by a noticeable widening of
the spectrum and the dissipation on the shock-wave front. To
stabilize the wave breaking �gradient catastrophe� in the nu-
merical investigation, Eq. �4� is supplemented with a
diffusion-type term ��3u /��3, as is done conventionally in
the theory of shock waves. This term arises naturally when
attenuation is taken into account in the oscillator equation
�2�. This also proved to be sufficient for stabilization of the
collapse, which confirms indirectly the anticipated develop-
ment of the wave-field wave breaking. In the absence of this
process, it is known that linear attenuation is insufficient to
stabilize the self-focusing. Note that weak enough diffusion
does not influence the formation length of the shock wave.
The situation is the same as for other shock waves �8�. For
illustration, Fig. 2 presents the results of modeling numeri-
cally the evolution of the field in a dispersion-free medium
�a=0,b=0�. It is seen that the key process in the dynamics
of the self-action of an ultrashort pulse is here the steepening
of the longitudinal profile and the formation of a rather sharp
transition zone. This is a common scenario for dispersion-
free media. Strictly, one can speak about the formation of a
shock wave only in media without dispersion and media with
anomalous dispersion. In these cases, numerical calculations
demonstrate the presence of rather long intervals, in which
the field spectrum decreases, obeying the power law. For
example, in a dispersion-free medium, the spectrum calcula-
tions yield the law S���= ��u�� ,r=0�ei��d����−1 �see Fig.
3�a��, which is realized along the paths from z=50 to z=75.
It means that there exists a jump in the field, which is a
characteristic of a shock wave.

In a medium with anomalous dispersion, which leads to
the packet self-compression in the longitudinal direction too,
the spectrum decreases faster, specifically, S�����−3/2 �see

FIG. 1. �Color online� Length of self-focusing z0 �blue dashed
line� calculated by Eq. �7�; the red line is the overturn distance
calculated by Eq. �12�. � is the length of the singularity obtained by
numerical simulation of Eq. �4� for a=b=0.

FIG. 2. �Color online� Dynamics of the circularly polarized field
�u�z ,� ,r�� in a dispersion-free medium �a=0,b=0� for �=0.04. Dis-
tribution of the field at the boundary of the nonlinear medium u
=0.6ei� /cosh�0.3��exp�−r2 /100�.
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Fig. 3�b��. The corresponding time dependence u��� is
characterized by an infinite derivative for �=0. For the case
under consideration it means that the low-frequency disper-
sion cannot prevent the gradient catastrophe entirely, but it

only modifies the field structure in the transitional region.
The numerical modeling shows that the spectrum has �−3/2

law for z in the interval 40–60.
In a medium with normal dispersion, despite the forma-

tion of rather steep fronts, the spectrum contains no intervals
with the power-law dependence. This can be explained by
the fact that in the near-axis region, the self-action dynamics
is described by the modified Korteweg–de Vries equation. In
this case, the possibility of front steepening stabilization is
well known. The structural features of the self-action in this
case were studied in �4�.

The above generalization of the laser beam self-focusing
theory for the case of ultrashort pulses has shown that the
account of nonlinear dispersion is of principal importance.
New features in the self-action dynamics are determined by
the steepening of the longitudinal profile of the pulse and the
formation of shock waves in the media without dispersion
and with anomalous dispersion. As a result, a new type of
singularity is formed, in which the development of the gra-
dient catastrophe near the rear front of the pulse is slightly
ahead of the collapse of the wave field. Using numerical
simulation of the processes, we demonstrated the conse-
quences of the shock-wave formation in the system: namely,
the stabilization of the collapse due to the uncontrolled dis-
sipation on the front and formation of the power-law spectra
of the wave field �see Fig. 3�, which are characteristic of the
wave breaking. Shock-wave formation �on the distance �12��
leads to a decrease of the singularity formation length along
with shortening of the pulse duration.
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FIG. 3. �Color online� Short-wave part of the spectral power
S2���1� at the system axis: �a� for a=0 and b=0; �b� for a=1 and
b=0.
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