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Stirring trapped atoms into fractional quantum Hall puddles
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We theoretically explore the generation of few-body analogs of fractional quantum Hall states. We consider
an array of identical few-atom clusters (n=2,3,4), each cluster trapped at the node of an optical lattice. By
temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at
each site. We analyze protocols for coherently transferring ground-state clusters into highly correlated states,
producing theoretical fidelities (probability of reaching the target state) in excess of 99%.
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Cold-atom experiments promise to produce unique states
of matter, allowing controllable exploration of exotic phys-
ics. For example, since rotation couples to neutral atoms in
the same way that a uniform magnetic field couples to
charged particles, many groups are excited about the possi-
bility of producing analogs of fractional quantum Hall states
[1-4]. In particular, if a two-dimensional harmonically
trapped gas of bosons is rotated at a frequency () sufficiently
close to the trapping frequency w, then the ground state will
have vortices bound to the atoms—an analog of the binding
of flux tubes to electrons in the fractional quantum Hall ef-
fect. The ground state will be topologically ordered and pos-
sess fractional excitations. Technically, the difficulty with re-
alizing this goal experimentally has been that it requires () to
be tuned to a precision which scales as 1/n, where n is the
number of particles. Responding to this impediment, several
authors [2—4] have proposed studying clusters with n=< 10.
Such puddles possess many of the features of a bulk quan-
tum Hall liquid, and producing them would be a great
achievement. Here we propose and study protocols for pro-
ducing strongly correlated clusters of rotating atoms.

The issue prompting this investigation is that in such clus-
ters there are very few mechanisms for dissipating energy,
and hence experimentally producing the ground state of a
rotating cluster is nontrivial. First, a small number of par-
ticles results in a discrete spectrum and leaves few kinetic
paths. Second, in the strongly correlated states of interest the
atoms largely avoid each other, further blocking the kinetics.
On these grounds, one should not expect to be able to cool
into the ground state. Instead we advocate a dynamical pro-
cess where one coherently drives the system into the strongly
correlated state through a well-planned sequence of rotating
trap deformations. This approach is based upon an analogy
between the states of these atomic clusters and the energy
levels of a molecule. By deforming the harmonic trap and
rotating the deformation one couples the many-body states in
much the same way that an oscillating electric field from a
laser couples molecular states. We consider a number of
pulse sequences, finding that one can rapidly transfer atoms
to a strongly correlated state with nearly unit efficiency. Fol-
lowing a proposal by Popp er al. [3], experimentalists at
Stanford have achieved considerable success with a related
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procedure, where one slowly increases the rate of rotation,
adiabatically transferring bosonic atoms from an initially
nonrotating state to an analog of the Laughlin state [5]. One
could also imagine implementing more sophisticated proto-
cols such as rapid adiabatic passage [6].

To achieve sufficient signal to noise, any experimental
attempt to study small clusters of atoms must employ an
ensemble of identical systems: for example, by trapping
small numbers of atoms at the nodes of an optical lattice.
When formed by sufficiently intense lasers, this lattice will
isolate the individual clusters, preventing any “hopping”
from one node to another. We will not address the very in-
teresting question of what would happen if the barriers sepa-
rating the clusters were lowered. By using filtering tech-
niques, one can ensure that the same number of atoms sit at
each node [5]. A rotating deformation of each microtrap can
be engineered through a number of techniques. For example,
if the intensity of the lattice beams forming a triangular lat-
tice is modulated in sequence, then a rotating quadrupolar
deformation is to be produced. A more versatile technique is
to modulate the phases between counterpropagating lattice
beams. Changing these phases uniformly translates the lat-
tice sites. If one moves the lattice sites around faster than the
characteristic times of atomic motion (107 s), but slow com-
pared to the times for electronic excitations (1071 s), then
the atoms see a time-averaged potential. This technique,
which is closely related to the time orbital potential traps
pioneered at JILA [7], can produce almost arbitrary time-
dependent deformations of the individual traps which each of
the clusters experiences [5]. Each cluster feels the same
potential.

Once created, the ensemble of clusters can be experimen-
tally studied by a number of means. In situ probes such as
photoassociation [8] and rf spectroscopy [9] reveal details
about the interparticle correlations. In the regime of interest,
time-of-flight expansion, followed by imaging, spatially re-
solves the ensemble-averaged preexpansion density. This re-
sult follows from the scaling form of the dynamics of lowest-
Landau-level wave functions [4].

We model a single cluster as a small number of
two-dimensional harmonically trapped bosonic atoms. The
two dimensionality can be ensured by increasing the inten-
sity of the lattice beams in the perpendicular direction. Ne-
glecting the zero-point energy, one finds that in the frame
rotating with frequency (), the single-particle harmonic os-
cillator eigenstates have the form E;=f(w-Q)k+h(w+Q)j

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.78.061608

BAUR, HAZZARD, AND MUELLER

(j,k=0,1,...). In typical lattices, the interaction energy
U/h~ 10 kHz is small compared to the small oscillation fre-
quency w~ 100 kHz [10]. Therefore the many-body state
will be made up of single-particle states with j=0: the lowest
Landau level, with wave functions of the form

di(x,y) = (mk!) ™V 2Zke 72, W

where z=(x+iy)/d with d=Vhi/Mw is the complex represen-
tation of the coordinate in the plane measured in units of the
oscillator length, and where M is the atomic mass. Including
interactions, the many-body Hamiltonian for a single cluster
is then

Hypp= 2 jh(w- Q)a_;f'aj +> ijzma}'a}lazam, (2)
Jj Jklm

where a,, is the annihilation operator for the single-particle
state ¢,,. For point interactions the interaction kernel is

U (4R
==, -+ L
Vikim > Ojk—t—m2 \r Tk (3)

where U= \s“m%/(Mdzdz) is the on-site interaction be-
tween two particles in the same well, a is the three-
dimensional s-wave scattering length, and d, is the oscillator
length in the transverse direction. As has been explored in
depth by previous authors [ 1-4], for a given total number of
particles n, and angular momentum projection L, the Hamil-
tonian (2) is a finite matrix which is readily diagonalized.
Example spectra are shown in Figs. 1-3. We plot the spectra
as energy versus angular momentum, with ()=w. Spectra at
other rotation speeds are readily found by “tilting” the
graphs—the energy of a state with angular momentum pro-
jection AL is simply shifted up by f(w—Q)L.

We imagine applying to each cluster a rotating single-
particle potential (in the laboratory frame) of the form

Hy(r0) = Vy(O2"e ™%+ e ™, (@)

where m determines the symmetry of the deformation (e.g.,
m=2 is a quadrupolar deformation), the envelope function
V,(t) is the time-dependent amplitude of the deformation,
and (), is the frequency at which the perturbation rotates. We
will mainly focus on the case m=2. When restricted to the
lowest Landau level, this potential generates a coupling be-
tween the many-body states, which in the rotating frame is
expressed as

F

HS = VP(I)E Ulm(eim(ﬂp_n)tah-mal + HC) 5 (5)
i

with v,=27"2(I+m)!/\I!(I+m)!. As such, it only couples
states whose total angular momentum projection differs by
fum. For our calculation will work in the corotating frame
with =(),, where the only time dependence is given by
V,(2).

We wish to implement a 7 pulse, where the amplitude
V,(?) is engineered so that after the pulse, a cluster is trans-
ferred from its initial state to a target state of our choosing. If
the perturbation coupled only two states, this would be a
straightforward procedure. The frequency (), is selected so
that the initial and target states are degenerate in the rotating
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FIG. 1. (Color online) Transferring small clusters from nonro-
tating ground state to »=1/2 Laughlin state using rotating quadru-
polar (m=2) deformations. Left: interaction energy (in units of
U/2) of quantum states of harmonically trapped two-dimensional
clusters as a function of total angular momentum projection #L in
units of A. Excitation paths are shown by arrows. Central: squared
overlap (fidelity) of |¢(t)) with the initial (solid lines) and final
(dashed lines) states as a function of the duration of a square pulse.
Right: fidelities as a function of time for an optimized Gaussian
pulse of the form e~ =0”7 Time is measured in units of T
=h/U~10"*s. For n=2, the peak perturbation amplitude is v,
=0.05(U/2), 0—-£,=2.0(U/2), and a Gaussian pulse time of 7
=24, For n=3, 7=1027) and 0—-{2,=2.046(U/2) and 2.055(U/2)
for the Gaussian and square cases, respectively. For n=3, nonlinear
effects (coupling with near-resonant levels) shifted the optimal fre-
quency away from the linear response expectation, w-{),
=2(U/2).

frame. For any finite V, the system Rabi flops between the
two coupled states, and by turning off the perturbation at the
right time, one ends up in the target state with unit probabil-
ity. The present example is more complicated, as there are
many states coupled by the perturbation. The basic idea,
however, remains sound: one still chooses Qp to make the
initial and final states degenerate. The time dependence of
V,(#) should be tailored to minimize the coupling to un-
wanted states. These stray couplings could be particularly
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FIG. 2. (Color online) Using a rotating m-fold symmetric per-
turbation to drive n=3 particle clusters from L=2 to the v=1/2
Laughlin state. Left: path on the energy level diagram. Center:
second-order process coming from a deformation with m=2. Right:
direct transition produced with m=4. Solid (dashed) lines are fideli-
ties with the initial (Laughlin) state. In both cases the peak defor-
mation is V,=0.05(U/2). Both use a Gaussian pulse. The frequen-
cies and pulse times 7 we used for m=2,4 were w-(,
=(3.00/2)(U/2), 3.035(U/2) and 7/7y=218,21. Note how much
more rapid the direct process is.
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FIG. 3. (Color online) Transferring atoms using multiple pulses.
Left: paths from initial to Laughlin states for n=3,4. Right: solid
line is the fidelity with the initial state, dotted line with the inter-
mediate (L,E)=(2,3(U/2)) state, and the dashed line with the
Laughlin state. All pulses are Gaussians. Despite using multiple
pulses, this technique is faster than using a higher-order m=2 pulse.
The frequencies (£2,), shape (), and pulse times (7) for the N=3
sequence were fi(w—{2,)/(U/2)=3.00,3.035, m=2,4, and /7,
=16.95,19.2. For both, V,=0.05(U/2). For N=4, using two pulses
with m=2 and V,,=0.2(U/2), we achieve >98% fidelity after a total
of two-pulse sequences with fi(w-{2,)/(U/2)=3.130,1.0376 and
7/ 19=82.5,87.0.

disasterous, because the coupling between the initial and tar-
get states is generically quite high order in V,,. As a particu-
larly relevant example, we consider transferring clusters
from the ground state (with L=0) to the v=1/2 Laughlin
state (2, ...,z,) =l (zi—2))? exp(~=Z;|z//415), which
has angular momentum n(n—1). Using a perturbation with
m=2, this requires a [n(n—1)/2]-order process. A pictur-
esque way of thinking about the dynamics in the presence of
the perturbation is to map the problem onto the motion of a
particle on a complicated “lattice.” The states of the unper-
turbed system are analogous to “lattice sites,” while the per-
turbation produces a “hopping” between sites. The goal is to
engineer a time-dependent hopping which efficiently moves
the “particle” from a known starting position to a desired
ending position. The transfer efficiency is measured by the
probability that the system is in the target state ¢ at the end
of the time evolution: we plot this probability—known as the
fidelity—as a function of time, given by f(¢)=|(ir| ¥(1))|*.
As this analogy emphasizes, the problem of transferring a
quantum system from one state to another is generic. Miiller,
Chiow, and Chu [11] recently considered how one can opti-
mize pulse shapes to produce high-order Bragg diffraction,
while avoiding transferring atoms into unwanted momentum
states. These authors developed a formalism for calculating
the fidelity by adiabatically eliminating the off-resonant
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states. They found that Gaussian pulse shapes greatly outper-
formed simple square pulses. This result is natural, as the
smoother pulses have a much smaller bandwidth.

We numerically solve the time-dependent Schrodinger
equation, truncating our Hilbert space at finite total angular
momentum L=n(n—1)+4 for n=2,3 and L=n(n—1)+8 for
n=4. We have numerically verified that changing this cutoff
to higher values has negligible effects. Figure 1 shows f in
the case of n=2 and n=3 for square and Gaussian pulses. For
the square pulse the fidelity is shown as a function of pulse
length. For the Gaussian pulse, a fixed pulse duration is used,
and the fidelity is shown as a function of time. For n=2,
where only two states are involved, the pulse shape is irrel-
evant. For n=3, where there is a near-resonant state with L
=4, the Gaussian pulse shape greatly outperforms the square
pulse, producing nearly 100% transfer efficiency in tens of
milliseconds, even for a very weak perturbation.

For n>3 we find that these high-order processes become
inefficient. For m=2 the coupling between the initial and
final states scales as (V,/U)""V2, making transfer times
unrealistically long unless one drives the system into a
highly nonlinear regime. As illustrated in Fig. 2, this diffi-
culty can be mitigated by using perturbations with higher m.
There, for illustration, we consider exciting a three-particle
cluster from the lowest-energy L=2 state to the L=6 Laugh-
lin state. The second-order m=2 pulse requires much longer
than the first-order m=4 pulse. An interesting aside is that
one would naively have expected that the resonant /=4 state
would make the second-order process extremely inefficient.
It turns out that the coupling to that state is fortuitously zero.

Further improved scaling can be arranged by using a se-
quence of 7 pulses. One transfers the cluster from one long-
lived state to another. Since the number of pulses scales as
the angular momentum, the transfer time is then quadratic in
the angular momentum, rather than exponential. One can
also tailor the path to maximize the fidelity of each step.
Some two-pulse sequences are shown in Fig. 3. The guiding
principle in designing the pulse sequences is that in each step
one wants as few as possible near-resonant intermediate
states.

We have shown that it is possible to use time-dependent
trap perturbations to coherently transfer boson clusters from
nonrotating ground states to analogs of fractional quantum
Hall states. We achieve fidelity f>99% for n=2,3 using
very weak rotating m=2 deformations, whose duration is of
the order of tens of milliseconds. Using a two-pulse se-
quence, we achieve similar results for n=4. We find that
smooth Gaussian pulses are much more effective than square
pulses, and that further efficiency can be gained by using
higher-order perturbations of the form z” with m>2.

We briefly compare our technique with the proposal in
Ref. [3]. While our approaches share the use of a rotating
time-averaged optical lattice potential, our proposal offers
significant differences and advantages. While Ref. [3] sug-
gests an adiabatic evolution, we propose a coherent
evolution—analogous to a Rabi oscillation—to the Laughlin

state. This has the advantage of being faster, easier to imple-
ment, and more robust. For a slightly smaller perturbation
relative to the adiabatic method, we achieve fidelity ~1 in
contrast to the adiabatic method’s 0.97 fidelity. Moreover,
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our method requires half the time. More importantly, the
adiabatic method requires carefully navigating a path
through possible rotating potential strengths and frequencies
as a function of time. In contrast, our method requires only
setting the pulse duration and strength, and is thus more eas-
ily implementable and less susceptible to small experimental
erTors.

This technique will allow the efficient creation of bosonic
quantum Hall puddles—a state of matter which has not yet
been observed. The clusters produced will be orbitally en-
tangled, have strong interparticle correlations, have frac-
tional excitations, and possess topological orders [1-4]. Al-
though current experiments, and the present theory, are
focused on the small-atom limit, it would be exciting to ap-
ply these techniques to larger collections of atoms, producing
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true analogs of fractional quantum Hall states. The main dif-
ficulty is that the spectra become dense as n increases, re-
quiring one to set (), to extremely high precision. By care-
fully choosing the trajectory, taking advantage of gaps in the
spectrum, one might be able to overcome such difficulties.

Finally, we mention that our approach allows one to drive
the system into almost arbitrary excited states. This may, for
example, be important for using quantum Hall puddles in a
topological quantum computing scheme [12].
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