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We study the phase diagram of the mixture of a Bose-Einstein condensate and a two-component Fermi gas.
In particular, we identify the regime where the homogeneous system becomes unstable against phase separa-
tion. We show that, under proper conditions, the phase-separation phenomenon can be exploited as a robust
probe of “local” Fermi superfluidity.
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Mixtures of superfluids open up possibilities of studying
interacting macroscopic quantum systems. The attempt at
such studies started decades ago in the system of 3He-4He
mixtures. However, the transition into the superfluid phase of
3He atoms in these mixtures occurs at an extremely low tem-
perature and has never been reached in experiment. Realiza-
tion of superfluids in atomic quantum gases makes such stud-
ies possible for the first time.

The atomic analogy of a superfluid 3He-4He system is a
mixture of a Bose-Einstein condensate �BEC� and superfluid
Fermi gas �i.e., a two-component Fermi gas with attractive
interaction�. In this paper, we explore the rich phase diagram
of this system at zero temperature. By studying the free en-
ergy of the homogeneous mixture, we identify the regime
where the homogeneous mixture becomes unstable against
phase separation. Phase separation is quite a generic phe-
nomenon occurring in trapped atomic mixtures, originating
from the interplay between the interactions and the spatial
variation induced by the trap, thus allowing different regions
of the trap to favor fundamentally different phases �1,2�.

Further, we demonstrate an interesting application of the
phase-separation phenomenon: a “local” detection of
Bardeen-Cooper-Schrieffer �BCS� superfluidity within the
Fermi gas �3–6�. While experiments involving the generation
of a vortex lattice �6� and rf spectroscopy �4� are able to
successfully demonstrate Fermi superfluidity and measure
the pairing gap, respectively, they are unable to resolve the
pairing property spatially. A “local” measurement technique,
such as the one we present in this article, will be instrumen-
tal in detecting paired states with nontrivial spatial
structure—for example, those responsible for Fulde-Ferell-
Larkin-Ovchinnikov �FFLO� superfluidity �7� occurring in
polarized fermion mixtures.

The probing concept can be simply understood if we en-
vision a BEC localized to a small region within the Fermi
medium. We assume that the Fermi gas is unconfined, which
is a valid approximation if the spatial extension of the Fermi
cloud is much broader than that of the BEC. In the phase-
separation regime, the BEC may exist in a pure form as an
isolated bubble surrounded by a Bose-Fermi mixture or a
pure Fermi gas. We show that the existence of such a BEC
bubble may be made sensitive to the superfluid property of
the fermionic medium. Thus, the onset of BCS superfluidity
is signaled by the occurrence or disappearance of small BEC
bubbles which can be readily detected via a density measure-

ment. Essentially, bosons serve as a matter-wave probe of
Fermi superfluid. This idea is illustrated schematically in Fig.
1.

To begin with, we first determine the zero-temperature
projected phase diagram of a Bose-Fermi-Fermi mixture
comprised of bosons of one species and equal population
spin-up and -down fermions of another. Here, by projected
we mean a two-dimensional slice of the d-dimensional pa-
rameter space by fixing the d−2 independent parameters. In
the absence of an interfermion interaction, this system can be
identically mapped onto a Bose-Fermi mixture and has been
previously studied quite extensively �8�. However, the inter-
acting case remains much less explored �9� and is of focal
importance to this work. Here, we therefore assume an at-
tractive s-wave interaction between fermions of unlike spins.
Furthermore, we assume Bose-Bose and Bose-Fermi interac-
tions to be repulsive. It is convenient to treat all interactions
via a pseudopotential modeled by v��r−x�=����r−x�,
which is valid for dilute systems, where we indicate different
types of interacting atoms by the index �
� �BB ,B↑ ,B↓ , ↑ ↓ �. In this work, we make two nonessen-
tial simplifications. First, we assume that the Bose-Fermi in-
teraction is spin independent—i.e., �B↑=�B↓=�BF. Second,
we consider a single spatial dimension. We remark that our
theoretical framework is general and the above two restric-
tions can be straightforwardly removed.

The homogeneous system under study is characterized by
a total of five independent parameters: the three interaction
strengths ��BB ,�BF ,�↑↓� and two densities ��B ,�F� where
�↑=�↓=�F /2. Note that the choice is not unique. For in-
stance, instead of the densities, we may choose chemical
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FIG. 1. �Color online� Schematic of the proposed BEC probe.
Bosons are confined in the tight trap and are made to interact with
the Fermi atoms which are unconfined. Phase separation can be
easily detected by measuring the BEC density profile.
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potentials ��B ,�F� to be independent parameters. It is in-
structive to first consider the much simpler case without a
Fermi-Fermi interaction, or �↑↓=0. As mentioned earlier, this
case, for three-dimensional �3D� confinement, has been stud-
ied by several authors �8�. A similar analysis can be per-
formed for the 1D case, resulting in the instability criterion
given by �F�4�BF

2 / ��2�BB�—when this inequality is satis-
fied, the homogeneous mixture is unstable and tends to phase
separate. Thus the BEC density profile in the two regimes
�phase separated or not� may be made quite distinct as de-
picted in the schematic of Fig. 1. However, we emphasize
that, since the interaction is density-density, there is no direct
connection of the fermionic pairing gap �in the case of inter-
acting fermions� to the phase-separation phenomenon. Re-
markably, as we shall show, the phase separation can be
made sensitive to the fermionic pairing, underlying the basis
of our proposed BEC probe of Fermi superfluidity.

We begin by writing the free-energy functional of the ho-
mogeneous mixture in the form

F =
�B

2
�B

2 − �B�B + �↑↓�
2� 1

2�
�

0

	 1


k
dk	2

,

+
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2�
�

0
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2

�1 −
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k
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where we have defined �k=�2k2 /2m, �̃F=�F−�BF�B, and
the fermionic quasiparticle energies are given by 
k

=
��k− �̃F�2+�2 by neglecting the Hartree contribution
since it only leads to a constant energy shift. Also, anticipat-
ing the role of Fermi superfluid, we have written the free
energy as a function of boson density �B and BCS pairing
gap �. The above free-energy functional for the combined
Bose-Fermi system is obtained from first principles, the de-
tailed derivation of which will be given in a future article.
Clearly, substituting �B=0, Eq. �1� reduces to the usual ex-
pression for a two-component superfluid Fermi system at T
=0.

We will then construct the projected phase diagram in the
�B−� parameter space while fixing the values of three more
independent variables to be discussed below.

The thermodynamic ground state is given by the mini-
mum of the free energy and therefore corresponds to the
necessary first derivative conditions �F /��=0 and �F /��B
=0. The first of these conditions essentially reproduces the
gap equation in the form �−�↑↓ /2���0

	�1 /
k�dk=1, while the
second fixes the number through the modified bosonic
Thomas-Fermi equation �B�B−�B+�BF�F=0. However, the
local minimum is guaranteed only if the Hessian matrix M,
constructed from the second derivatives of F, is positive
definite or the following conditions are satisfied:

M�B�B
= �2F/��B

2  0, Det�M�  0. �2�

When condition �2� is violated, the system will necessarily
phase separate �10�. Using this simple criterion, one can map
the whole phase space of the homogeneous mixture. How-
ever, this is an extremely laborious task, given that the total
phase space is huge, represented by the set of five indepen-

dent parameters as we mentioned earlier. We make a judi-
cious choice and use the set ��BB ,�BF ,� ,�B ,�F�, the moti-
vation behind which will be clear as we proceed further.
Other parameters, such as �↑↓, �F, and �B, must be calcu-
lated self-consistently using the gap equation and the bosonic
Thomas-Fermi equation discussed earlier, together with the
fermionic number equation.

We remind the reader that our goal here is not to give a
complete description of the whole phase space, but focus our
study on a small region that is physically meaningful in view
of current experimental setups and illustrate a probing tech-
nique based on the phase-separation phenomenon. This we
do by first picking reasonable values of �BB, �BF, and �F. We
then determine the stable or unstable regions in the �B−�
space via condition �2�. For this we need to study the prop-
erties of the Hessian matrix M. States that satisfy condition
�2� are only guaranteed to be a local minimum of the free
energy. To determine whether the state is the ground state of
the system, we need to compare the free energies of different
homogeneous phases which include the pure BEC and the
pure Fermi phase, in addition to their mixture.

Following the above procedure, we have determined the
phase space for various values of the fixed parameters. We
find that this system exhibits a very rich phase diagram.
However, given the lack of space, we restrict ourselves to
pointing out some general features that are relevant to this
proposal and direct the reader to an upcoming publication for
more details.

The projected phase diagram of a homogeneous mixture
for a particular set of ��BF ,�BB ,�F� is shown in Fig. 2�a�. We
note the following: �i� The unstable region corresponds to a
partial ellipse cut by the �B axis �shown by the shaded region
in Fig. 2�a��. �ii� Within this region, the phase space can be
further divided into a dynamically unstable region �the yel-
low �brighter shaded�� at which the free-energy landscape
shows a saddle point and a dynamically stable region �the
green �darker shaded�� at which the free-energy landscape
shows a local but not a global minimum. �iii� The position
and the extent of these regions depend on the values of the
fixed parameters. Immediately we notice that, in a typical
experimental setup with a given value of �↑↓, only a small
part of the phase space comprised of points on the fixed �↑↓
contour—for example, C1 or C2 shown in Fig. 2�a�—is
physically accessible. The vertical axis of �=0 corresponds
to a mixture of a BEC with a noninteracting Fermi gas
��↑↓=0�. The significance of the particular parameter set
chosen earlier is clear since we can now directly obtain the
Bose density profile in the probe by mapping the boson
chemical potential along this contour, �B�Ci�, onto the spa-
tial coordinate in the probe via the local density approxima-
tion �LDA� using �B�Ci�=�B�r���B−V�r�Ci�� where V�r�
is the probe trapping potential for the BEC. In Fig. 2�b� we
plot the free energy of the mixture as a function of the Bose
chemical potential �B�C1�. The same plot also show the free
energy for a pure BEC. Now we can easily identify the fol-
lowing special points in Fig. 2�a�: the point marked by the
circle �triangle� as the point where the free energy of the
BEC goes below that of the mixture and thus represents a
first-order phase transition in the presence �absence� of pair-
ing, and the point marked by square as the point where �B
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reaches its maximum value along the contour C1 and the
homogeneous mixture reaches its dynamical instability
threshold.

Now we are in the position to discuss how we can take
advantage of the phase diagram to detect Fermi superfluidity
using the BEC as a probe. To put this idea in context, we
note that there is a new avenue in cold-atom research that
casts BECs as tools for quantum measurement. A good ex-
ample is the experiment by Krüger et al. �11� where the
Thomas-Fermi character of the BEC density profile is ex-
ploited to measure the surface potential-energy landscape
with exquisite accuracy. Also, very recently, Bhongale and
Timmermans have proposed a high-sensitivity force mea-
surement by exploiting a phase-separated two-BEC mixture
�12�. The ideas in this article are a next step in this direction.

Since for our system the bosons are confined to the probe,
we want a situation such that, on phase separation, the sys-
tem consists of a pure BEC component near the center of the
trap surrounded by a cloud of either mixed bosons and fer-
mions or pure fermions. It is quite intuitive that if �B�r�
�̄B��↑↓� �the latter being the boson chemical potential
along the stable boundary of the green region represented by
the circle in Figs. 2�a� and 2�b��, a pure BEC bubble will
phase separate out from the mixture. However, in order to
use this phenomenon to discern the fermion superfluid prop-
erty, it is important to connect the occurrence of the BEC
bubble with the onset of a nonzero superfluid gap �. This is
crucial since, as mentioned earlier, phase separation can also
occur in a mixture of a BEC and a normal Fermi gas due to
Bose-Fermi repulsion. For this reason, in Fig. 2�c�, we plot
the critical boson chemical potential as a function of the
interfermion interaction strength. We see that there is a clear
separation of regions corresponding to a pure BEC phase
above the curve and a mixed phase below. Thus, if we con-
figure the probe such that the center chemical potential is
very close to and above the curve in Fig. 2�c� implying a

phase-separated pure BEC component near the center of the
trap, the appearance of BCS superfluidity on increasing the
attractive interfermion interaction is immediately signaled by
the disappearance of the phase-separated pure BEC bubble as
shown in Fig. 3.

In practice, the sharp density jump will be smoothed out
due to the finite kinetic energy contribution; however, the
absence of a non-Thomas-Fermi variation in the boson den-
sity profile can be easily detected. Also, we claim that this
probing method allows for a numeric estimation of the gap �
by a systematic fitting technique if the exact density profile is
obtained via a numerical solution of the coupled Bose-Fermi
equations.

Moreover, increasing the attractive interaction beyond a
certain value �depending on the value of �BB and �BF� results
in the absence of a phase-separated regime as depicted by the
contour C2 in Fig. 2�a�. In fact, this can be considered as a
very strong indication of the pairing phenomenon, the limit-
ing case of which is a homogeneous mixture of molecular
�M� and atomic BEC on the repulsive side of the Feshbach
resonance, known to be completely stable if �BM

�
�BB�MM �1�. However, this involves calculating these ad-
ditional interaction strength, which will be dealt with in a
future article.
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FIG. 2. �Color online� �a� Projected phase space of the Bose-Fermi-Fermi mixture. Here, as well as in other figures, all quantities plotted
are made dimensionless by scaling them in units of the probe, represented by a harmonic oscillator with frequency �0 and length �0. Fixed
parameters are �BF=0.44, �BB=0.05, and �F=27.32. The yellow �green� area indicates the region where the Bose-Fermi mixture is
dynamically �mechanically� unstable. The contours C1 and C2 correspond to �↑↓=−4 and −6, respectively. �b� Comparison of the free energy
of the mixture �solid curve� along the contour C1 and the free energy of the pure BEC �dashed curve�. The free energy of the pure Fermi gas
is much higher and not shown. The points shown by red symbols correspond to those in �a�. �c� Critical boson chemical potential �̄B as a
function of the inter-Fermi interaction separating the pure BEC and mixed Bose-Fermi phases. Within the LDA, moving vertically upwards
along a line parallel to the y axis implies moving from the edge towards the center of the trap.
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FIG. 3. �Color online� Boson density �in units of 1 /�0� profile
within the LDA with �dashed line� and without �solid line� fermion
pairing, for a total number of bosons, NB=101, at �↑↓=−4. All other
parameters are same as used in the previous plot.
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In conclusion, we have studied the phase diagram of a
Bose-Fermi-Fermi mixture where both bosons and fermions
are in the superfluid phase. The required free-energy func-
tional is derived from first principles, the details of which
will be given elsewhere. We exploit the phase diagram and
propose a probe for detecting BCS-type superfluidity within
a quasi-1D two-component Fermi gas by configuring the sys-
tem such that the phase separation resulting from thermody-
namic instability is sensitive to the interaction between the
fermions and hence the BCS pairing. The probe consists of a
BEC confined to a relatively tight trap. We have shown that
by properly tuning the probe parameters, the density profile
of the BEC provides a robust signal of the fermion pairing.
The probe idea may be easily extended to 3D systems by
identifying the appropriate phase-separation regime. The ex-
pressions for the free energy in Eq. �1� and the corresponding
Hessian matrix are still valid in 3D with the understanding
that the integrals involved are also 3D. One important differ-
ence between 3D and 1D is that, in the former, proper renor-
malization procedures must be taken to remove the ultravio-
let divergence in gap equation associated with the contact
interaction.

We are aware of a related recent proposal for probing
BCS-type superfluidity using a overlapping BEC. However,
there, the pairing signal is related to the damping of the BEC

acoustic phonons �13�. The strength of our proposal lies in
the fact that the signature of pairing is reflected in the BEC
density profile, a quantity that can be easily measured in
experiment. The proposed probing scheme possesses another
important advantage: it probes the local value of �. This is
crucial in trapped experiments where the gap varies in space
due to the trap-induced inhomogeneity and in situations
where the gap has an intrinsically nontrivial spatial depen-
dence. The latter arises, for instance, in the case of a FFLO
superfluid state in a population-imbalanced Fermi system
where the gap varies sinusoidally in space, which may result
in density oscillations in the BEC probe. Another natural
extension is to study the phase diagram of the Bose-Fermi-
Fermi mixture where the Fermi-Fermi interaction is tuned
across a Feshbach resonance. How the presence of the
bosons affects and probes the BEC-BCS crossover will be an
interesting problem to study.
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