RAPID COMMUNICATIONS

PHYSICAL REVIEW A 78, 061603(R) (2008)

Tunneling-induced damping of phase coherence revivals in deep optical lattices
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We consider phase coherence collapse and revival in deep optical lattices, and calculate within the Bose-
Hubbard model the revival amplitude damping incurred by a finite tunneling coupling of the lattice wells (after
sweeping from the superfluid to the Mott phase). Deriving scaling laws for the corresponding decay of
first-order coherence revival in terms of filling factor, final lattice depth, and number of tunneling coupling
partners, we estimate whether revival damping related to tunneling between sites can be or even has already

been observed in experiment.
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The idea of implementing the Bose-Hubbard model with
cold atoms in optical lattices ultimately led to a clean experi-
mental realization of the superfluid-Mott-insulator transition
[1,2]. This in turn inspired many intriguing developments
marrying condensed matter physics, quantum optics, and
quantum information processing [3]. Concurrent with the
superfluid—Mott-insulator transition, revivals of first-order
phase coherence upon entering the Mott phase in a three-
dimensional (3D) optical lattice have been observed [4]. In
the ideal case of a perfectly homogeneous lattice, the revivals
would be exact—i.e., reach the same coherence amplitude as
the initial superfluid state—provided the optical lattice wells
were completely isolated from each other and from the en-
vironment (heat bath). The experiment [4], however, mea-
sures a significant damping of the revival amplitude (so that
approximately four to five revivals can be observed clearly).
Here, the revival time ¢,., is defined to be the time at which
the first revival maximum of the long-range coherence
(d;(r)&g(t» occurs after the sweep to the Mott phase. There
are basically four mechanisms which might induce the ob-
served damping: (i) a finite tunneling coupling J of the lattice
wells, (ii) a finite coupling of the wells to the environment,
and finally inhomogeneities in the lattice, such as (iii) an
external trap potential (inducing finite-size effects) and (iv)
variations of the lattice depth and hence on-site repulsion U
from site to site (i.e., diagonal disorder). Here, we investigate
the question of whether and how a finite tunneling coupling
J of lattice wells induces a damping of the revival signal—
i.e., mechanism (i). In contrast to the other effects, this
mechanism is an intrinsic property of the system and sur-
vives in the homogeneous continuum limit. It is also theo-
retically well under control and of fundamental interest, e.g.,
regarding the basic problem of equilibration—that is, the
question of whether and how fast the system approaches a
local equilibrium state after the quench to the Mott phase.
We point out, as these arguments already indicate, that the
nature of revivals and their damping in an optical lattice is
fundamentally different from the single-well case where the
particle-number dependence of the chemical potential plays
the major role [5]. Our strategy is to calculate perturbatively
the solution of the many-body problem on a general lattice,
when the parameter 27J/U is small but finite, starting from
the exact number basis solution at J=0. Here J gives a typi-
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cal scale of the hopping amplitude and U is proportional to
the contact interaction coupling. We note that within the
presently employed perturbative approach, we cannot discuss
the late-time behavior, but can extract the decay of first-order
coherence from one given to the next revival cycle.

The Hamiltonian we employ is of the conventional single-
band Bose-Hubbard type with on-site interactions

. U
_ ata Yty
H = IM sl s+~ (dp)ay, (1)

where d; and d, are bosonic creation and annihilation opera-
tors at lattice sites w and v, respectively. We use the conven-
tion that summation is implicit over the equal Greek lattice
site indices designated with an overbar. The matrix M, de-
scribes the (possibly anisotropic) tunneling rates on an arbi-
trary lattice [6], and U is the on-site repulsion. The full op-
erator equation of motion in the final state with given J then
reads (A=1)

P
iifi = IM i+ Uh i, 2)

where 7 M:d;& . counts the number of particles per site. The
exact solution of the above operator equation, for decoupled

wells, /=0, is given by
&2(0 =exp{- iUﬁMt}éz(:L(O) ) (3)

The revival time, where the argument of the exponential op-
erator assumes integer multiples of 2, is f,.,=27/ U (for J
=0). These coherence revivals exist because of the discrete
spectrum of the filling operator 7i,—i.e., because of the ex-
istence of particles, the “granularity” of matter. Calculations
for collapse and revival of first- and higher-order correlation
functions for the decoupled-well case J=0 were performed
in [8]. We mention here that in the opposite limit of hard-
core bosons (U— ), hopping in an optical lattice from site
to site, phase coherence collapse and revival may occur when
an optical superlattice is switched on [9].

We now proceed to calculate the perturbative solution of
(2) for J/U small but finite. Defining
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a,(1) = exp{— iU }A (1), (4)

we extract the dominant (for J/U < 1) time dependence from

the full field operator d,(7), so that A «(0)=3d,(0) and
A u(tey) =4, (t,). The equation of motion
i0A, = IM 5 expliU(i, — i) 1A (5)

can be solved via an expansion into powers of the small
parameter J (analogous to response theory with a perturba-

tion I:Iim=JM vl Ma,,) where the second-order solution reads
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A ()=A,0)—i J d' M eV A (0)

fdtJ dt”JzM,u,va iv(i —n i’ tU(nV np A (O)

+0(P). (6)

Inserting the above second-order solution into the first-order
correlation function evaluated at time 7., yields

. . . . 2w\ . .
(Alte)A o(1rey)) = (A](0)A,(0)) — (%J) {<A1(0) 8, — fiz) iy — AR AHO)M 45M 5

| - 1, . A
+ 5<AL(O) ity = ;) Oy = fig) Af(0) M 5;M 5, + §<A;(0)5(ﬁﬂ = 13) 8tz = fip) A (0)M ,;zM Vp} +0(P),  (7)

where 8(ii,~7,) is to be understood as an operator Kro-
necker delta and the average is taken with respect to the
initial many-body quantum state. The above expression rep-
resents the full quantum result to second order in J, which is
general thus far, within the single-band Bose-Hubbard
model. This should be contrasted with the approach of [11],
which considers quantum collapse and revival in a 2D or 3D
optical lattice, assuming resonant tunneling in the reduced
dynamics of a two-mode (2D) or three-mode (3D) model,
respectively.

The terms linear in J generally vanish in the final result
for the correlator (7), which is to be expected because

(AT (0)A ,(0)) assumes its maximum value (=n in the homo-
geneous case) in a coherent state. Within linear response, the
tunneling-induced damping therefore generally vanishes. We
now use such a coherent state, more precisely a product of
coherent states at each site, which has Poissonian number
statistics, to evaluate (7),

|coh) = H ), = H REED> —“—|n (8)
n,=0 \I’l
Where n,) are local number eigenstates, ii,|n,)=|n,)n,, and

r u@, Wwith Poissonian distribution and average
(n |a 1. The state (8) is the factorized many-body state
after a quasi-instantaneous sweep starting deep in the super-
fluid state [6]. We assume homogeneity (no external trap-
ping), a,=a, {ii,)=n, and calculate the two different terms
occurring in the correlator [7]. For the relevant case of long-
range coherence (i.e., the two lattice sites u and o are far
apart and do not share neighbors, the result then being inde-
pendent of the distance of the two sites), the first term gives

(AX(0)8(A,, - Ap) Sl — AR)AA0))M M5,

£ 2
=n<2 p@) D*=ne " Ij(2n)D?, )
k=0

where D is the number of neighboring sites defined by D
=2,M,, for a fixed site u, with the v sum running in the
simplest case over only nearest neighbors to site w (see,
however, the discussion below of including next-nearest
neighbors as well), and I, is the modified Bessel function;
the Poisson probabilities to find & particles in a coherent state
with the number average n are denoted pk,n:e‘”nk/ k!. Simi-
larly (for long-range coherence), the last two terms in (7)
each give a contribution

SALL0) 8 i) 0~ ) {O) M

vp'" po

2

o 2 [
1 1
=3n zpi,n D(D_l)"'_nzpz,nD
k=0 2 k=0

- ge_4"13(2n)D(D —1)+ ge-%F{m}(#)D, (10)

where F{l,l}(n3) is a hypergeometric function. The second
term is generally negligible for D>1 (cf. Fig. 1), because
Efzop,in (ZimoPr. 7 )? for the experlmentally relevant range
of n=1,...,10, with the ratio of X,_ Opk to (Z_ Opkn)2
slowly decreasmg with increasing n.

Collecting the correlation functions from (9) and (10), the
total result for the decay of first-order coherence at the in-
stant of the first revival reads (see also Fig. 1)
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FIG. 1. (Color online) The result (11) for the damping rate as a
function of the filling n (bold line), for (27J/U)*=1.15X 1073 and
D=6 [4]. Dotted and dashed lines represent the contributions of the
I% and Fy; 1y terms in (11), respectively.

<AL(O)A0(O)> B <Az(trev)A (r(trev)>
n

Altrey) =

2] \?
= <7> [D(2D - 1)e™"I5(2n) + De " Fyy p(n3)].

(11)

This represents our major result for a coherent state with
Poissonian statistics—i.e., after a sudden sweep from deep
within the superfluid phase—for which the original ground
state (8) has no time to adjust.

We now provide a numerical estimate of (11) for the ex-
periment [4], which was performed in a cubic 3D optical
lattice, with an initial depth V,=8E, (corresponding to the
superfluid phase), and a subsequent “jump” to a final depth
Vp=22E, (deep into the Mott phase). In terms of the recoil
energy E,=27>/(m\?) determined by the laser wavelength
A, the tunneling coupling J in sufficiently deep optical lat-
tices can be _estimated by JIE,
=8(V/E,)** exp[—2VV/TJ/_@ . Similarly, the on-site repul-
sion scales as U/E,=4\2m(V/E,)**a,/\, where a, is the
s-wave scattering length [7]. One therefore obtains for the
perturbative parameter of our calculation

(2771)2 8\2 A \/7
U) =2 exp| — z |

s r

(12)

Assuming, like for *’Rb, a,=6 nm and a laser wavelength of
A=852 nm, we have for V=Vz=22E, the value (27J/U)>
=1.15X 1073, With the number D=6 of nearest neighbors in
a 3D cubic lattice and the experimental value [4] of the av-
erage filling, n=2.5, we obtain A(t,,)=2.8X1073. Thus
damping induced by tunneling to nearest neighbors, evalu-
ated on the basis of a superfluid state with Poissonian statis-
tics, cannot directly explain the amount of damping observed
in experiment [4], which is one to two orders of magnitude
larger [10].

The result (11), however, represents a lower bound for
tunneling-induced damping. We now discuss various sce-
narios which would increase A(1,.,) above this lower bound.
First, relation (11) is the result obtained using the Poissonian
superfluid state (J>U) as the initial unperturbed (zeroth-
order) state. Assuming sub-Poissonian number statistics with
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a reduced number variance increases the expectation values
of the Kronecker symbols &(ii,—1,). In view of (¢|&(i,
—#,)|y) <1 for all states |¢)), we may obtain a crude upper
estimate by just omitting all Kronecker symbols &(7i,,—1,) in
the expectation values. Inserting this upper bound, reason-
able agreement with experiment can be reached, noting that
S oPias=0.034 and (2 pi,s)?=0.0385, which would
then essentially be replaced by unity. Note, however, that
actually realizing this upper bound would imply that the
many-particle state approaches a product of Fock states with
exactly n particles at each site—for which the coherence

signal <ALAG> vanishes. Nevertheless, a state “in between”
the coherent state and the Mott state could still display non
vanishing long-range coherence (though below its maxi-

mum), n>(ALAg>>O, whose revivals are more strongly
damped than in the fully coherent case (11). Actually, such
an intermediate state with sub-Poissonian number statistics is
automatically created by a superfluid—Mott-insulator
quench with a finite sweep rate [6]. The character of the final
state (i.e., whether it is closer to the initial superfluid phase
or the Mott state) depends on the time scale of the quench in
comparison with the (inverse) chemical potential—i.e., the
relevant internal energy scale [6]. From the revival time of
550 us [4], one obtains for n=2.5 an inverse chemical po-
tential of u~'=(Un)"'=40 us. According to [4], the system
is quenched in 50 us from superfluid to Mott-insulator. The
initial V,;/E,=8 and final values V,/E,=22 imply that J is
quenched across approximately 3.7 e-foldings. In order to
compare the results with the calculation in [6], we assume an
exponential decay J(¢) < exp{—yr} for simplicity. This implies
that 1/y=13.5 us, which is about a factor of 3 smaller than
the inverse chemical potential of u~'=(Un)~'=40 us. There-
fore, the sweep is rather nonadiabatic, which corresponds to
a small adiabaticity parameter v=Un/vy=1/3 introduced in
[6]. However, the sweep is not sudden—for a sudden
quench, the number fluctuations would essentially retain
their initial value, {(4%)—(A)*=(&*)=n for a coherent state.
Due to the finite sweep rate J(¢) xexp{—yr} with v=Un/y
=~ 1/3, though, the number variance is reduced by 60%—i.e.,
(6A%)=~0.4n. Even though this result, derived in [6], applies,
strictly speaking, in the limit of large fillings n>1 only, one
would expect a similar sub-Poissonian statistics also for n
=2.5, which would then increase the decay A(t,,) in (11)
significantly. An additional source for sub-Poissonian statis-
tics could be the initial state itself, if we do not start deep in
the superfluid phase. Closer to the transition line (but still on
the superfluid side), the number variance decreases, (%)
<n, already in the initial ground state. (In the experiment
[4], merely 60% of the atoms occupied the coherent conden-
sate state initially.)

Another effect which potentially increases A(t.,) is to
include couplings to next nearest neighbors—i.e., to effec-
tively increase D. For the parameters of the experiment [4],
the final next-nearest-neighbor couplings may be estimated
as follows: Within a harmonic approximation, the tunneling
matrix elements are given by IM o
= Jjop exp{—m\V/ E,(a—B)*/4}, where |a—p] is the dis-
tance of lattice points « and B in units of the lattice spacing
and J,_g depends polynomially on [a— 3| [12,13]. There are
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20 next-nearest (diagonal) neighbors in a 3D cubic lattice in
addition to the 6 nearest (straight) neighbors. Due to the
exponential reduction of their individual contributions when
quenching deep into the Mott phase (V,/E,=22), their con-
tribution gives about a factor of 2 for the damping A(z,.,). On
the other hand, using only a moderately smaller final V{)/E,
may make their total contribution to revival damping larger
than that of the nearest neighbors.

In conclusion, we have derived a rigorous second-order
result (7) for tunneling-induced damping of phase coherence
revivals in optical lattices sufficiently deep inside the local-
ized Mott phase 27J<U. Evaluating expression (7) for a
coherent state, we obtained a lower bound for tunneling-
induced damping (11), which is too small to explain the ex-
periment [4]. However, the incorporation of next-nearest (di-
agonal) neighbors as well as sub-Poissonian number
statistics induced by the initial state and the finite sweep rate
significantly enhances the tunneling-induced damping A(7,.,)
such that—even though it does perhaps not fully reproduce
the experiment [4]—it should constitute an observable frac-
tion of the measured decay. Unfortunately, the precise value
of the tunneling-induced damping of phase coherence cannot
be derived from the information given in [4] since part of the
relevant input—such as the exact dynamics J(r)—is missing.
Thus, while the dephasing mechanisms (i)—(iv) discussed at
the beginning of this article are qualitatively well under-
stood, it is not possible to precisely disentangle their quanti-
tative contributions from the data at hand.

While our prediction cannot be compared accurately to
existing experimental results, a relatively modest modifica-
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tion of the parameters in an experiment like that of [4] will
allow for its test. In particular, the exponential dependence of
the tunneling-induced damping A(t,.,)>J? on the laser am-
plitude \V,/E,, implying 7.4 e-foldings for (27J/U)? in the
experiment [4], distinguishes (at low temperatures) this
mechanism (i) from other sources like inhomogeneities due
to external trapping (iii).

We finally point out the importance of tunneling coupling
for the equilibration of many-body states on the lattice. Non-
equilibrium states of the Bose-Hubbard model were studied
for various cases—e.g., quenching from the superfluid to the
Mott-insulator side [6,15], from Mott-insulator to superfluid
[16], or for hard-core bosons in superlattices [9]. While our
approach is perturbative, yielding first-order coherence up to
second order in 27rJ/ U, it provides a first estimate on how
important coupling of the wells can turn out to be for an
equilibrium or nonequilibrium state to be established after a
quench. Taking the decay of the first-order coherence as an
indicator for locally approaching the equilibrium state, we
conclude that equilibration occurs faster for many neighbors
and for a larger tunneling rate (as one would expect), but also
for sub-Poissonian number variance—this is somewhat sur-
prising, as one would generally expect that a state which is
already closer to the Mott state decays more slowly.
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