
Multiparticle entanglement under the influence of decoherence

O. Gühne,1,2 F. Bodoky,3 and M. Blaauboer3

1Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

3Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
�Received 9 June 2008; published 10 December 2008�

We present a method to determine the decay of multiparticle quantum correlations as quantified by the
geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness
of entanglement in Greenberger-Horne-Zeilinger �GHZ�, cluster, W, and Dicke states of four qubits and show
that the Dicke state is the most robust. Finally, we determine the geometric measure analytically for decaying
GHZ and cluster states of an arbitrary number of qubits.
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The decoherence of quantum states is a process in quan-
tum dynamics that is relevant for the discussion of funda-
mental issues like the transition from quantum to classical
physics �1�. Also from a practical point of view decoherence
phenomena have to be studied as they occur in experiments
involving entanglement and their suppression is of vital im-
portance for any implementation of quantum information
processing.

Due to this importance, the influence of decoherence on
the entanglement of multiparticle systems has been studied
from several perspectives �2,3�. These investigations con-
cerned either the lifetime of entanglement or the entangle-
ment properties of the bipartite system which arise if the
multiparticle system is split into two parts. The lifetime of
entanglement, however, gives no quantitative information
about the decay of entanglement �3�. Moreover, as a highly
entangled multiparticle state may be separable with respect
to each bipartition �4�, considering bipartite aspects only may
not lead to a full understanding of the decoherence process.
It is therefore highly desirable to investigate a full multipar-
tite entanglement measure under the influence of decoher-
ence. Unfortunately, all known entanglement measures for
multiparticle entanglement are defined via complicated opti-
mization procedures �5�, which makes it practically impos-
sible to compute them for a given mixed quantum state.

In this paper we present a method to investigate the decay
of quantum correlations which can be used to overcome
these difficulties. We study different four-qubit states and use
our method to compare their robustness against decoherence,
using a phenomenological model described below. Our ap-
proach allows us to compute the entanglement for
Greenberger-Horne-Zeilinger �GHZ� and cluster states of an
arbitrary number of qubits and thereby to investigate the
scaling behavior for these states under decoherence. As we
will further see, our results can be directly tested in nowa-
days experiments with photons or trapped ions. Finally, from
the viewpoint of pure quantum information theory, our re-
sults represent one of the few cases where the computation of
a relevant entanglement measure for mixed states can be per-
formed �6�.

We consider the following situation: a pure quantum state
��� is prepared at time t=0 and in the presence of noise
evolves to a mixed state ��t�. Our task is to quantitatively
investigate the time evolution of the entanglement E�t�
=E���t�� and its dependence on the initial state and the num-
ber of qubits.

As entanglement quantifier, we use the geometric measure
of entanglement �7�. This is a popular entanglement mono-
tone for multiparticle systems, which is related to the dis-
crimination of multiparticle states with local means �8� and
has been investigated from several perspectives �9–11�. For
pure states, it is defined as

EG����� = 1 − max
���=�a��b��c�¯

�������2, �1�

i.e., as one minus the maximal overlap of ��� with fully
separable states ���. It is extended to mixed states by the
convex roof construction

EG��� = min
pk,��k�

�
k

pkEG���k�� , �2�

where the minimization is taken over all convex decomposi-
tions of �—i.e., over all probabilities pk and states ��k�
which fulfill �kpk��k���k�=�. Clearly, the optimization in
Eq. �1� and especially in Eq. �2� is difficult to perform.

Our method can be summarized as follows: since any set
of probabilities pk and states ��k� in Eq. �2� results in a valid
upper bound, we obtain a good upper bound by choosing
them appropriately. Then we use the results of Refs. �12,13�
to obtain a lower bound on EG�t�. There it has been shown
how the geometric measure can be estimated if the mean
value of a single or a few observables is given �14�. We show
that the lower and upper bounds coincide for the multipar-
ticle states we investigate below, allowing for a precise de-
termination of EG�t�.

The noise we consider is described by a master equation
for the matrix elements �kl as they are used in phenomeno-
logical models of decoherence for, e.g., electron spin qubits
�15�:

�t�kl =	�
i�k

�Wik�ii − Wki�kk� for k = l ,

− Vkl�kl for k � l .

 �3�

We consider a global dephasing process, where the relax-
ation of the diagonal elements plays no role �Wij =0∀ i , j�
and the off-diagonal terms are affected by a global dephasing
rate Vkl��. This process leads to exponentially decaying
off-diagonal components �kl�t�=x�kl�0�, where here and in
the following x�e−�t. At the end of the paper we will discuss
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extensions of our method to other �e.g., local� decoherence
models.

Before presenting our results for different four-qubit
states in detail, note that by construction the geometric mea-
sure is a convex quantity—i.e., EG���1+ �1−���2�
��EG��1�+ �1−��EG��2�. From this, it follows directly that
EG�t� is monotonically decreasing. Moreover, EG�x� is con-
vex in the parameter x �since ��x� depends linearly on x�,
and consequently EG�t� is convex in the time t.

Let us start our discussion with the four-qubit GHZ state
�16�, given by

�GHZ4� = ��0000� + �1111��/�2. �4�

The geometric measure of the GHZ states equals 1 /2 as the
maximal overlap with product states is 1 /2 �7�.

In order to estimate the entanglement from below, note
that the time-dependent fidelity is given by F�t�
=Tr���t��GHZ4��GHZ4��= �1+e−�t� /2. Using the results of
Ref. �12� we can estimate the geometric measure from F�t�.
Explicitly, it has been shown that if for an arbitrary � the
fidelity F of a state ��0� is given, then EG is bounded by

EG��� � sup
r�0
	1 + rF�t� −

1

2
�1 + r + ��1 + r�2 − 4rEG��0��
 .

�5�

Applying this to ��t� and the fidelity of the GHZ state leads
to �using x=e−�t�

EG��� �
1

2
�1 − �1 − x2� . �6�

In order to obtain an upper bound, we consider the two
states ��1�=c�0000�+s�1111� and ��2�=s�0000�+c�1111�,
with c=cos��� and s=sin���, and write ��t�
= �1 /2��k=1,2��k���k�. Then, x /2= �2cs� /2 has to hold, and
using the fact that the geometric measure for the states ��k� is
given by EG=mins2 ,c2� �17� one arrives at an upper bound
for EG�t� which is given by the right-hand side of Eq. �6�.
Hence, EG���= �1−�1−x2� /2 for the four-qubit GHZ state
�4� under the influence of noise. This function is shown in
Fig. 1.

Second, let us discuss the four-qubit cluster state �18�

�CL4� = ��0000� + �0011� + �1100� − �1111��/2, �7�

which has a geometric measure of EG��Cl4��=3 /4 �10�. For
this state, the decay of the fidelity is given by
F�t�= �1+3x� /4, which �combined with Eq. �5�� leads to the
lower bound

E��� �
3

8
�1 + x − �1 + �2 − 3x�x� . �8�

For the upper bound, we consider four trial vectors for the
decomposition. The first is given by ��1�=c�0000�
+s��1100�+ �0011�− �1111�� /�3, and the other three are ob-
tained from this by permuting the four terms. We choose c
�s; then, any of the four states has a geometric measure of
EG���i��=s2. With the ansatz ��t�= �1 /4��k=1

4 ��k���k� we ob-
tain as a condition on s and c that x /4= ��2cs /�3�
+ �2s2 /3�� /4. From this, c can be determined. This leads after
a short calculation to the insight that the right-hand side of
Eq. �8� also constitutes an upper bound on the entanglement
and thus describes exactly the time evolution of the entangle-
ment.

Third, a four-qubit W state is given by �19�

�W4� = ��0001� + �0010� + �0100� + �1000��/2, �9�

for which the geometric measure equals 37 /64 �7�. Let us
first derive the upper bound. We take as test states the state
��1�=c�1000�+s��0100�+ �0010�+ �0001�� /�3 and permuta-
tions thereof. Using a symmetry argument �9�, their geomet-
ric measure is determined to be EG���i��= �5+3c2�c4+c2

−3�� / ��3−4c2�2� for c�1 /�2 and EG���i��=1−c2 for c
�1 /�2 �17�. Then, one can derive an upper bound as for the
cluster state.

It turns out, however, that this upper bound is not convex
in x. Since we know that EG has to be convex, we can take
the convex hull �in x� of this upper bound:

EG �
37�81x − 37�

2816
for x � x0,

EG �
3

8
�1 + x − �1 + �2 − 3x�x� for x � x0, �10�

with x0=2183 /2667. Physically, taking the convex hull just
means that for short times �when x�x0� the optimum in the
convex roof in Eq. �2� is of the form ��x�= p�W4��W4�+
�1− p���x0�, with ��x0�= �1 /4��k��k���k�. Note that for
longer times �x�x0� the upper bound �10� is the same as for
the cluster state.

In order to see that this upper bound is optimal, let us
derive a lower bound. Here, we not only take the fidelity of
the W state into account, but we use as a second observable
the projector onto the space with one excitation, P1
= �0001��0001� + �0010��0010�+ �0100��0100�+ �1000��1000�.
Using the fact that the fidelity of �W4� is given by F�t�
= �1+3x� /4 and that it is always in the space spanned by P1
( i.e., Tr���t�P1�=1), we can use the methods of Ref. �12� to
obtain a lower bound from these two expectation values �20�.
It turns out that, within numerical accuracy, the lower bound

FIG. 1. �Color online� The geometric measure EG�t� for four-
qubit GHZ, cluster, W, and Dicke states for the case �=1. For the W
and Dicke states, the upper bounds are shown, as the curves of the
lower bounds coincide with that. For t�2 the values for the W and
cluster states coincide �see Eqs. �8� and �10��.
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coincides with the upper bound, giving strong numerical evi-
dence that Eq. �10� is the exact expression for the decay of
quantum correlations in the W state �9�.

As a last example of a four-qubit state, let us discuss the
symmetric Dicke state �21� given by

�D4� = ��0011� + �0101� + �1001� + �1100� + �0110�

+ �1010��/�6, �11�

which has a geometric measure EG=5 /8 �7�. To obtain the
upper bound, we proceed similarly as for the W state: We
take six states, the first one being ��1�=c�0011�+s��0101�
+ �1001�+ �1100�+ �0110�+ �1010�� /�5 and other ones ob-
tained by permuting the terms. Then we make the ansatz
��t�= �1 /6��k=1

6 ��k���k�. This leads to an upper bound which
is not convex in x, and subsequently taking the convex hull
leads to

EG �
5�3x − 1�

16
for x �

5

7
,

EG �
5

18
�1 + 2x − �1 + �4 − 5x�x� for x �

5

7
. �12�

The lower bound is found analogously to the W state as well,
with the projector P2 onto the space with two excitations as
second observable. The resulting bound coincides again with
the upper bound, giving strong evidence that Eq. �12� de-
scribes the time evolution of the entanglement.

For a comparison between the different states, we con-
sider the logarithmic derivative 	=�t(ln�EG�t��)
=�tEG�t� /EG�t�, which describes the relative decay of en-
tanglement �22�. The values of this quantity are plotted in
Fig. 2. One can clearly see that the Dicke state is the most
robust state, while the GHZ state is the most fragile state
�23�. It is an interesting open question as to which properties
of the Dicke state are responsible for the high robustness.

For N qubits, we restrict our attention to GHZ and linear
cluster states, as they are highly relevant for applications like
quantum metrology or measurement-based quantum compu-
tation �24�. In the decoherence model, one might keep the
dephasing rate �=�0 constant for any number of qubits
�where �0 is the single-qubit dephasing rate� or scale it as

�=N�0 �as would occur for the GHZ state in a local dephas-
ing model�. For the GHZ state, nothing changes and all the
formulas obtained in the above for the four-qubit case apply.
Concerning the cluster state, we consider linear cluster states
with N=2n qubits. The linear cluster state is given by

�CLN� = �
k=1

n

��00� + �11��
x � 1��/�2, �13�

where this formula should be understood as an iteration, with
the operator �
x � 1� acting on the Bell state of the next two
qubits. Explicitly, we have �CL2�= ��00�+ �11�� /�2 and
�CL4���00���00�+ �11��+ �11��
x � 1��00�+ �11��� = �0000�
+ �0011�+ �1110�+ �1101� �25�. Note that the maximal overlap
of the cluster state with fully separable states is 1 /2n �10�.

We calculate the geometric measure for this state under
the effect of decoherence in the same way as for the four-
qubit case. The lower bound is obtained from the fidelity
F�t�= �1+ �2n−1�x� /2n and yields EG�

1
2N (�2−3�2n+2N�x

+2�2n−1�1−��1−x��1+ �2n−1�x��). For the upper bound,
we consider 2n test states similar to the ones before and
arrive at an upper bound which coincides again with the
lower bound.

To investigate the scaling behavior, we consider the time
t1/2 when the entanglement has decreased to half of the initial
value. These times can be directly computed for the
N-particle GHZ and cluster states. Figure 3 shows t1/2 as a
function of the number of qubits N for the constant and linear
models of �. In both cases the time t1/2 of the cluster state is,
in the limit N→�, larger than that of the GHZ state by a
factor of ln�4� / ln�4 /3��4.82, giving quantitative evidence
for the higher robustness against dephasing of the cluster
state.

In the calculations presented in this paper we concentrated
on a global decoherence model. However, our results can
also be applied to other models. First, for the W and GHZ
states, our model is equivalent to a local dephasing noise, as
occurs in multiphoton experiments. Given the experimental
availability of W and GHZ states with photons �26�, our re-
sults can be directly tested with present-day technology. Sec-
ond, for local decoherence models where relaxation is the
dominant process, a small modification of our scheme allows
the calculation of the geometric measure for certain states,

FIG. 2. �Color online� Logarithmic derivative of EG�t� �for �
=1� for different four-qubit states. The nonanalytic behavior for the
Dicke and W states stems from the convex hull in Eqs. �10� and
�12�.

FIG. 3. �Color online� Comparison between the GHZ state and
the cluster state as a function of the number of qubits N. The half
lifetime t1/2 is shown for the case that �=4 and for the case that
�=N increases linearly with the number of qubits.
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such as the W state �27�. The fact that this type of decoher-
ence is dominant in ion traps �28� combined with the possi-
bility to generate such states �29� opens another way for an
experimental test.

To conclude, our results provide a versatile method to
determine the decay of multiparticle entanglement for quan-
tum states under the influence of decoherence. Our results

can be tested in multiqubit experiments and may therefore
lead to a better understanding of decoherence as a fundamen-
tal obstacle in quantum information processing.
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