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In the preceding Comment, Maitra, van Leeuwen, and Burke �MLB� �Phys. Rev. A 78, 056501 �2008�
attempt to refute our criticism of the foundations of time-dependent density functional theory �see J. Schirmer
and A. Dreuw, Phys. Rev. A 75, 022513 �2007��. However, their arguments miss the essence of our position.
This is partly due to an ambiguity concerning the present status of the time-dependent �TD� Kohn-Sham �KS�
equations. Based on the first Runge-Gross �mapping� theorem, the TD KS equations have to be established as
a fixed-point iteration scheme for potential functionals �PF-FPI�. Here, however, the convergence of the FPI is
not assured. On the other hand, time propagation of the TD KS equations in their PF-FPI form fails because
these equations do not represent physical equations of motion. MLB present a construction of the exact
exchange-correlation potential, apparently contradicting one of our findings. We explain that their construction
is explicitly based on the solution of the TD Schrödinger equation and, for this reason, does not address our
objections, let alone refute them.
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In a recent paper �1�, henceforth referred to as paper I, we
have shown that time-dependent density-functional theory
�TDDFT� is lacking a valid foundation. In the preceding
Comment, Maitra, van Leeuwen, and Burke �MLB� �2� claim
that they can falsify one of our two main arguments, affect-
ing the viability of time propagation in the TDDFT context.
However, partly due to an ambiguity with regard to the so-
called mapping derivation of the time-dependent �TD� Kohn-
Sham �KS� equations, their demonstration fails to challenge
the essence of our position, as we will explain in the follow-
ing.

Before addressing the central issue, let us rectify two mis-
understandings brought up in the first paragraph of the Com-
ment, concerning �i� the problems of the Runge-Gross �RG�
action-integral functionals, and �ii� the use of nonlocal �ex-
ternal� potentials in DFT or TDDFT. The latter point, being
the topic of Secs. II and III in I, is not at all intended as a
critique of DFT �or TDDFT�. On the contrary, it is a highly
instructive confirmation of the logical consistency of DFT in
view of an apparent contradiction. Second, we fully agree
that the failure of the RG action-integral functionals �3� was
recognized previously, as has been clearly stated in I �see
Refs. �32� and �36��. However, the breakdown of the original
RG foundation of the TD KS equations is not widely known
outside the inner TDDFT community. Moreover, the problem
of the RG functionals is by no means resolved by the
Keldysh action �4�, as insinuated by MLB and others. Lack-
ing an i�t term, the Keldysh action functional cannot be used
to establish TD equations. Without the RG action-integral
functionals, one has to rely entirely on the first RG theorem
�RG1�, an essentially mathematical theorem mapping TD
densities to TD potentials. In view of the enormity of the
claim �an approach to the time evolution of quantum many-
particle systems without phase information�, one may rightly
wonder whether this can succeed.

Unfortunately, the “mapping foundation” of TDDFT,
based entirely on the RG1 theorem �3�, has not been spelled
out completely and transparently in the literature, let alone
analyzed critically. Besides other problems, a common
source of confusion arises from not always distinguishing
clearly between potential functionals and potentials. A poten-
tial functional, such as the Kohn-Sham potential functional
�PF�,

vS:n�r,t� → vS�n�t���r,t� �1�

is a function of functions, that is, a recipe to construct a
�time-dependent� potential u�r , t� for a given density n�r , t�.
Here and in the following, we adopt the notation used by
MLB; the KS PF was referred to as w���t���r , t� in I. While
the KS PF is trivial as a potential functional, the specific
potential

vS�r,t� = vS�n0�t���r,t� �2�

associated with the exact TD density, n0�r , t�, of the interact-
ing N-electron system under consideration is a highly non-
trivial TD potential. Using it in the TD KS equation for a
single orbital �assuming here the radical Kohn-Sham �rKS�
version�,

i
�

�t
��r,t� = �−

1

2
�2 + vS�r,t����r,t� , �3�

would allow one to determine the time evolution of the exact
one-particle density n0�r , t�. However, the question is not
whether such a potential exists and could be used to solve the
TD KS equation in the familiar way �that is, by time propa-
gation�. Indeed, the existence of vS�r , t� is almost a triviality,
as was demonstrated in I for the rKS version. The actual
problem is how to determine vS�r , t� �and thereby n0�r , t��
without somehow solving the full TD N-electron
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Schrödinger equation. Here, the KS PF �1� is obviously of no
help. We have called it trivial because it is completely un-
specific �void of physical significance� and applies to any
given TD density. The information necessary to generate the
TD potential associated with a given TD density �trajectory�
n�r , t� has to be extracted from the density trajectory itself.
To determine the respective potential at a given time t, the
density n�r , t�, and its first and second time derivatives,
ṅ�r , t�, n̈�r , t�, are needed, as we have shown in Sec. V of I.

So what actually is the mapping foundation of the TD KS
equations? The procedure offered here �5� is essentially a
fixed-point iteration scheme for the desired density n0�r , t�,
resting on the following three equations �in rKS formula-
tion�:

vxc�n�t���r,t� � vS�n�t���r,t� − vH�n�t���r,t� − vext�n�t���r,t� ,

�4�

i
�

�t
��r,t� = �−

1

2
�2 + v�r,t� + vH�n�t���r,t�

+ vxc�n�t���r,t����r,t� , �5�

n�r,t� = N���r,t��2. �6�

The first equation �Eq. �81� in I� serves as a definition
of the �nontrivial� exchange-correlation �xc� PF. Here
vext�n�t���r , t� is the “external” PF established by RG1 for N
interacting electrons. For a given TD density n�r , t� this PF
yields the TD potential recovering n�r , t� when used in the
interacting N-electron TD Schrödinger equation. In particu-
lar,

vext�n0�t���r,t� = v�r,t� , �7�

where v�r , t� is the specific external potential of the system
under consideration. In a similar way the �trivial� KS PF,
vS�n�t���r , t�, established by the RG1 mapping for the nonin-
teracting KS system �or directly according to Eq. �75� of I�,
yields a potential that will recover n�r , t� when used in the
TD KS equation �3�; vH�n��r , t� denotes the Hartree PF.

By using the nontrivial xc PF in the KS equation �5� one
obtains a fixed-point iteration �FPI� scheme with the desired
n0�r , t� as the fixed point. This becomes particularly transpar-
ent by expressing vxc�n�t�� according to Eq. �4�:

i
�

�t
��r,t� = �−

1

2
�2 + vS�n�t���r,t� + v�r,t�

− vext�n�t���r,t����r,t� . �8�

If and only if n�r , t��n0�r , t�, the two latter potentials on the
right-hand side cancel each other �see Eq. �7��, and the KS
equation with the remaining potential, vS�n0�t���r , t�
=vS�r , t�, will yield the fixed-point density n0�r , t�. At the
fixed point �and only here�, Eq. �4� turns into a relation be-
tween the �exact� xc and KS potentials, as given by Eq. C�1�
of the Comment.

However, as it stands, this is just an ad hoc fixed-point

iteration scheme. To qualify as a method for determining
n0�r , t�, the question of convergence must be settled, at least
in principle. However, so far there is no proof of the feasi-
bility of convergence �not to be dismissed as “numerical con-
vergence” in actual computations�. So even if one had the
exact xc PF, vxc�n�t��, this would be of no avail to determine
the fixed-point solution because one cannot expect the FPI
�referred to as “trajectory mode solution” in I� to converge.
The situation here is completely different from static DFT,
where FPI is the standard method to determine the ground-
state density n0�r�. In static DFT, by contrast, the variational
principle according to the second Hohenberg-Kohn theorem
�6� assures the convergence of the FPI as a means of finding
the existing minimum of the energy functional.

In the TDDFT community, the lack of a proof of conver-
gence for the TD KS fixed-point iteration has never been
seen as a problem. To the best of our knowledge, the problem
has not even been mentioned in the TDDFT literature. There
was no reason to worry about the TD FPI at all because there
was an apparent simple solution: direct time propagation of
the TD KS equation �5�. By starting from the exact static
ground-state density n0�r� at the onset of the TD interaction,
say at t=0, it was believed that one could propagate the
initital KS orbital�s� through a given time by supplying the
required density argument in vxc�n�t���r , t� �and
vH�n�t���r , t�� on the fly via Eq. �6�. While this would work
for instantaneous potential functionals �as those used in the
adiabatic approximation�, in general, PFs cannot be expected
to be instantaneous. As we have explicitly shown in I, the
KS PF vS�n�t���r , t�, required in the definition �4� of
vxc�n�t���r , t�, depends on the second time derivative of the
density, which undermines the possibility of propagation.
The eventuality that the PFs appearing in the TD KS equa-
tions are noninstantaneous in the described sense has never
been seen and addressed before. The inescapable conclusion
of that finding is that the TD KS equations, as established by
the RG1 mapping theorem, do not represent physical equa-
tions of motion amenable to time propagation: The simple
solution is an illusion.

To avoid possible misunderstanding, the dependence on
the second time derivative of the density �and thus on the
infinitesimal “past” and “future” of the density at a given
time t� pertains to the PFs, vS�n�t��, vext�n�t��, and vxc�n�t��,
and, more specifically, to the information required to con-
struct a potential at a given time t from the respective PF. We
do not claim that this applies to the potentials, vS�r , t� or
vxc�r , t�, themselves. As a matter of fact, vS�r , t� or vxc�r , t�
can be determined directly by somehow solving the full TD
Schrödinger equation �FTDSE� for the original N-electron
system. We do not at all deny that such a direct FTDSE-
based determination of the potentials can do perfectly well
without second time derivatives of the wave function or the
density. An example of a direct approach was presented in I.
For the exact TD density n0�r , t�, obtained by solving the
FTDSE �e.g., by time propagation from a specified initial
state�, vS�r , t� could be determined by inserting the density as
an argument in the explicitly available �trivial� KS PF,
vS�r , t�=vS�n0�t���r , t�. �This way of determining vS�r , t�
from n0�r , t� is also referred to as the inversion of the TD KS
equation.� In the final inversion step, being based only on the
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density information, the second time derivative of the density
is required, which, of course, causes no problem here as the
density trajectory is available anyway, along with its first and
second time derivatives.

At this point MLB think they can refute us, namely, by
demonstrating that the exact xc potential vxc�r , t� can be de-
termined without recourse to second derivatives of the den-
sity, that is, by a procedure depending only on the past. The
problem is that their procedure is of the direct type, mani-
festly based on solving the FTDSE, as we will explain below.
Obviously, we have no objections to such a direct construc-
tion of the exact xc or KS potentials, but it should by no
means be confused with a genuine density-functional ap-
proach.

MLB begin their specific argumentation with a “simple
counterexample” which allegedly arises if the rKS scheme is
applied to a TD one-electron system and leads to an ‘‘incor-
rect conclusion.’’ However, what MLB imply here is simply
due to a misconception. For any one-electron system, the
rKS and external PFs become identical, so that they cancel in
Eq. �8�, yielding the regular one-particle SE with the given
TD potential v�r , t�, exactly as is to be expected: no depen-
dence on n̈�r , t�, whatsoever. Alternatively, according to Eq.
�4�, we have vxc�n�t���r , t�=−vH�n�t���r , t�, just as demanded
by MLB.

Now let us inspect the derivations along Eqs. C�2�–C�11�
in the Comment �C�, where MLB demonstrate the possibility
to construct the exact xc potential, more precisely the
combined Hartree and xc potential, vHXC�r , t�=vxc�r , t�
+vH�r , t�, without recourse to second time derivatives of the
density; but as can readily be seen, this construction is based
on solving the FTDSE. Here, the key is to note that the
Sturm-Liouville type Eq. C�4�, underlying the construction
of vHxc�r , t�, depends explicitly on the quantity �Eq. C�2��

q�r,t� = 	��t��q̂�r����t�
 ,

that is, an expectation value involving the N-electron TD
wave function ��t�. This makes apparent that the construc-
tion of the xc potential at a given time t along Eqs. C�2�–
C�5� depends on the TD N-electron wave function ��t� at t.

Since, according to Eq. C�4�, vHxc�r , t� �at a given time t�
is completely determined by ��t� �and the density n�t�, being
itself determined by ��t��, one might devise a time-
propagation scheme for vHxc�r , t� based on time propagation
of ��t�. The time propagation of vHxc�r , t� could then be
used in the propagation of the TD KS equations, of which the
first step has been specified in Eq. C�6�. Like the underlying
time propagation of ��t�, the �concomitant� time propaga-
tions of vHxc�r , t� and the TD KS equations are viable proce-
dures, depending only on the previous �past� time steps and
the initial wave function. Of course, this is not what MLB
want to do. Nevertheless, apparently unnoticed, their proce-
dure is based on providing the wave function at the respec-
tive times t, not via time propagation, to be sure, but using a
Taylor expansion of ��t� at t=0, as we will explain in the
following.

Obviously, MLB expand vHxc�r , t� in a Taylor expansion
at t=0. This can be seen in Eq. C�9�, specifying the linear
term at t=�t,

vHxc�r,�t� = vHxc�r,0� + �tvHxc�r,0��t .

To evaluate the potential at t=2�t the Taylor expansion has
to be expanded through the quadratic term, 2�t

2vHxc�r ,0��t2,
and so forth, with the respective time arguments
�t ,2�t ,3�t , . . .. At this point it is important to observe that
the expansion of vHxc�r , t� at t=0 is directly related to the
corresponding Taylor expansion of the TD wave function
��t�. The first step, spelled out in Eq. C�8�, establishes

�t��0�=−iĤ�0���0�, which readily leads to the commutator
expression on the right-hand side of Eq. C�8�. In the general
kth time step, the kth time derivative of q�r , t� can be written

in a form involving multiple commutators of q̂�r�, Ĥ�0�, and

time derivatives of Ĥ�t� at t=0, sandwiched by �0=��0�
�see text after Eq. C�11��. Obviously, these multiple commu-

tators arise from terms of the kind Ĥ�0�k��0
 with increas-

ingly higher powers of Ĥ�0� and higher time derivatives

�t
kĤ�0�. The k=2 term is given explicitly in the unnumbered

equation following Eq. C�11�. To conclude, in each time step
of their time propagation of the KS equation, MLB use a
higher derivative of ��t� at t=0, generated by applying suc-
cessively higher powers of the Hamiltonian to ��0�. Evi-
dently, this is a way of solving the TD Schrödinger equation.

Let us note that a Taylor expansion of ��t� at t=0 means
a severe restriction compared to time propagation, as it pre-
supposes that the TD Hamiltonian, and thus the wave func-
tion, is analytic at all times. In any case, what MLB have
shown �or could have shown more stringently using time
propagation� is that the exact xc potential can be constructed
directly and then used in a regular time-propagation scheme
for the TD KS equations, if the N-electron wave function
��t� is at hand. We have no objections to that result, but
obviously it misses the point. What MLB should have shown
is that one can construct the xc potential at t if only the exact
density is available at t or prior to t. The latter proof will not
be possible, we believe, because one cannot expect that a
mathematical mapping theorem such as RG1 will result in
physical equations of motion, amenable to time propagation.
At some point that deficiency has to emerge.

The status of the TD KS equations as physical equations
of motion has always been seen as self-evident. However,
after the failure of the RG action-integral functionals and
their stationarity principles, this can no longer be taken for
granted. Surprisingly, this issue has been addressed nowhere
in the TDDFT literature, let alone clarified. There is no such
thing as a second founding paper �of the theorem-proof
type�, filling the void after the breakdown of the original RG
foundation. Even more disconcerting is that the PF-FPI con-
cept, while well known in the inner TDDFT community, has
not been fully disclosed or analyzed in the literature so far.
What is offered instead is rather misleading �see, for ex-
ample, the authoritative review article by Marquardt and
Gross �7��. It is insinuated, partly by not clearly distinguish-
ing between the levels of PFs and potentials, that a nontrivial
xc PF can be obtained by just subtracting the Hartree PF and
the given external potential v�r , t� from the trivial KS PF.
While the TD KS equations then assume the familiar, reas-
suring shape of physical equations of motion, apparently
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amenable to time propagation after making a good guess for
the xc PF, the actual problems of the underlying mapping-
based FPI scheme are ignored.

Let us summarize. �1� After the breakdown of the original
foundation based on the RG action-integral functionals, the
TD KS equations have to be established as a fixed-point
iteration scheme for potential functionals �PF-FPI� based on
the Runge-Gross �RG1� mapping theorem. In I we have
shown that the PF-FPI concept is not valid because the con-
vergence of the FPI is not assured. The apparent way out
�time propagation of the TD KS equations in their PF-FPI
form� fails because these equations do not represent physical
equations of motion. This emerges from the necessity to pro-
vide second time derivatives of the density in the xc or KS
PF. �2� A direct construction of the xc potential at some t,
based on the solution of the full time-dependent Schrödinger
equation �FTDSE�, is always possible, and does not, of
course, depend on second time derivatives, as MLB show.
Using this xc potential in the KS equations will reproduce
the exact density n0�r , t�. Obviously, such a direct Kohn-
Sham potential �DKSP� scheme is little more than a detour to

determine the exact density by ultimately solving �or ap-
proximating� the FTDSE. It certainly does not constitute a
density-functional method. �3� Upon close inspection, it is
seen that the construction of the xc potential given by MLB
is based on the solution of the FTDSE �in this case, by a
Taylor expansion of the wave function at t=0�. For this rea-
son, our objections to the present TDDFT foundations have
not, in our opinion, been addressed or refuted.

In conclusion, the status of TDDFT as an in-principle rig-
orous approach to the time evolution of an interacting many-
electron system must still be considered as completely un-
founded. In view of this situation, a major effort should be
made to ultimately clarify the question as to whether one can
derive predictive equations of motion formulated entirely in
terms of densities, that is, without recourse to the wealth of
phase information governing the time evolution of the many-
electron wave functions. It is highly questionable whether
one will be able to derive density-based physical equations
of motion at all, but it will be next to impossible to do so
without a valid variational �or stationary� principle.

�1� J. Schirmer and A. Dreuw, Phys. Rev. A 75, 022513 �2007�.
�2� N. T. Maitra, R. van Leeuwen, and K. BurkePhys. Rev. A 78,

056501 �2008�.
�3� E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
�4� R. van Leeuwen, Phys. Rev. Lett. 80, 1280 �1998�.

�5� E. K. U. Gross, A. Görling, and F. Furche �private communi-
cation�.

�6� P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
�7� M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys.

Chem. 55, 427 �2004�.

COMMENTS PHYSICAL REVIEW A 78, 056502 �2008�

056502-4


