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Detection of quantum light in the presence of dark counts and background radiation noise is considered. The
corresponding positive operator-valued measure is obtained and photocounts statistics of quantum light in the
presence of noise is studied.
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Photodetectors play a crucial role in all experimental in-
vestigations dealing with quantum optics, fundamentals of
quantum physics, and quantum-information processing.
These devices are used for measuring the photon number of
radiation fields. The theory of photodetection has been de-
veloped for both classical �1,2� and quantum light fields
�2–6�.

Different kinds of losses are a serious problem in the pho-
toelectric detection of quantum light. Presently available
technologies enable us to get the detection efficiency near
0.9 and even more �7�. At the same time, attempts to improve
it increase the dark counts rate �8�. Besides, in many appli-
cations the background radiation noise contributes to the to-
tal statistics of photocounts similarly to dark counts �9,10�.

In some models �see, e.g., �11��, noise counts, originated
from dark counts and background radiation, are described by
coupling the radiation field to a single mode of the thermal
bath. However, such a simple model has, at least, two serious
drawbacks. First, it does not predict Poissonian statistics usu-
ally �10� peculiar to noise counts. Second, it does not con-
sider the presence of other modes of the thermal bath. Al-
though some of these modes are not coupled to the mode of
the radiation field, they contribute to the total statistics of
photocounts. Therefore, a more appropriate model should in-
clude a multimode noise.

For the classical fields, a similar problem was considered
in Refs. �9,10�. At the same time, quantum radiation demon-
strates many nonclassical properties such as sub-Poissonian
statistics �12�, quadrature squeezing �13�, etc. These proper-
ties can be described only in the framework of the consistent
quantum formalism, which is the subject of this paper.

According to the quantum measurement theory, see, e.g.,
�14�, the process of photodetection is characterized by the
positive operator-valued measure �POVM�, �̂n. For the
quantum radiation field characterized by the density operator
�̂, the probability distribution Pn to get n photocounts is
written as

Pn = Tr��̂n�̂� . �1�

A well-known result of the photodetection theory �1–6� is the
expression for the POVM of a single-mode radiation field
and for the detectors with losses,

�̂n ¬
��â†â�n

n!
e−�â†â: , �2�

where � is the efficiency of detection, â† and â are creation
and annihilation operators of the field mode, correspond-
ingly, and � means normal ordering. Expression �2� plays a
crucial role in various investigations dealing with quantum
optical measurements; see, e.g., �15–17�. We generalize this
expression for the case of detection in the presence of noise
counts.

Let us consider the normal ordered �Husimi-Kano� sym-
bol �18� of the POVM,

�n��� = ����̂n��� , �3�

where ��� is a coherent state. It is obvious that �n��� is a
probability to get n photocounts when the detector is irradi-
ated by a coherent light with an amplitude �. The operator
form of the POVM can be obtained from the explicit form of
expression �3� by replacing � with â and �* with â† under
the sign of normal ordering.

As was mentioned above, noise counts for realistic pho-
todetection should be described with a multimode heat bath.
Finite detection time enables one to restrict consideration to
a discrete set of modes for the radiation field and, conse-
quently, for the thermal bath. The number of thermal modes
� can be approximately evaluated as follows:

� � ��T , �4�

once the bandwidth of heat bath �� and detection time T is
known.

For a sufficiently small detection time, the model with
single-mode thermal noise �11� seems meaningful. However,
an account of an additional thermal mode may significantly
change the statistics of photocounts; see �2,19,20�. We simu-
late the detection in the presence of noise counts by � modes
of the thermal bath coupled to � modes of the radiation field;
see the beam-splitter replacement scheme in Fig. 1. The cor-
responding normal-ordered symbol of the POVM is equal to
the probability distribution of photocounts for mixture of the
coherent and thermal fields. The analytical expression for the
probability distribution of photocounts for the superposition*sem@iop.kiev.ua
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of the coherent and thermal light can be obtained under the
assumption that all the modes of the thermal bath have an

equal mean number of photons, N̄nc /� �21�,

�n�	�k
;N̄nc,�� =

� N̄nc

�
�n

�1 +
N̄nc

�
�n+� exp−

�

1 +
N̄nc

�

�
k=1

�

��k�2�
�Ln

�−1−
�

N̄nc

�
�1 +

N̄nc

�
��

k=1

�

��k�2� , �5�

where �k, for k=1, . . . ,�, is the complex coherent amplitude

for the kth mode of the radiation field, N̄nc is the overall
number of thermal photons �noise counts� in the output of
the beam splitter, and Ln

m�x� is the generalized Laguerre
polynomial.

For the sake of simplicity, we consider a single-mode ra-
diation field, i.e., �=1. All the results can be generalized
simply for the case of an arbitrary �. In this case the POVM,
cf. Eq. �5�, is rewritten as

�n��;N̄nc,�� =

� N̄nc

�
�n

�1 +
N̄nc

�
�n+� exp−

�

1 +
N̄nc

�

���2�
�Ln

�−1−
�

N̄nc

�
�1 +

N̄nc

�
� ���2� . �6�

In the operator form, the POVM is written as

�̂n�N̄nc,�� =

� N̄nc

�
�n

�1 +
N̄nc

�
�n+� :exp−

�

1 +
N̄nc

�

â†â�
�Ln

�−1−
�

N̄nc

�
�1 +

N̄nc

�
� â†â�: . �7�

One can prove that in the framework of the considered
model, Eqs. �6� and �7� can also be applied for the detection
of wideband quantum light even in the case in which several
modes of the heat bath are coupled to the radiation field. In
this case, the operator â describes the corresponding non-
monochromatic mode. Therefore, we conclude that the sta-
tistics of photocounts does not depend on the number � of
thermal-bath modes coupled to the signal and depends only
on the total number � of heat-bath modes.

In most practical implementations of the quantum optical
schemes, one seemingly deals with a large number of ther-
mal modes. If, for example, the bandwidth of the heat bath
includes the whole optical band, i.e., ���1015 s−1, and the
detection time is T=10−9 s, from Eq. �4� it follows that the
number of thermal modes ��106. The limit of Eq. �6� for a
large number of noise modes,

�n��;N̄nc� = lim
�→+	

�n��;N̄nc,�� , �8�

can be easily obtained as

�n��;N̄nc� =
�����2 + N̄nc�n

n!
exp�− ����2 − N̄nc� . �9�

This equation determines the normal-ordered symbol of the
POVM in the presence of noise that can be applied in most
practical situations. The corresponding operator form of the
POVM is represented as

�̂n�N̄nc� ¬
��â†â + N̄nc�n

n!
exp�− �â†â − N̄nc�: . �10�

Coupling between the noise modes and the radiation field is
negligible as soon as

N̄nc

�

 1. �11�

Consider the variance of photocounts, �n2,

�n2 = n̄ + �2�:�n̂2:� +
N̄nc

�
�2��n̂� + N̄nc� . �12�

In this expression,

n̄ = ��n̂� + N̄nc �13�

FIG. 1. The beam-splitter model for the detection in the pres-
ence of noise. D is an ideal detector and BS is a beam splitter with
transmission coefficient ��; the operators âk, k=1. . .� and ĉl, l
=1. . .� describe the modes of the incident radiation field and ther-
mal bath, correspondingly.
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is the mean number of photocounts, which includes the mean

number of photons, �n̂�, and that of noise counts, N̄nc. This
means that noise counts contribute to the shot noise of the
detector. The second term in Eq. �12� describes excess noise
caused by the stochastic nature of the light, and �:�n̂2 : � is
the normal-ordered dispersion of photon number.

The third term in Eq. �12� corresponds to the excess noise
caused by noise counts. This noise disappears when condi-
tion �11� is satisfied. Therefore, for the detection times

T �
N̄nc

��
, �14�

the statistics of noise counts differs from Poissonian, and the
corresponding POVM is described by Eq. �7�. This can take
place, e.g., for the femtosecond detection times. However,
such an interesting case from the point of different applica-
tions cannot be implemented with modern technologies. In

this case, the contribution of N̄nc
2 /� into the third term is

significant in any situation, and another contribution,

2��n̂�N̄nc /�, is significant only in the case in which the field
source of noise counts is coupled to the radiation field. For
detection times sufficiently greater than that defined by Eq.
�14�, noise counts obey the Poissonian statistics and contrib-
ute only to the shot noise of the detector, cf. Eq. �13�. The
corresponding POVM is described by Eq. �10�.

As an example, consider the light with sub-Poissonian
statistics of photocounts �12�. This property can be charac-
terized by the Mandel parameter �2,22�, which is defined as
the ratio of the excess-noise and shot-noise variations. The
Mandel parameter in the case of Poissonian statistics of noise
counts,

Q = �
�:�n̂2:�

�n̂� +
N̄nc

�

, �15�

is a monotonic function of N̄nc /�. For large values of N̄nc, the
Mandel parameter slowly tends to zero. Otherwise, in the
case of the detection time comparable with that given by Eq.

�14�, the Mandel parameter as a function of N̄nc,

Q = �

�:�n̂2:� +
1

�

N̄nc

�
�2�n̂� +

N̄nc

�
�

�n̂� +
N̄nc

�

, �16�

has a threshold value,

N̄nc = ���n̂�2 − ��:�n̂2:� − ��n̂� , �17�

starting from which the Mandel parameter is positive and the
corresponding statistics is super-Poissonian.

In the ideal photodetection, the presence of n photons is
always converted to the n photocounts. In other words, for
the Fock-number state, �n�, the probability to get n photo-
counts is always equal to 1. In the case of noisy detection,

the presence of n photons may result in a different number of
photocounts, m. The probability to get m photocounts under
the condition that n photons are present is

Pm�n = �n��̂m�n� . �18�

The POVM is expanded into series,

�̂m = �
n=0

+	

Pm�n�n��n� , �19�

and the probability to get m photocounts, Pm, is

Pm = �
n=0

+	

Pm�npn, �20�

where

pn = �n��̂�n� �21�

is the noiseless statistics of photocounts, i.e., the probability
that n photons are present.

For the case of Poissonian statistics of noise counts, the
conditional probability, Eq. �18�, is given by

Pm�n��,N̄nc� = e−N̄ncN̄nc
m−n�nLn

m−n� N̄nc�1 − ��
�

� �22�

for m�n and

Pm�n��,N̄nc� = e−N̄nc�1 − ��n−m�mLm
n−m� N̄nc�1 − ��

�
�

�23�

for m�n. We will consider two important limiting forms of
these expressions.

The first limit corresponds to the detectors without noise

counts, N̄nc=0,

Pm�n��,N̄nc = 0� = 0 �24�

for m�n and

Pm�n��,N̄nc = 0� = � n

m
��m�1 − ��n−m �25�

for m�n. Since in this case Eq. �20� presents the binomial
transform, it can be analytically inverted,

pn = �
m=0

n � n

m
� 1

�n�1 −
1

�
�n−m

Pm, �26�

by replacing � with 1 /� �17�.
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Another limit corresponds to the detectors with noise
counts, and with unit efficiency, �=1,

Pm�n�� = 1,N̄nc� = e−N̄nc
N̄nc

m−n

�m − n�!
�27�

for mn and

Pm�n�� = 1,N̄nc� = 0 �28�

for m�n. This is the shifted Poisson distribution. For this
case, Eq. �20� can also be analytically inverted,

pn = eN̄nc�
m=n

+	
�− N̄nc�m−n

�m − n�!
Pm. �29�

Equations �26� and �29� express in an explicit form the
noiseless statistics in terms of the noisy statistics of photo-
counts for two special cases once the characteristics of noise
are known.

As has been mentioned above, the POVM has the form of
Eq. �7� for the sufficiently small detection times defined by
Eq. �14�. In this case, the conditional probability, Eq. �18�, is
given by

Pm�n��,N̄nc,�� =

� N̄nc

�
�m�1 +

N̄nc

�
− ��n

�1 +
N̄nc

�
�n+m+� �m + � − 1

m
�

�2F1− n,− m;�;
�

N̄nc

�
�1 +

N̄nc

�
− ��� ,

�30�

where 2F1�m ,n ;k ;z� is the hypergeometric function. It can

be checked by direct calculations that for �� N̄nc this equa-
tion is transformed into Eqs. �22� and �23�.

In conclusion, we note that the appearance of dark counts
and background radiation noise can be ascribed to a heat
bath of harmonic oscillators—thermal noise modes of differ-
ent nature; each of them is either coupled or uncoupled to the
signal. For the realistic situation of a large number of noise
modes, noise counts are not coupled to the signal field and
obey the Poissonian statistics. Their contribution is totally
accounted for as the shot noise. In this case, nonclassicality
of quantum-light statistics disappears slowly as the total
number of noise counts increases.
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